/[MITgcm]/manual/s_algorithm/text/nonlin_frsurf.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/nonlin_frsurf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by jmc, Thu Aug 9 16:22:09 2001 UTC revision 1.4 by adcroft, Wed Sep 26 20:19:52 2001 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  %\section{Time Integration}  
5    
6  \subsection{Non-linear free surface}  \subsection{Non-linear free surface}
7    
8  Recently, 2 options have added to the model  Recently, two options have been added to the model (and have not yet
9  (and therefore, have not yet been extensively tested)  been extensively tested) that concern the free surface formulation.
10  that concern the free surface formulation.  
11    
 %------------------------------------------  
12  \subsubsection{Non-uniform linear-relation for the surface potential}  \subsubsection{Non-uniform linear-relation for the surface potential}
13    
14  The linear relation between  The linear relation between surface pressure/geo-potential
15  surface pressure / geo- potential ($\Phi_{surf}$)  ($\Phi_{surf}$) and surface displacement ($\eta$) could be considered
16  and surface displacement ($\eta$)  to be a constant ($b_s=$ constant)
17  has been considered as uniform ($b_{surf} = Constant$)  \marginpar{add a reference to part.1 here}
18  but is in fact  but is in fact dependent on the position ($x,y,r$)
19  dependent on the position  since we linearize:
20  since we have  $$\Phi_{surf}=\int_{R_o}^{R_o+\eta} b dr \simeq b_s \eta
21  $\Phi_{surf}=\int_{R_o}^{R_o+\eta} b dr \simeq b_{surf} \eta$  ~\mathrm{with}~ b_s = b(\theta,S,r)_{r=R_o}
22    \simeq b_s(\theta_{ref}(R_o),S_{ref}(R_o),R_o)$$
23  For the ocean, $b_{surf} = g \rho_{surf} / \rho_o \simeq g$  Note that, for convenience, the effect on $b_s$ of the local surface
24  is a fairly good approximation since the relative difference  $\theta,S$ are not considered here, but are incorporated in to
25  in surface density are usually small.  $\Phi'_{hyd}$.
26  For the atmosphere, because of topographic effects,  
27  the reference surface pressure $R_o$ has large spacial differences  For the ocean, $b_s = g \rho_{surf} / \rho_o \simeq g$ is a very good
28  that are responsible for significant $b_surf$ variations  approximation since the relative difference in surface density are
29  (from 0.8 to 1.2 $[]$).  usually small and only due to local $\theta,S$ gradients (because the
30    upper surface, $R_o = 0$, is essentially flat). Therefore, they can
31  Practically, in an oceanic configuration or  easily be incorporated in $\Phi'_{hyd}$.
32  when the default value (TRUE) of the parameter {\bf uniformLin\_PhiSurf}  
33  is used )  For the atmosphere, however, because of topographic effects, the
34  then $b_{surf}$ is simply set to $g$ for the ocean  reference surface pressure $R_o$ has large spacial variations that
35  and $1.$ for the atmosphere.\\  are responsible for significant $b_s$ variations (from 0.8 to 1.2
36  Turning {\bf uniformLin\_PhiSurf} to "FALSE", allows to  $[m^3/kg]$). For this reason, we use a non-uniform linear coefficient
37  evaluate $b_{surf}$ from the reference Theta,Q vertical profile  $b_s$.
38  ({\it S/R INI\_LINEAR\_PHISURF})  
39  according to the reference surface pressure $P_o$ ($=R_o$):  In practice, in an oceanic configuration or when the default value
40  $b_{surf} = c_p \kappa (P_o / Pc)^{(\kappa - 1)} \theta_{ref}(P_o)$  (TRUE) of the parameter {\bf uniformLin\_PhiSurf} is used, then $b_s$
41    is simply set to $g$ for the ocean and $1.$ for the atmosphere.
