/[MITgcm]/manual/s_algorithm/text/nonlin_frsurf.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/nonlin_frsurf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by jmc, Fri Aug 17 18:38:10 2001 UTC revision 1.12 by jmc, Tue Apr 4 20:19:00 2006 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
 %\section{Time Integration}  
4    
 \subsection{Non-linear free surface}  
5    
6  Recently, 2 options have added to the model  \subsection{Non-linear free-surface}
7  (and therefore, have not yet been extensively tested)  \label{sect:nonlinear-freesurface}
8    
9    Recently, new options have been added to the model
10  that concern the free surface formulation.  that concern the free surface formulation.
11    
 %------------------------------------------  
 \subsubsection{Non-uniform linear-relation for the surface potential}  
12    
13  The linear relation between  \subsubsection{pressure/geo-potential and free surface}
14  surface pressure / geo- potential ($\Phi_{surf}$)  \label{sect:phi-freesurface}
15  and surface displacement ($\eta$)  
16  has been considered as uniform ($b_s =$ Constant)  For the atmosphere, since $\phi = \phi_{topo} - \int^p_{p_s} \alpha dp$,
17  but is in fact  subtracting the reference state defined in section
18  dependent on the position ($x,y,r$)  \ref{sec:hpe-p-geo-potential-split}~:\\
19  since we linearize:  $$
20  $$\Phi_{surf}=\int_{R_o}^{R_o+\eta} b dr \simeq b_s \eta  \phi_o = \phi_{topo} - \int^p_{p_o} \alpha_o dp  
21  ~\mathrm{with}~ b_s = b(\theta,S,r)_{r=R_o}  \hspace{5mm}\mathrm{with}\hspace{3mm} \phi_o(p_o)=\phi_{topo}
22  \simeq b_s(\theta_{ref}(R_o),S_{ref}(R_o),R_o)$$  $$
23  Note that, for convinience, the effect of the local  we get:
24  surface $\theta,S$ on $b_s$  $$
25  are not considered here, but incorporated in $\Phi'_{hyd}$.  \phi' = \phi - \phi_o = \int^{p_s}_p \alpha dp - \int^{p_o}_p \alpha_o dp
26    $$
27  For the ocean, $b_s = g \rho_{surf} / \rho_o \simeq g$  For the ocean, the reference state is simpler since $\rho_c$ does not dependent
28  is a fairly good approximation since the relative difference  on $z$ ($b_o=g$) and the surface reference position is uniformly $z=0$ ($R_o=0$),
29  in surface density are usually small and only due to  and the same subtraction leads to a similar relation.
30  local $\theta,S$ gradient (because $R_o = 0$);  For both fluid, using the isomorphic notations, we can write:
31  Therefore, they can easely be incorporated in $\Phi'_{hyd}$.  $$
32    \phi' = \int^{r_{surf}}_r b~ dr - \int^{R_o}_r b_o dr
33  For the atmosphere, because of topographic effects,  $$
34  the reference surface pressure $R_o$ has large spacial differences  \begin{eqnarray}
35  that are responsible for significant $b_s$ variations  \mathrm{and~re~write:}\hspace{10mm}
36  (from 0.8 to 1.2 $[m^3/kg]$). For this reason,  \phi' = \int^{r_{surf}}_{R_o} b~ dr & + & \int^{R_o}_r (b - b_o) dr
37  we use a non-uniform linear coefficient $b_s$.  \label{eq:split-phi-Ro} \\
38    \mathrm{or:}\hspace{10mm}
39  Practically, in an oceanic configuration or  \phi' = \int^{r_{surf}}_{R_o} b_o dr & + & \int^{r_{surf}}_r (b - b_o) dr
40  when the default value (TRUE) of the parameter  \label{eq:split-phi-bo}
41  {\bf uniformLin\_PhiSurf} is used  \end{eqnarray}
42  then $b_s$ is simply set to $g$ for the ocean  
43  and $1.$ for the atmosphere.\\  In section \ref{sec:finding_the_pressure_field}, following eq.\ref{eq:split-phi-Ro},
44  Turning {\bf uniformLin\_PhiSurf} to "FALSE", allows to  the pressure/geo-potential $\phi'$ has been separated into surface ($\phi_s$),
45  evaluate $b_s$ from the reference vertical profile $\theta_{ref}$  and hydrostatic anomaly ($\phi'_{hyd}$).
