/[MITgcm]/manual/s_algorithm/text/nonlin_frsurf.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/nonlin_frsurf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by adcroft, Wed Sep 26 20:19:52 2001 UTC revision 1.16 by jmc, Thu Apr 18 03:36:16 2013 UTC
# Line 3  Line 3 
3    
4    
5    
6  \subsection{Non-linear free surface}  \subsection{Non-linear free-surface}
7    \label{sec:nonlinear-freesurface}
8    
9  Recently, two options have been added to the model (and have not yet  Recently, new options have been added to the model
10  been extensively tested) that concern the free surface formulation.  that concern the free surface formulation.
11    
12    
13  \subsubsection{Non-uniform linear-relation for the surface potential}  \subsubsection{pressure/geo-potential and free surface}
14    \label{sec:phi-freesurface}
15    
16  The linear relation between surface pressure/geo-potential  For the atmosphere, since $\phi = \phi_{topo} - \int^p_{p_s} \alpha dp$,
17  ($\Phi_{surf}$) and surface displacement ($\eta$) could be considered  subtracting the reference state defined in section
18  to be a constant ($b_s=$ constant)  \ref{sec:hpe-p-geo-potential-split}~:\\
19  \marginpar{add a reference to part.1 here}  $$
20  but is in fact dependent on the position ($x,y,r$)  \phi_o = \phi_{topo} - \int^p_{p_o} \alpha_o dp
21  since we linearize:  \hspace{5mm}\mathrm{with}\hspace{3mm} \phi_o(p_o)=\phi_{topo}
22  $$\Phi_{surf}=\int_{R_o}^{R_o+\eta} b dr \simeq b_s \eta  $$
23  ~\mathrm{with}~ b_s = b(\theta,S,r)_{r=R_o}  we get:
24  \simeq b_s(\theta_{ref}(R_o),S_{ref}(R_o),R_o)$$  $$
25  Note that, for convenience, the effect on $b_s$ of the local surface  \phi' = \phi - \phi_o = \int^{p_s}_p \alpha dp - \int^{p_o}_p \alpha_o dp
26  $\theta,S$ are not considered here, but are incorporated in to  $$
27  $\Phi'_{hyd}$.  For the ocean, the reference state is simpler since $\rho_c$ does not dependent
28    on $z$ ($b_o=g$) and the surface reference position is uniformly $z=0$ ($R_o=0$),
29  For the ocean, $b_s = g \rho_{surf} / \rho_o \simeq g$ is a very good  and the same subtraction leads to a similar relation.
30  approximation since the relative difference in surface density are  For both fluid, using the isomorphic notations, we can write:
31  usually small and only due to local $\theta,S$ gradients (because the  $$
32  upper surface, $R_o = 0$, is essentially flat). Therefore, they can  \phi' = \int^{r_{surf}}_r b~ dr - \int^{R_o}_r b_o dr
33  easily be incorporated in $\Phi'_{hyd}$.  $$
34    and re-write as:
35    \begin{equation}
36    \phi' = \int^{r_{surf}}_{R_o} b~ dr + \int^{R_o}_r (b - b_o) dr
37    \label{eq:split-phi-Ro}
38    \end{equation}
39    or:
40    \begin{equation}
41    \phi' = \int^{r_{surf}}_{R_o} b_o dr + \int^{r_{surf}}_r (b - b_o) dr
42    \label{eq:split-phi-bo}
43    \end{equation}
44    
45    In section \ref{sec:finding_the_pressure_field}, following eq.\ref{eq:split-phi-Ro},
46    the pressure/geo-potential $\phi'$ has been separated into surface ($\phi_s$),
47    and hydrostatic anomaly ($\phi'_{hyd}$).
48    In this section, the split between $\phi_s$ and $\phi'_{hyd}$ is
49    made according to equation \ref{eq:split-phi-bo}. This slightly
50    different definition reflects the actual implementation in the code
51    and is valid for both linear and non-linear
52    free-surface formulation, in both r-coordinate and r*-coordinate.