42    Turning {\bf uniformLin\_PhiSurf} to "FALSE", tells the code to
43    evaluate $b_s$ from the reference vertical profile $\theta_{ref}$
44    ({\it S/R INI\_LINEAR\_PHISURF}) according to the reference surface
45    pressure $P_o$ ($=R_o$): $b_s = c_p \kappa (P_o / Pc)^{(\kappa - 1)}
46    \theta_{ref}(P_o)$
47    
48    
 %------------------------------------------  
49  \subsubsection{Free surface effect on column total thickness  \subsubsection{Free surface effect on column total thickness
50  (Non-linear free surface)}  (Non-linear free surface)}
51    
52  The total thickness of the fluid column is  The total thickness of the fluid column is $r_{surf} - R_{fixed} =
53  $r_{surf} - R_{min} = \eta + R_o - R_{min}$  \eta + R_o - R_{fixed}$ In the linear free surface approximation
54  In the linear free surface approximation  (detailed before), only the fixed part of it ($R_o - R_{fixed})$ is
55  (detailed before), only the fixed part of  considered when we integrate the continuity equation or compute tracer
56  it ($R_o - R_{min})$ is considered when we integrate the  and momentum advection term.
57  continuity equation or compute tracer and momentum advection term.  
58    This approximation is dropped when using the non-linear free surface
59  This approximation is dropped when using  formulation.  Here we discuss sections the barotropic part. In
60  the non linear free surface formulation.  sections \ref{sect:freesurf-tracer-advection} and
61  Details follow here after for the barotropic part  \ref{sect:freesurf-momentum-advection} we consider the baroclinic
62  and in the 2 next subsection for the baroclinic  component.
63  part.  
64    
65  %------------------------------------------  The continuous form of the model equations remains unchanged, except
66  % Non Linear Barotropic part  for the 2D continuity equation (\ref{eq-tCsC-eta}) which is now
67    integrated from $R_{fixed}(x,y)$ up to $r_{surf}=R_o+\eta$ :
 The continuous form of the model equations remains  
 unchanged, except for the 2D continuity equation  
 (\ref{eq-cont-2D}) that is now integrated  
 from $R_{min}(x,y)$ up to $r_{surf}=R_o+\eta$ :  
68    
69  \begin{displaymath}  \begin{displaymath}
70  \epsilon_{fs} \partial_t \eta =  \epsilon_{fs} \partial_t \eta =
71  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
72  - {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o+\eta} \vec{\bf v} dr  - {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta} \vec{\bf v} dr
73  + \epsilon_{fw} (P-E)  + \epsilon_{fw} (P-E)
74  \end{displaymath}  \end{displaymath}
75    
76  Since $\eta$ has a direct effect on the horizontal  Since $\eta$ has a direct effect on the horizontal velocity (through
77  velocity (through $\nabla_r \Phi_{surf}$), this  $\nabla_h \Phi_{surf}$), this adds a non-linear term to the free
78  add a non linear term to the free surface equation.  surface equation. Several options for the time discretization of this
79    non-linear part have been tested.
80  Regarding the time discretization of this non linear part,  
81  several option are now being tested:  If the column thickness is evaluated at time step $n$, and with
82    implicit treatment of the surface potential gradient, equations
83  With the column thickness evaluated at time step $n$,  (\ref{eq-solve2D} and \ref{eq-solve2D_rhs}) becomes:
 and the surface potential gradient still implicit,  
 equation (\ref{solve_2d} \& \ref{solve_2d_rhs})  
 become:  
84  \begin{eqnarray*}  \begin{eqnarray*}
85  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
86  {\bf \nabla}_r \cdot \Delta t^2 (\eta^{n}+R_o-R_{min})  {\bf \nabla}_h \cdot \Delta t^2 (\eta^{n}+R_o-R_{fixed})
87  {\bf \nabla}_r B_o {\eta}^{n+1}  {\bf \nabla}_h b_s {\eta}^{n+1}
88  = {\eta}^*  = {\eta}^*
 %\label{solve_2d}  
89  \end{eqnarray*}  \end{eqnarray*}
90  where  where
91  \begin{eqnarray*}  \begin{eqnarray*}
92  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
93  \Delta t {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o+\eta} \vec{\bf v}^* dr  \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta^n} \vec{\bf v}^* dr
94  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
 %\label{solve_2d_rhs}  
95  \end{eqnarray*}  \end{eqnarray*}
96  This method requires to update the solver matrix at each time step.  This method requires us to update the solver matrix at each time step.