46  ({\it S/R INI\_LINEAR\_PHISURF})  In this section, the split between $\phi_s$ and $\phi'_{hyd}$ is
47  according to the reference surface pressure $P_o$ ($=R_o$):  made according to equation \ref{eq:split-phi-bo}. This slightly
48  $b_s = c_p \kappa (P_o / Pc)^{(\kappa - 1)} \theta_{ref}(P_o)$  different definition reflects the actual implementation in the code
49    and is valid for both linear and non-linear
50    free-surface formulation, in both r-coordinate and r*-coordinate.
51    
52    Because the linear free-surface approximation ignore the tracer content
53    of the fluid parcel between $R_o$ and $r_{surf}=R_o+\eta$,
54    for consistency reasons, this part is also neglected in $\phi'_{hyd}$~:
55    $$
56    \phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr \simeq \int^{R_o}_r (b - b_o) dr
57    $$
58    Note that in this case, the two definitions of $\phi_s$ and $\phi'_{hyd}$
59    from equation \ref{eq:split-phi-Ro} and \ref{eq:split-phi-bo} converge toward
60    the same (approximated) expressions: $\phi_s = \int^{r_{surf}}_{R_o} b_o dr$
61    and $\phi'_{hyd}=\int^{R_o}_r b' dr$.\\
62    On the contrary, the unapproximated formulation ("non-linear free-surface",
63    see the next section) retains the full expression:
64    $\phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr $~.
65    This is obtained by selecting {\bf nonlinFreeSurf}=4 in parameter
66    file {\em data}.\\
67    
68    Regarding the surface potential:
69    $$\phi_s = \int_{R_o}^{R_o+\eta} b_o dr = b_s \eta
70    \hspace{5mm}\mathrm{with}\hspace{5mm}
71    b_s = \frac{1}{\eta} \int_{R_o}^{R_o+\eta} b_o dr $$
72    $b_s \simeq b_o(R_o)$ is an excellent approximation (better than
73    the usual numerical truncation, since generally $|\eta|$ is smaller
74    than the vertical grid increment).
75    
76    For the ocean, $\phi_s = g \eta$ and $b_s = g$ is uniform.
77    For the atmosphere, however, because of topographic effects, the
78    reference surface pressure $R_o=p_o$ has large spatial variations that
79    are responsible for significant $b_s$ variations (from 0.8 to 1.2
80    $[m^3/kg]$). For this reason, when {\bf uniformLin\_PhiSurf} {\em=.FALSE.}
81    (parameter file {\em data}, namelist {\em PARAM01})
82    a non-uniform linear coefficient $b_s$ is used and computed
83    ({\it S/R INI\_LINEAR\_PHISURF}) according to the reference surface
84    pressure $p_o$:
85    $b_s = b_o(R_o) = c_p \kappa (p_o / P^o_{SL})^{(\kappa - 1)} \theta_{ref}(p_o)$.
86    with $P^o_{SL}$ the mean sea-level pressure.
87    
88    
 %------------------------------------------  
89  \subsubsection{Free surface effect on column total thickness  \subsubsection{Free surface effect on column total thickness
90  (Non-linear free surface)}  (Non-linear free-surface)}
91    
92  The total thickness of the fluid column is  The total thickness of the fluid column is $r_{surf} - R_{fixed} =
93  $r_{surf} - R_{min} = \eta + R_o - R_{min}$  \eta + R_o - R_{fixed}$. In most applications, the free surface
94  In the linear free surface approximation  displacements are small compared to the total thickness
95  (detailed before), only the fixed part of  $\eta \ll H_o = R_o - R_{fixed}$.
96  it ($R_o - R_{min})$ is considered when we integrate the  In the previous sections and in older version of the model,
97  continuity equation or compute tracer and momentum advection term.  the linearized free-surface approximation was made, assuming
98    $r_{surf} - R_{fixed} \simeq H_o$ when computing horizontal transports,
99  This approximation is dropped when using  either in the continuity equation or in tracer and momentum
100  the non-linear free surface formulation.  advection terms.
101  Details follow here after for the barotropic part  This approximation is dropped when using the non-linear free-surface
102  and in the 2 next subsections for the baroclinic  formulation and the total thickness, including the time varying part
103  part.  $\eta$, is considered when computing horizontal transports.