53    
54    Because the linear free-surface approximation ignore the tracer content
55    of the fluid parcel between $R_o$ and $r_{surf}=R_o+\eta$,
56    for consistency reasons, this part is also neglected in $\phi'_{hyd}$~:
57    $$
58    \phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr \simeq \int^{R_o}_r (b - b_o) dr
59    $$
60    Note that in this case, the two definitions of $\phi_s$ and $\phi'_{hyd}$
61    from equation \ref{eq:split-phi-Ro} and \ref{eq:split-phi-bo} converge toward
62    the same (approximated) expressions: $\phi_s = \int^{r_{surf}}_{R_o} b_o dr$
63    and $\phi'_{hyd}=\int^{R_o}_r b' dr$.\\
64    On the contrary, the unapproximated formulation ("non-linear free-surface",
65    see the next section) retains the full expression:
66    $\phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr $~.
67    This is obtained by selecting {\bf nonlinFreeSurf}=4 in parameter
68    file {\em data}.\\
69    
70    Regarding the surface potential:
71    $$\phi_s = \int_{R_o}^{R_o+\eta} b_o dr = b_s \eta
72    \hspace{5mm}\mathrm{with}\hspace{5mm}
73    b_s = \frac{1}{\eta} \int_{R_o}^{R_o+\eta} b_o dr $$
74    $b_s \simeq b_o(R_o)$ is an excellent approximation (better than
75    the usual numerical truncation, since generally $|\eta|$ is smaller
76    than the vertical grid increment).
77    
78    For the ocean, $\phi_s = g \eta$ and $b_s = g$ is uniform.
79  For the atmosphere, however, because of topographic effects, the  For the atmosphere, however, because of topographic effects, the
80  reference surface pressure $R_o$ has large spacial variations that  reference surface pressure $R_o=p_o$ has large spatial variations that
81  are responsible for significant $b_s$ variations (from 0.8 to 1.2  are responsible for significant $b_s$ variations (from 0.8 to 1.2
82  $[m^3/kg]$). For this reason, we use a non-uniform linear coefficient  $[m^3/kg]$). For this reason, when {\bf uniformLin\_PhiSurf} {\em=.FALSE.}
83  $b_s$.  (parameter file {\em data}, namelist {\em PARAM01})
84    a non-uniform linear coefficient $b_s$ is used and computed
 In practice, in an oceanic configuration or when the default value  
 (TRUE) of the parameter {\bf uniformLin\_PhiSurf} is used, then $b_s$  
 is simply set to $g$ for the ocean and $1.$ for the atmosphere.  
 Turning {\bf uniformLin\_PhiSurf} to "FALSE", tells the code to  
 evaluate $b_s$ from the reference vertical profile $\theta_{ref}$  
85  ({\it S/R INI\_LINEAR\_PHISURF}) according to the reference surface  ({\it S/R INI\_LINEAR\_PHISURF}) according to the reference surface
86  pressure $P_o$ ($=R_o$): $b_s = c_p \kappa (P_o / Pc)^{(\kappa - 1)}  pressure $p_o$:
87  \theta_{ref}(P_o)$  $b_s = b_o(R_o) = c_p \kappa (p_o / P^o_{SL})^{(\kappa - 1)} \theta_{ref}(p_o)$.
88    with $P^o_{SL}$ the mean sea-level pressure.
89    
90    
91  \subsubsection{Free surface effect on column total thickness  \subsubsection{Free surface effect on column total thickness
92  (Non-linear free surface)}  (Non-linear free-surface)}
93    
94  The total thickness of the fluid column is $r_{surf} - R_{fixed} =  The total thickness of the fluid column is $r_{surf} - R_{fixed} =
95  \eta + R_o - R_{fixed}$ In the linear free surface approximation  \eta + R_o - R_{fixed}$. In most applications, the free surface
96  (detailed before), only the fixed part of it ($R_o - R_{fixed})$ is  displacements are small compared to the total thickness
97  considered when we integrate the continuity equation or compute tracer  $\eta \ll H_o = R_o - R_{fixed}$.
98  and momentum advection term.  In the previous sections and in older version of the model,
99    the linearized free-surface approximation was made, assuming
100  This approximation is dropped when using the non-linear free surface  $r_{surf} - R_{fixed} \simeq H_o$ when computing horizontal transports,
101  formulation.  Here we discuss sections the barotropic part. In  either in the continuity equation or in tracer and momentum
102  sections \ref{sect:freesurf-tracer-advection} and  advection terms.