97    
98  Alternatively, the non-linear contribution can be evaluated fully  Alternatively, the non-linear contribution can be evaluated fully
99  explicitly:  explicitly:
100  \begin{eqnarray*}  \begin{eqnarray*}
101  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
102  {\bf \nabla}_r \cdot \Delta t^2 (R_o-R_{min})  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})
103  {\bf \nabla}_r B_o {\eta}^{n+1}  {\bf \nabla}_h b_s {\eta}^{n+1}
104  = {\eta}^*  = {\eta}^*
105  +{\bf \nabla}_r \cdot \Delta t^2 (\eta^{n})  +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})
106  {\bf \nabla}_r B_o {\eta}^{n}  {\bf \nabla}_h b_s {\eta}^{n}
107  \end{eqnarray*}  \end{eqnarray*}
108  This formulation allows to keep the initial solver matrix  This formulation allows one to keep the initial solver matrix
109  since the non-linear free surface only affects the RHS.  unchanged though throughout the integration, since the non-linear free
110    surface only affects the RHS.
111    
112    Finally, another option is a "linearized" formulation where the total
113    column thickness appears only in the integral term of the RHS
114    (\ref{eq-solve2D_rhs}) but not directly in the equation
115    (\ref{eq-solve2D}).
116    
 An other option is a "linearized" formulation where the  
 total column thickness appears only in the integral term of  
 the RHS (\ref{solve_2d_rhs}) but not directly in  
 the equation (\ref{solve_2d}).  
117    
 %------------------------------------------  
118  \subsubsection{Free surface effect on the surface level thickness  \subsubsection{Free surface effect on the surface level thickness
119  (Non-linear free surface): Tracer advection}  (Non-linear free surface): Tracer advection}
120    \label{sect:freesurf-tracer-advection}
121    
122  To ensure a global tracer conservation (i.e., the total amount)  To ensure global tracer conservation (i.e., the total amount) as well
123  as well as the local one (see tracer section for more details),  as local conservation, the change in the surface level thickness must
124  the change in the surface level thickness must be consistent with  be consistent with the way the continuity equation is integrated, both
125  the way the continuity equation is integrated, both in  in the barotropic part (to find $\eta$) and baroclinic part (to find
126  in the barotropic part (to find $\eta$) and baroclinic part  $w = \dot{r}$).
 (to find $\dot{r}$).  
127    
128  To illustrate this, let's consider the shallow water model,  To illustrate this, consider the shallow water model, with uniform
129  with uniform cartesian horizontal grid:  Cartesian horizontal grid:
130  $$  $$
131  \partial_t h + \nabla \cdot h \vec{\bf v} = 0  \partial_t h + \nabla \cdot h \vec{\bf v} = 0
132  $$  $$
# Line 138  To conserve the tracer $\theta$ we have Line 135  To conserve the tracer $\theta$ we have
135  $$  $$
136  \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})= 0  \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})= 0
137  $$  $$
138  Using the implicit (non-linear) free surface described before, we have:  Using the implicit (non-linear) free surface described above (section
139    \ref{sect:??}, we have:
140  \begin{eqnarray*}  \begin{eqnarray*}
141  h^{n+1} = h^{n} - \Delta_t \nabla (h^n \, \vec{\bf v}^{n+1} ) \\  h^{n+1} = h^{n} - \Delta_t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) \\
142  \end{eqnarray*}  \end{eqnarray*}
143  The discretized form of the tracer equation must use the same  The discretized form of the tracer equation must adopt the same
144  "geometry" to compute the tracer fluxes, that is, the same value of  ``form'' in the computation of tracer fluxes, that is, the same value
145  h, as the continuity equation did:  of $h$, as used in the continuity equation:
146  \begin{eqnarray*}  \begin{eqnarray*}
147  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
148          - \Delta_t \nabla (h^n \, \theta^n \, \vec{\bf v}^{n+1})          - \Delta_t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
149  \end{eqnarray*}  \end{eqnarray*}
150    
151  In order to deal with the Adams-Bashforth time stepping,  For Adams-Bashforth time-stepping, we implement this scheme slightly
152  we implement this scheme slightly differently:  differently from the linear free-surface method, using two steps: the