104    Implications for the barotropic part are presented hereafter.
105  %------------------------------------------  In section \ref{sect:freesurf-tracer-advection} consequences for
106  % Non-Linear Barotropic part  tracer conservation is briefly discussed (more details can be
107    found in \cite{campin:02})~; the general time-stepping is presented
108  The continuous form of the model equations remains  in section \ref{sect:nonlin-freesurf-timestepping} with some
109  unchanged, except for the 2D continuity equation  limitations regarding the vertical resolution in section
110  (\ref{eq-tCsC-eta}) that is now integrated  \ref{sect:nonlin-freesurf-dz_surf}.
111  from $R_{min}(x,y)$ up to $r_{surf}=R_o+\eta$ :  
112    In the non-linear formulation, the continuous form of the model
113    equations remains unchanged, except for the 2D continuity equation
114    (\ref{eq:discrete-time-backward-free-surface}) which is now
115    integrated from $R_{fixed}(x,y)$ up to $r_{surf}=R_o+\eta$ :
116    
117  \begin{displaymath}  \begin{displaymath}
118  \epsilon_{fs} \partial_t \eta =  \epsilon_{fs} \partial_t \eta =
119  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
120  - {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o+\eta} \vec{\bf v} dr  - {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta} \vec{\bf v} dr
121  + \epsilon_{fw} (P-E)  + \epsilon_{fw} (P-E)
122  \end{displaymath}  \end{displaymath}
123    
124  Since $\eta$ has a direct effect on the horizontal  Since $\eta$ has a direct effect on the horizontal velocity (through
125  velocity (through $\nabla_h \Phi_{surf}$), this  $\nabla_h \Phi_{surf}$), this adds a non-linear term to the free
126  adds a non-linear term to the free surface equation.  surface equation. Several options for the time discretization of this
127    non-linear part can be considered, as detailed below.
128  Regarding the time discretization of this non-linear part,  
129  several options are now being tested:  If the column thickness is evaluated at time step $n$, and with
130    implicit treatment of the surface potential gradient, equations
131  With the column thickness evaluated at time step $n$,  (\ref{eq-solve2D} and \ref{eq-solve2D_rhs}) becomes:
 and the surface potential gradient still implicit,  
 equation (\ref{eq-solve2D} \& \ref{eq-solve2D_rhs})  
 become:  
132  \begin{eqnarray*}  \begin{eqnarray*}
133  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
134  {\bf \nabla}_h \cdot \Delta t^2 (\eta^{n}+R_o-R_{min})  {\bf \nabla}_h \cdot \Delta t^2 (\eta^{n}+R_o-R_{fixed})
135  {\bf \nabla}_h b_s {\eta}^{n+1}  {\bf \nabla}_h b_s {\eta}^{n+1}
136  = {\eta}^*  = {\eta}^*
 %\label{solve_2d}  
137  \end{eqnarray*}  \end{eqnarray*}
138  where  where
139  \begin{eqnarray*}  \begin{eqnarray*}
140  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
141  \Delta t {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o+\eta^n} \vec{\bf v}^* dr  \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta^n} \vec{\bf v}^* dr
142  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
 %\label{solve_2d_rhs}  
143  \end{eqnarray*}  \end{eqnarray*}
144  This method requires to update the solver matrix at each time step.  This method requires us to update the solver matrix at each time step.
145    
146  Alternatively, the non-linear contribution can be evaluated fully  Alternatively, the non-linear contribution can be evaluated fully
147  explicitly:  explicitly:
148  \begin{eqnarray*}  \begin{eqnarray*}
149  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
150  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{min})  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})
151  {\bf \nabla}_h b_s {\eta}^{n+1}  {\bf \nabla}_h b_s {\eta}^{n+1}
152  = {\eta}^*  = {\eta}^*
153  +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})  +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})
154  {\bf \nabla}_h b_s {\eta}^{n}  {\bf \nabla}_h b_s {\eta}^{n}
155  \end{eqnarray*}  \end{eqnarray*}
156  This formulation allows to keep the initial solver matrix  This formulation allows one to keep the initial solver matrix
157  since the non-linear free surface only affects the RHS.  unchanged though throughout the integration, since the non-linear free
158    surface only affects the RHS.
159  An other option is a "linearized" formulation where the  
160  total column thickness appears only in the integral term of  Finally, another option is a "linearized" formulation where the total
161  the RHS (\ref{eq-solve2D_rhs}) but not directly in  column thickness appears only in the integral term of the RHS
162  the equation (\ref{eq-solve2D}).  (\ref{eq-solve2D_rhs}) but not directly in the equation
163    (\ref{eq-solve2D}).