103  \ref{sect:freesurf-momentum-advection} we consider the baroclinic  This approximation is dropped when using the non-linear free-surface
104  component.  formulation and the total thickness, including the time varying part
105    $\eta$, is considered when computing horizontal transports.
106    Implications for the barotropic part are presented hereafter.
107  The continuous form of the model equations remains unchanged, except  In section \ref{sec:freesurf-tracer-advection} consequences for
108  for the 2D continuity equation (\ref{eq-tCsC-eta}) which is now  tracer conservation is briefly discussed (more details can be
109    found in \cite{campin:02})~; the general time-stepping is presented
110    in section \ref{sec:nonlin-freesurf-timestepping} with some
111    limitations regarding the vertical resolution in section
112    \ref{sec:nonlin-freesurf-dz_surf}.
113    
114    In the non-linear formulation, the continuous form of the model
115    equations remains unchanged, except for the 2D continuity equation
116    (\ref{eq:discrete-time-backward-free-surface}) which is now
117  integrated from $R_{fixed}(x,y)$ up to $r_{surf}=R_o+\eta$ :  integrated from $R_{fixed}(x,y)$ up to $r_{surf}=R_o+\eta$ :
118    
119  \begin{displaymath}  \begin{displaymath}
# Line 76  integrated from $R_{fixed}(x,y)$ up to $ Line 126  integrated from $R_{fixed}(x,y)$ up to $
126  Since $\eta$ has a direct effect on the horizontal velocity (through  Since $\eta$ has a direct effect on the horizontal velocity (through
127  $\nabla_h \Phi_{surf}$), this adds a non-linear term to the free  $\nabla_h \Phi_{surf}$), this adds a non-linear term to the free
128  surface equation. Several options for the time discretization of this  surface equation. Several options for the time discretization of this
129  non-linear part have been tested.  non-linear part can be considered, as detailed below.
130    
131  If the column thickness is evaluated at time step $n$, and with  If the column thickness is evaluated at time step $n$, and with
132  implicit treatment of the surface potential gradient, equations  implicit treatment of the surface potential gradient, equations
# Line 92  where Line 142  where
142  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
143  \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta^n} \vec{\bf v}^* dr  \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta^n} \vec{\bf v}^* dr
144  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
145  \end{eqnarray*}  \end{eqnarray*}
146  This method requires us to update the solver matrix at each time step.  This method requires us to update the solver matrix at each time step.
147    
148  Alternatively, the non-linear contribution can be evaluated fully  Alternatively, the non-linear contribution can be evaluated fully
# Line 104  explicitly: Line 154  explicitly:
154  = {\eta}^*  = {\eta}^*
155  +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})  +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})
156  {\bf \nabla}_h b_s {\eta}^{n}  {\bf \nabla}_h b_s {\eta}^{n}
157  \end{eqnarray*}  \end{eqnarray*}
158  This formulation allows one to keep the initial solver matrix  This formulation allows one to keep the initial solver matrix
159  unchanged though throughout the integration, since the non-linear free  unchanged though throughout the integration, since the non-linear free
160  surface only affects the RHS.  surface only affects the RHS.
# Line 114  column thickness appears only in the int Line 164  column thickness appears only in the int
164  (\ref{eq-solve2D_rhs}) but not directly in the equation  (\ref{eq-solve2D_rhs}) but not directly in the equation
165  (\ref{eq-solve2D}).  (\ref{eq-solve2D}).
166    
167    Those different options (see Table \ref{tab:nonLinFreeSurf_flags})
168    have been tested and show little differences. However, we recommend
169    the use of the most precise method (the 1rst one) since the
170    computation cost involved in the solver matrix update is negligible.