153  the variation of the water column thickness (from  variation of the water column thickness (from $h^n$ to $h^{n+1}$) is
154  $h^n$ to $h^{n+1}$)  not incorporated directly into the tracer equation.  Instead, the
155  is not incorporated directly to the tracer equation.  model uses the $G_\theta$ terms (first step) as in the linear free
156  Instead,  surface formulation (with the "{\it surface correction}" turned "on",
157  the model continues to evaluate the $G_\theta$ term  see tracer section):
 exactly as it did with the Linear free surface formulation,  
 with the "{\it surface correction}" turned "on" (see tracer section):  
158  $$  $$
159  G_\theta = \left(- \nabla (h^n \, \theta^n \, \vec{\bf v}^{n+1})  G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
160           + w_{surf}^{n+1} \theta^n \right) / h^n           - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n
161  $$  $$
162  Then after,  Then, in a second step, the thickness variation (expansion/reduction)
163  thickness variation (expansion/reduction) is taken into account :  is taken into account:
164  $$  $$
165  \theta^{n+1} = (\theta^n + \Delta_t G_\theta^{(n+1)}) \frac{h^{n+1}}{h^n}  \theta^{n+1} = \theta^n + \Delta_t \frac{h^n}{h^{n+1}} G_\theta^{(n+1/2)}
166  $$  $$
167  Note that with a simple forward time step (no Adams-Bashforth),  Note that with a simple forward time step (no Adams-Bashforth),
168  since  since
169  $  $
170  w_{surf} = - \nabla (h^n \, \vec{\bf v}^{n+1} ) = (h^{n+1} - h^{n})  \dot{r}_{surf}^{n+1}
171    = - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = (h^{n+1} - h^{n})
172  / \Delta_t  / \Delta_t
173  $  $
174  those 2 formulations are equivalent.  these two formulations are equivalent.
175    
176    Implementation in the MITgcm is as follows.  The model ``geometry''
177    (here the {\bf hFacC,W,S}) is updated just before entering {\it
178    SOLVE\_FOR\_PRESSURE}, using the current $\eta$ field.  Then, at the
179    end of the time step, the variables are advanced in time, so that
180    $\eta^n$ replaces $\eta^{n-1}$.  At the next time step, the tracer
181    tendency ($G_\theta$) is computed using the same geometry, which is
182    now consistent with $\eta^{n-1}$.  Finally, in S/R {\it
183    TIMESTEP\_TRACER}, the expansion/reduction ratio is applied to the
184    surface level to compute the new tracer field.
185    
 The implementation in the MITgcm follows this scheme.  
 The model "geometry" (here the {\bf hFacC,W,S}) is updated  
 at the beginning of {\it SOLVE\_FOR\_PRESSURE}  
 according to the current $\eta$ field.  
 Then, at the end of the time step, the variables are  
 advanced in time, so that $\eta^n$ becomes $\eta^{n-1}$.  
 At the next time step, the tracer tendency ($G_\theta$) is computed  
 using the same geometry, that is now consistent with  
 $\eta^{n-1}$.  
 Finally, in S/R {\it TIMESTEP\_TRACER}, the expansion/reduction  
 ratio is applied to the surface level to compute the new tracer field.  
186    
 %------------------------------------------  
187  \subsubsection{Free surface effect on the surface level thickness  \subsubsection{Free surface effect on the surface level thickness
188  (Non-linear free surface): Momentum advection}      (Non-linear free surface): Momentum advection}    
189    \label{sect:freesurf-momentum-advection}
190    
191  Regarding momentum advection,  Regarding momentum advection,
192  the vector invariant formulation is similar to the  the vector invariant formulation is similar to the
# Line 201  Updating the {\bf hFacC,W,S} and the {\b Line 197  Updating the {\bf hFacC,W,S} and the {\b
197  at one given place (like describe before) is sufficient.  at one given place (like describe before) is sufficient.
198    
199  With the flux form formulation, advection of momentum  With the flux form formulation, advection of momentum
200  can be treated exactly as the tracer advection is,  can be treated exactly as the tracer advection is.
201  Here the expansion/reduction factors ($hFacW^{n+1}/hFacW^n$ for $u$  Here the expansion/reduction factors ($hFacW^{n+1}/hFacW^n$ for $u$
202  and $hFacS^{n+1}/hFacS^n$ for $v$) are simply applied in the  and $hFacS^{n+1}/hFacS^n$ for $v$) are simply applied in the
203  subroutine {\it TIMESTEP}.  subroutine {\it TIMESTEP}.

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.4

  ViewVC Help
Powered by ViewVC 1.1.22