164  %------------------------------------------  
165  \subsubsection{Free surface effect on the surface level thickness  Those different options (see Table \ref{tab:nonLinFreeSurf_flags})
166  (Non-linear free surface): Tracer advection}  have been tested and show little differences. However, we recommend
167    the use of the most precise method (the 1rst one) since the
168  To ensure a global tracer conservation (i.e., the total amount)  computation cost involved in the solver matrix update is negligible.
169  as well as the local one (see tracer section for more details),  
170  the change in the surface level thickness must be consistent with  \begin{table}[htb]
171  the way the continuity equation is integrated, both in  %\begin{center}
172  in the barotropic part (to find $\eta$) and baroclinic part  \centering
173  (to find $w = \dot{r}$).   \begin{tabular}[htb]{|l|c|l|}
174       \hline
175       parameter & value & description \\
176       \hline
177                       & -1 & linear free-surface, restart from a pickup file \\
178                       &    & produced with \#undef EXACT\_CONSERV code\\
179       \cline{2-3}
180                       & 0 & Linear free-surface \\
181       \cline{2-3}
182        nonlinFreeSurf & 4 & Non-linear free-surface \\
183       \cline{2-3}
184                       & 3 & same as 4 but neglecting
185                               $\int_{R_o}^{R_o+\eta} b' dr $ in $\Phi'_{hyd}$ \\
186       \cline{2-3}
187                       & 2 & same as 3 but do not update cg2d solver matrix \\
188       \cline{2-3}
189                      & 1 & same as 2 but treat momentum as in Linear FS \\
190       \hline
191                      & 0 & do not use $r*$ vertical coordinate (= default)\\
192       \cline{2-3}
193        select\_rStar & 2 & use $r^*$ vertical coordinate \\
194       \cline{2-3}
195                      & 1 & same as 2 but without the contribution of the\\
196                      &   & slope of the coordinate in $\nabla \Phi$ \\
197       \hline
198      \end{tabular}
199      \caption{Non-linear free-surface flags}
200      \label{tab:nonLinFreeSurf_flags}
201    %\end{center}
202    \end{table}
203    
204    
205    \subsubsection{Tracer conservation with non-linear free-surface}
206    \label{sect:freesurf-tracer-advection}
207    
208    To ensure global tracer conservation (i.e., the total amount) as well
209    as local conservation, the change in the surface level thickness must
210    be consistent with the way the continuity equation is integrated, both
211    in the barotropic part (to find $\eta$) and baroclinic part (to find
212    $w = \dot{r}$).
213    
214  To illustrate this, let's consider the shallow water model,  To illustrate this, consider the shallow water model, with a source
215  with uniform cartesian horizontal grid:  of fresh water (P):
216  $$  $$
217  \partial_t h + \nabla \cdot h \vec{\bf v} = 0  \partial_t h + \nabla \cdot h \vec{\bf v} = P
218  $$  $$
219  where $h$ is the total thickness of the water column.  where $h$ is the total thickness of the water column.
220  To conserve the tracer $\theta$ we have to discretize:  To conserve the tracer $\theta$ we have to discretize:
221  $$  $$
222  \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})= 0  \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})
223      = P \theta_{\mathrm{rain}}
224  $$  $$
225  Using the implicit (non-linear) free surface described before, we have:  Using the implicit (non-linear) free surface described above (section
226    \ref{sect:pressure-method-linear-backward}) we have:
227  \begin{eqnarray*}  \begin{eqnarray*}
228  h^{n+1} = h^{n} - \Delta_t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) \\  h^{n+1} = h^{n} - \Delta t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) + \Delta t P \\
229  \end{eqnarray*}  \end{eqnarray*}
230  The discretized form of the tracer equation must use the same  The discretized form of the tracer equation must adopt the same
231  "geometry" to compute the tracer fluxes, that is, the same value of  ``form'' in the computation of tracer fluxes, that is, the same value
232  h, as the continuity equation did:  of $h$, as used in the continuity equation:
233  \begin{eqnarray*}  \begin{eqnarray*}
234  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
235          - \Delta_t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})          - \Delta t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
236            + \Delta t P \theta_{rain}
237  \end{eqnarray*}  \end{eqnarray*}
238    
239  In order to deal with the Adams-Bashforth time stepping,  The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth
240  we implement this scheme slightly differently, in two step:  make the conservation sightly tricky.