171    
172    \begin{table}[htb]
173    %\begin{center}
174    \centering
175     \begin{tabular}[htb]{|l|c|l|}
176       \hline
177       parameter & value & description \\
178       \hline
179                       & -1 & linear free-surface, restart from a pickup file \\
180                       &    & produced with \#undef EXACT\_CONSERV code\\
181       \cline{2-3}
182                       & 0 & Linear free-surface \\
183       \cline{2-3}
184        nonlinFreeSurf & 4 & Non-linear free-surface \\
185       \cline{2-3}
186                       & 3 & same as 4 but neglecting
187                               $\int_{R_o}^{R_o+\eta} b' dr $ in $\Phi'_{hyd}$ \\
188       \cline{2-3}
189                       & 2 & same as 3 but do not update cg2d solver matrix \\
190       \cline{2-3}
191                      & 1 & same as 2 but treat momentum as in Linear FS \\
192       \hline
193                      & 0 & do not use $r*$ vertical coordinate (= default)\\
194       \cline{2-3}
195        select\_rStar & 2 & use $r^*$ vertical coordinate \\
196       \cline{2-3}
197                      & 1 & same as 2 but without the contribution of the\\
198                      &   & slope of the coordinate in $\nabla \Phi$ \\
199       \hline
200      \end{tabular}
201      \caption{Non-linear free-surface flags}
202      \label{tab:nonLinFreeSurf_flags}
203    %\end{center}
204    \end{table}
205    
206    
207  \subsubsection{Free surface effect on the surface level thickness  \subsubsection{Tracer conservation with non-linear free-surface}
208  (Non-linear free surface): Tracer advection}  \label{sec:freesurf-tracer-advection}
 \label{sect:freesurf-tracer-advection}  
209    
210  To ensure global tracer conservation (i.e., the total amount) as well  To ensure global tracer conservation (i.e., the total amount) as well
211  as local conservation, the change in the surface level thickness must  as local conservation, the change in the surface level thickness must
# Line 125  be consistent with the way the continuit Line 213  be consistent with the way the continuit
213  in the barotropic part (to find $\eta$) and baroclinic part (to find  in the barotropic part (to find $\eta$) and baroclinic part (to find
214  $w = \dot{r}$).  $w = \dot{r}$).
215    
216  To illustrate this, consider the shallow water model, with uniform  To illustrate this, consider the shallow water model, with a source
217  Cartesian horizontal grid:  of fresh water (P):
218  $$  $$
219  \partial_t h + \nabla \cdot h \vec{\bf v} = 0  \partial_t h + \nabla \cdot h \vec{\bf v} = P
220  $$  $$
221  where $h$ is the total thickness of the water column.  where $h$ is the total thickness of the water column.
222  To conserve the tracer $\theta$ we have to discretize:  To conserve the tracer $\theta$ we have to discretize:
223  $$  $$
224  \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})= 0  \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})
225      = P \theta_{\mathrm{rain}}
226  $$  $$
227  Using the implicit (non-linear) free surface described above (section  Using the implicit (non-linear) free surface described above (section
228  \ref{sect:??}, we have:  \ref{sec:pressure-method-linear-backward}) we have:
229  \begin{eqnarray*}  \begin{eqnarray*}
230  h^{n+1} = h^{n} - \Delta_t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) \\  h^{n+1} = h^{n} - \Delta t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) + \Delta t P \\
231  \end{eqnarray*}  \end{eqnarray*}
232  The discretized form of the tracer equation must adopt the same  The discretized form of the tracer equation must adopt the same
233  ``form'' in the computation of tracer fluxes, that is, the same value  ``form'' in the computation of tracer fluxes, that is, the same value
234  of $h$, as used in the continuity equation:  of $h$, as used in the continuity equation:
235  \begin{eqnarray*}  \begin{eqnarray*}
236  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
237          - \Delta_t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})          - \Delta t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
238            + \Delta t P \theta_{rain}
239  \end{eqnarray*}  \end{eqnarray*}
240    
241  For Adams-Bashforth time-stepping, we implement this scheme slightly  The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth
242  differently from the linear free-surface method, using two steps: the  make the conservation sightly tricky.
243  variation of the water column thickness (from $h^n$ to $h^{n+1}$) is  The current implementation with the Adams-Bashforth time-stepping
244    provides an exact local conservation and prevents any drift in
245    the global tracer content (\cite{campin:02}).
246    Compared to the linear free-surface method, an additional step is required:
247    the variation of the water column thickness (from $h^n$ to $h^{n+1}$) is
248  not incorporated directly into the tracer equation.  Instead, the  not incorporated directly into the tracer equation.  Instead, the
249  model uses the $G_\theta$ terms (first step) as in the linear free  model uses the $G_\theta$ terms (first step) as in the linear free
250  surface formulation (with the "{\it surface correction}" turned "on",  surface formulation (with the "{\it surface correction}" turned "on",
251  see tracer section):  see tracer section):
252  $$  $$
253  G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})  G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
254           - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n           - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n
255  $$  $$
256  Then, in a second step, the thickness variation (expansion/reduction)  Then, in a second step, the thickness variation (expansion/reduction)
257  is taken into account:  is taken into account:
258  $$  $$
259  \theta^{n+1} = \theta^n + \Delta_t \frac{h^n}{h^{n+1}} G_\theta^{(n+1/2)}  \theta^{n+1} = \theta^n + \Delta t \frac{h^n}{h^{n+1}}
260       \left( G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n )/h^n \right)
261    %\theta^{n+1} = \theta^n + \frac{\Delta t}{h^{n+1}}
262    %   \left( h^n G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n ) \right)
263  $$  $$
264  Note that with a simple forward time step (no Adams-Bashforth),  Note that with a simple forward time step (no Adams-Bashforth),
265    these two formulations are equivalent,
266  since  since
267  $  $
268  \dot{r}_{surf}^{n+1}  (h^{n+1} - h^{n})/ \Delta t =
269  = - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = (h^{n+1} - h^{n})  P - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = P + \dot{r}_{surf}^{n+1}
 / \Delta_t  
270  $  $
 these two formulations are equivalent.  
271    
272  Implementation in the MITgcm is as follows.  The model ``geometry''  \subsubsection{Time stepping implementation of the
273    non-linear free-surface}
274    \label{sec:nonlin-freesurf-timestepping}
275    
276    The grid cell thickness was hold constant with the linear
277    free-surface~; with the non-linear free-surface, it is now varying
278    in time, at least at the surface level.
279    This implies some modifications of the general algorithm described
280    earlier in sections \ref{sec:adams-bashforth-sync} and
281    \ref{sec:adams-bashforth-staggered}.
282    
283    A simplified version of the staggered in time, non-linear
284    free-surface algorithm is detailed hereafter, and can be compared
285    to the equivalent linear free-surface case (eq. \ref{eq:Gv-n-staggered}
286    to \ref{eq:t-n+1-staggered}) and can also be easily transposed
287    to the synchronous time-stepping case.
288    Among the simplifications, salinity equation, implicit operator
289    and detailed elliptic equation are omitted. Surface forcing is
290    explicitly written as fluxes of temperature, fresh water and
291    momentum, $Q^{n+1/2}, P^{n+1/2}, F_{\bf v}^n$ respectively.
292    $h^n$ and $dh^n$ are the column and grid box thickness in r-coordinate.
293    %-------------------------------------------------------------
294    \begin{eqnarray}
295    \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n},r) dr
296    \label{eq:phi-hyd-nlfs} \\
297    \vec{\bf G}_{\vec{\bf v}}^{n-1/2}\hspace{-2mm} & = &
298    \vec{\bf G}_{\vec{\bf v}} (dh^{n-1},\vec{\bf v}^{n-1/2})
299    \hspace{+2mm};\hspace{+2mm}
300    \vec{\bf G}_{\vec{\bf v}}^{(n)} =
301       \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
302    -  \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
303    \label{eq:Gv-n-nlfs} \\
304    %\vec{\bf G}_{\vec{\bf v}}^{(n)} & = &
305    %   \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