241  the variation of the water column thickness (from  The current implementation with the Adams-Bashforth time-stepping
242  $h^n$ to $h^{n+1}$)  provides an exact local conservation and prevents any drift in
243  is not incorporated directly to the tracer equation.  the global tracer content (\cite{campin:02}).
244  Instead,  Compared to the linear free-surface method, an additional step is required:
245  the model continues to evaluate the $G_\theta$ term (first step)  the variation of the water column thickness (from $h^n$ to $h^{n+1}$) is
246  as it use to do with the Linear free surface formulation  not incorporated directly into the tracer equation.  Instead, the
247  (with the "{\it surface correction}" turned "on", see tracer section):  model uses the $G_\theta$ terms (first step) as in the linear free
248    surface formulation (with the "{\it surface correction}" turned "on",
249    see tracer section):
250  $$  $$
251  G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})  G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
252           - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n           - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n
253  $$  $$
254  Then in a second step,  Then, in a second step, the thickness variation (expansion/reduction)
255  thickness variation (expansion/reduction) is taken into account :  is taken into account:
256  $$  $$
257  \theta^{n+1} = \theta^n + \Delta_t \frac{h^n}{h^{n+1}} G_\theta^{(n+1/2)}  \theta^{n+1} = \theta^n + \Delta t \frac{h^n}{h^{n+1}}
258       \left( G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n )/h^n \right)
259    %\theta^{n+1} = \theta^n + \frac{\Delta t}{h^{n+1}}
260    %   \left( h^n G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n ) \right)
261  $$  $$
262  Note that with a simple forward time step (no Adams-Bashforth),  Note that with a simple forward time step (no Adams-Bashforth),
263    these two formulations are equivalent,  
264  since  since
265  $  $
266  \dot{r}_{surf}^{n+1}  (h^{n+1} - h^{n})/ \Delta t =
267  = - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = (h^{n+1} - h^{n})  P - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = P + \dot{r}_{surf}^{n+1}
 / \Delta_t  
268  $  $
 those 2 formulations are equivalent.  
269    
270  The implementation in the MITgcm follows this scheme.  \subsubsection{Time stepping implementation of the
271  The model "geometry" (here the {\bf hFacC,W,S}) is updated  non-linear free-surface}    
272  just before entering {\it SOLVE\_FOR\_PRESSURE},  \label{sect:nonlin-freesurf-timestepping}
273  according to the current $\eta$ field.  
274  Then, at the end of the time step, the variables are  The grid cell thickness was hold constant with the linear
275  advanced in time, so that $\eta^n$ becomes $\eta^{n-1}$.  free-surface~; with the non-linear free-surface, it is now varying
276  At the next time step, the tracer tendency ($G_\theta$) is computed  in time, at least at the surface level.
277  using the same geometry, that is now consistent with  This implies some modifications of the general algorithm described
278  $\eta^{n-1}$.  earlier in sections \ref{sect:adams-bashforth-sync} and
279  Finally, in S/R {\it TIMESTEP\_TRACER}, the expansion/reduction  \ref{sect:adams-bashforth-staggered}.
280  ratio is applied to the surface level to compute the new tracer field.  
281    A simplified version of the staggered in time, non-linear
282  %------------------------------------------  free-surface algorithm is detailed hereafter, and can be compared
283  \subsubsection{Free surface effect on the surface level thickness  to the equivalent linear free-surface case (eq. \ref{eq:Gv-n-staggered}
284  (Non-linear free surface): Momentum advection}      to \ref{eq:t-n+1-staggered}) and can also be easily transposed
285    to the synchronous time-stepping case.
286  Regarding momentum advection,  Among the simplifications, salinity equation, implicit operator
287  the vector invariant formulation is similar to the  and detailed elliptic equation are omitted. Surface forcing is
288  advective form (as opposed to the flux form) and therefore  explicitly written as fluxes of temperature, fresh water and
289  does not need specific modification to include the  momentum, $Q^{n+1/2}, P^{n+1/2}, F_{\bf v}^n$ respectively.
290  free surface effect on the surface level thickness.  $h^n$ and $dh^n$ are the column and grid box thickness in r-coordinate.