306    %-  \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
307    %\label{eq:Gv-n+5-nlfs} \\
308    %\vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \frac{\Delta t}{dh^{n}} \left(
309    %dh^{n-1}\vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n} \right)
310    \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \frac{dh^{n-1}}{dh^{n}} \left(
311    \vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n}/dh^{n-1} \right)
312    - \Delta t \nabla \phi_{hyd}^{n}
313    \label{eq:vstar-nlfs}
314    \end{eqnarray}
315    \hspace{3cm}$\longrightarrow$~~{\it update model~geometry~:~}${\bf hFac}(dh^n)$\\
316    \begin{eqnarray}
317    \eta^{n+1/2} \hspace{-2mm} & = &
318    \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
319      \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n} \nonumber \\
320                 & = & \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
321      \nabla \cdot \int \!\!\! \left( \vec{\bf v}^* - g \Delta t \nabla \eta^{n+1/2} \right) dh^{n}
322    \label{eq:nstar-nlfs} \\
323    \vec{\bf v}^{n+1/2}\hspace{-2mm} & = &
324    \vec{\bf v}^{*} - g \Delta t \nabla \eta^{n+1/2}
325    \label{eq:v-n+1-nlfs} \\
326    h^{n+1} & = & h^{n} + \Delta t P^{n+1/2} - \Delta t
327      \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n}
328    \label{eq:h-n+1-nlfs} \\
329    G_{\theta}^{n} & = & G_{\theta} ( dh^{n}, u^{n+1/2}, \theta^{n} )
330    \hspace{+2mm};\hspace{+2mm}
331    G_{\theta}^{(n+1/2)} = \frac{3}{2} G_{\theta}^{n} - \frac{1}{2} G_{\theta}^{n-1}
332    \label{eq:Gt-n-nlfs} \\
333    %\theta^{n+1} & = &\theta^{n} + \frac{\Delta t}{dh^{n+1}} \left( dh^n
334    %G_{\theta}^{(n+1/2)} + Q^{n+1/2} + P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) \right)
335    \theta^{n+1} & = &\theta^{n} + \Delta t \frac{dh^n}{dh^{n+1}} \left(
336    G_{\theta}^{(n+1/2)}
337    +( P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) + Q^{n+1/2})/dh^n \right)
338    \nonumber \\
339    & & \label{eq:t-n+1-nlfs}
340    \end{eqnarray}
341    %-------------------------------------------------------------
342    Two steps have been added to linear free-surface algorithm
343    (eq. \ref{eq:Gv-n-staggered} to \ref{eq:t-n+1-staggered}):
344    Firstly, the model ``geometry''
345  (here the {\bf hFacC,W,S}) is updated just before entering {\it  (here the {\bf hFacC,W,S}) is updated just before entering {\it
346  SOLVE\_FOR\_PRESSURE}, using the current $\eta$ field.  Then, at the  SOLVE\_FOR\_PRESSURE}, using the current $dh^{n}$ field.
347  end of the time step, the variables are advanced in time, so that  Secondly, the vertically integrated continuity equation
348  $\eta^n$ replaces $\eta^{n-1}$.  At the next time step, the tracer  (eq.\ref{eq:h-n+1-nlfs}) has been added ({\bf exactConserv}{\em =TRUE},
349  tendency ($G_\theta$) is computed using the same geometry, which is  in parameter file {\em data}, namelist {\em PARM01})
350  now consistent with $\eta^{n-1}$.  Finally, in S/R {\it  just before computing the vertical velocity, in subroutine
351  TIMESTEP\_TRACER}, the expansion/reduction ratio is applied to the  {\em INTEGR\_CONTINUITY}.
352  surface level to compute the new tracer field.  %This ensures that tracer and continuity equation discretization a
353    Although this equation might appear redundant with eq.\ref{eq:nstar-nlfs},
354    the integrated column thickness $h^{n+1}$ will be different from
355  \subsubsection{Free surface effect on the surface level thickness  $\eta^{n+1/2} + H$~ in the following cases:
356  (Non-linear free surface): Momentum advection}      \begin{itemize}
357  \label{sect:freesurf-momentum-advection}  \item when Crank-Nicolson time-stepping is used (see section
358    \ref{sec:freesurf-CrankNick}).
359  Regarding momentum advection,  \item when filters are applied to the flow field, after
360  the vector invariant formulation is similar to the  (\ref{eq:v-n+1-nlfs}) and alter the divergence of the flow.