291  Updating the {\bf hFacC,W,S} and the {\bf recip\_hFac}(s)  %-------------------------------------------------------------
292  at one given place (like describe before) is sufficient.  \begin{eqnarray}
293    \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n},r) dr
294  With the flux form formulation, advection of momentum  \label{eq:phi-hyd-nlfs} \\
295  can be treated exactly as the tracer advection is.  \vec{\bf G}_{\vec{\bf v}}^{n-1/2}\hspace{-2mm} & = &
296  Here the expansion/reduction factors ($hFacW^{n+1}/hFacW^n$ for $u$  \vec{\bf G}_{\vec{\bf v}} (dh^{n-1},\vec{\bf v}^{n-1/2})
297  and $hFacS^{n+1}/hFacS^n$ for $v$) are simply applied in the  \hspace{+2mm};\hspace{+2mm}
298  subroutine {\it TIMESTEP}.  \vec{\bf G}_{\vec{\bf v}}^{(n)} =  
299       \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
300    -  \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
301    \label{eq:Gv-n-nlfs} \\
302    %\vec{\bf G}_{\vec{\bf v}}^{(n)} & = &
303    %   \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
304    %-  \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
305    %\label{eq:Gv-n+5-nlfs} \\
306    %\vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \frac{\Delta t}{dh^{n}} \left(
307    %dh^{n-1}\vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n} \right)
308    \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \frac{dh^{n-1}}{dh^{n}} \left(
309    \vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n}/dh^{n-1} \right)
310    - \Delta t \nabla \phi_{hyd}^{n}
311    \label{eq:vstar-nlfs}
312    \end{eqnarray}
313    \hspace{3cm}$\longrightarrow$~~{\it update model~geometry~:~}${\bf hFac}(dh^n)$\\
314    \begin{eqnarray}
315    \eta^{n+1/2} \hspace{-2mm} & = &
316    \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
317      \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n} \nonumber \\
318                 & = & \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
319      \nabla \cdot \int \!\!\! \left( \vec{\bf v}^* - g \Delta t \nabla \eta^{n+1/2} \right) dh^{n}
320    \label{eq:nstar-nlfs} \\
321    \vec{\bf v}^{n+1/2}\hspace{-2mm} & = &
322    \vec{\bf v}^{*} - g \Delta t \nabla \eta^{n+1/2}
323    \label{eq:v-n+1-nlfs} \\
324    h^{n+1} & = & h^{n} + \Delta t P^{n+1/2} - \Delta t
325      \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n}
326    \label{eq:h-n+1-nlfs} \\
327    G_{\theta}^{n} & = & G_{\theta} ( dh^{n}, u^{n+1/2}, \theta^{n} )
328    \hspace{+2mm};\hspace{+2mm}
329    G_{\theta}^{(n+1/2)} = \frac{3}{2} G_{\theta}^{n} - \frac{1}{2} G_{\theta}^{n-1}
330    \label{eq:Gt-n-nlfs} \\
331    %\theta^{n+1} & = &\theta^{n} + \frac{\Delta t}{dh^{n+1}} \left( dh^n
332    %G_{\theta}^{(n+1/2)} + Q^{n+1/2} + P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) \right)
333    \theta^{n+1} & = &\theta^{n} + \Delta t \frac{dh^n}{dh^{n+1}} \left(
334    G_{\theta}^{(n+1/2)}
335    +( P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) + Q^{n+1/2})/dh^n \right)
336    \nonumber \\
337    & & \label{eq:t-n+1-nlfs}
338    \end{eqnarray}
339    %-------------------------------------------------------------
340    Two steps have been added to linear free-surface algorithm
341    (eq. \ref{eq:Gv-n-staggered} to \ref{eq:t-n+1-staggered}):
342    Firstly, the model ``geometry''
343    (here the {\bf hFacC,W,S}) is updated just before entering {\it
344    SOLVE\_FOR\_PRESSURE}, using the current $dh^{n}$ field.
345    Secondly, the vertically integrated continuity equation
346    (eq.\ref{eq:h-n+1-nlfs}) has been added ({\bf exactConserv}{\em =TRUE},
347    in parameter file {\em data}, namelist {\em PARM01})
348    just before computing the vertical velocity, in subroutine
349    {\em INTEGR\_CONTINUITY}. This ensures that tracer and continuity equation
350    discretization  a Although this equation might appear
351    redundant with eq.\ref{eq:nstar-nlfs}, the integrated column
352    thickness $h^{n+1}$ can be different from $\eta^{n+1/2} + H$~:
353    \begin{itemize}
354    \item when Crank-Nickelson time-stepping is used (see section
355    \ref{sect:freesurf-CrankNick}).