361  advective form (as opposed to the flux form) and therefore  \item when the solver does not iterate until convergence~;
362  does not need specific modification to include the   for example, because a too large residual target was set
363  free surface effect on the surface level thickness.   ({\bf cg2dTargetResidual}, parameter file {\em data}, namelist
364  Updating the {\bf hFacC,W,S} and the {\bf recip\_hFac}(s)   {\em PARM02}).
365  at one given place (like describe before) is sufficient.  \end{itemize}\noindent
366    In this staggered time-stepping algorithm, the momentum tendencies
367  With the flux form formulation, advection of momentum  are computed using $dh^{n-1}$ geometry factors.
368  can be treated exactly as the tracer advection is.  (eq.\ref{eq:Gv-n-nlfs}) and then rescaled in subroutine {\it TIMESTEP},
369  Here the expansion/reduction factors ($hFacW^{n+1}/hFacW^n$ for $u$  (eq.\ref{eq:vstar-nlfs}), similarly to tracer tendencies (see section
370  and $hFacS^{n+1}/hFacS^n$ for $v$) are simply applied in the  \ref{sec:freesurf-tracer-advection}).
371  subroutine {\it TIMESTEP}.  The tracers are stepped forward later, using the recently updated
372    flow field ${\bf v}^{n+1/2}$ and the corresponding model geometry
373    $dh^{n}$ to compute the tendencies (eq.\ref{eq:Gt-n-nlfs});
374    Then the tendencies are rescaled by $dh^n/dh^{n+1}$ to derive
375    the new tracers values $(\theta,S)^{n+1}$ (eq.\ref{eq:t-n+1-nlfs},
376    in subroutine {\em CALC\_GT, CALC\_GS}).
377    
378    Note that the fresh-water input is added in a consistent way in the
379    continuity equation and in the tracer equation, taking into account
380    the fresh-water temperature $\theta_{\mathrm{rain}}$.
381    
382    Regarding the restart procedure,
383    two 2.D fields $h^{n-1}$ and $(h^n-h^{n-1})/\Delta t$
384    in addition to the standard
385    state variables and tendencies ($\eta^{n-1/2}$, ${\bf v}^{n-1/2}$,
386    $\theta^n$, $S^n$, ${\bf G}_{\bf v}^{n-3/2}$, $G_{\theta,S}^{n-1}$)
387    are stored in a "{\em pickup}" file.
388    The model restarts reading this "{\em pickup}" file,
389    then update the model geometry according to $h^{n-1}$,
390    and compute $h^n$ and the vertical velocity
391    %$h^n=h^{n-1} + \Delta t [(h^n-h^{n-1})/\Delta t]$,
392    before starting the main calling sequence (eq.\ref{eq:phi-hyd-nlfs}
393    to \ref{eq:t-n+1-nlfs}, {\em S/R FORWARD\_STEP}).
394    \\
395    
396    \fbox{ \begin{minipage}{4.75in}
397    {\em INTEGR\_CONTINUITY} ({\em integr\_continuity.F})
398    
399    $h^{n+1} -H_o$: {\bf etaH} ({\em DYNVARS.h})
400    
401    $h^{n} -H_o$: {\bf etaHnm1} ({\em SURFACE.h})
402    
403    $(h^{n+1}-h^{n})/\Delta t$: {\bf dEtaHdt} ({\em SURFACE.h})
404    
405    \end{minipage} }
406    
407    \subsubsection{Non-linear free-surface and vertical resolution}
408    \label{sec:nonlin-freesurf-dz_surf}
409    
410    When the amplitude of the free-surface variations becomes
411    as large as the vertical resolution near the surface,
412    the surface layer thickness can decrease to nearly zero or
413    can even vanish completely.
414    This later possibility has not been implemented, and a
415    minimum relative thickness is imposed ({\bf hFacInf},
416    parameter file {\em data}, namelist {\em PARM01}) to prevent
417    numerical instabilities caused by very thin surface level.
418    
419    A better alternative to the vanishing level problem has been
420    found and implemented recently, and rely on a different
421    vertical coordinate $r^*$~:
422    The time variation ot the total column thickness becomes
423    part of the r* coordinate motion, as in a $\sigma_{z},\sigma_{p}$
424    model, but the fixed part related to topography is treated
425    as in a height or pressure coordinate model.
426    A complete description is given in \cite{adcroft:04a}.
427    
428    The time-stepping implementation of the $r^*$ coordinate is
429    identical to the non-linear free-surface in $r$ coordinate,
430    and differences appear only in the spacial discretization.
431    \marginpar{needs a subsection ref. here}
432    

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.16

  ViewVC Help
Powered by ViewVC 1.1.22