356    \item when filters are applied to the flow field, after
357    (\ref{eq:v-n+1-nlfs}) and alter the divergence of the flow.
358    \item when the solver does not iterate until convergence~;
359     for example, because a too large residual target was set
360     ({\bf cg2dTargetResidual}, parameter file {\em data}, namelist
361     {\em PARM02}).
362    \end{itemize}\noindent
363    In this staggered time-stepping algorithm, the momentum tendencies
364    are computed using $dh^{n-1}$ geometry factors.
365    (eq.\ref{eq:Gv-n-nlfs}) and then rescaled in subroutine {\it TIMESTEP},
366    (eq.\ref{eq:vstar-nlfs}), similarly to tracer tendencies (see section
367    \ref{sect:freesurf-tracer-advection}).
368    The tracers are stepped forward later, using the recently updated
369    flow field ${\bf v}^{n+1/2}$ and the corresponding model geometry
370    $dh^{n}$ to compute the tendencies (eq.\ref{eq:Gt-n-nlfs});
371    Then the tendencies are rescaled by $dh^n/dh^{n+1}$ to derive
372    the new tracers values $(\theta,S)^{n+1}$ (eq.\ref{eq:t-n+1-nlfs},
373    in subroutine {\em CALC\_GT, CALC\_GS}).
374    
375    Note that the fresh-water input is added in a consistent way in the
376    continuity equation and in the tracer equation, taking into account
377    the fresh-water temperature $\theta_{\mathrm{rain}}$.
378    
379    Regarding the restart procedure,
380    two 2.D fields $h^{n-1}$ and $(h^n-h^{n-1})/\Delta t$
381    in addition to the standard
382    state variables and tendencies ($\eta^{n-1/2}$, ${\bf v}^{n-1/2}$,
383    $\theta^n$, $S^n$, ${\bf G}_{\bf v}^{n-3/2}$, $G_{\theta,S}^{n-1}$)
384    are stored in a "{\em pickup}" file.
385    The model restarts reading this "{\em pickup}" file,
386    then update the model geometry according to $h^{n-1}$,
387    and compute $h^n$ and the vertical velocity
388    %$h^n=h^{n-1} + \Delta t [(h^n-h^{n-1})/\Delta t]$,
389    before starting the main calling sequence (eq.\ref{eq:phi-hyd-nlfs}
390    to \ref{eq:t-n+1-nlfs}, {\em S/R FORWARD\_STEP}).
391    \\
392    
393    \fbox{ \begin{minipage}{4.75in}
394    {\em INTEGR\_CONTINUITY} ({\em integr\_continuity.F})
395    
396    $h^{n+1} -H_o$: {\bf etaH} ({\em DYNVARS.h})
397    
398    $h^{n} -H_o$: {\bf etaHnm1} ({\em SURFACE.h})
399    
400    $h^{n+1}-h^{n}/\Delta t$: {\bf dEtaHdt} ({\em SURFACE.h})
401    
402    \end{minipage} }
403    
404    \subsubsection{Non-linear free-surface and vertical resolution}
405    \label{sect:nonlin-freesurf-dz_surf}
406    
407    When the amplitude of the free-surface variations becomes
408    as large as the vertical resolution near the surface,
409    the surface layer thickness can decrease to nearly zero or
410    can even vanish completely.
411    This later possibility has not been implemented, and a
412    minimum relative thickness is imposed ({\bf hFacInf},
413    parameter file {\em data}, namelist {\em PARM01}) to prevent
414    numerical instabilities caused by very thin surface level.
415    
416    A better alternative to the vanishing level problem has been
417    found and implemented recently, and rely on a different
418    vertical coordinate $r^*$~:
419    The time variation ot the total column thickness becomes
420    part of the r* coordinate motion, as in a $\sigma_{z},\sigma_{p}$
421    model, but the fixed part related to topography is treated
422    as in a height or pressure coordinate model.
423    A complete description is given in \cite{adcroft:04a}.
424    
425    The time-stepping implementation of the $r^*$ coordinate is
426    identical to the non-linear free-surface in $r$ coordinate,
427    and differences appear only in the spacial discretization.
428    \marginpar{needs a subsection ref. here}
429    

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.12

  ViewVC Help
Powered by ViewVC 1.1.22