/[MITgcm]/manual/s_algorithm/text/nonlin_frsurf.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/nonlin_frsurf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by jmc, Thu Aug 9 16:22:09 2001 UTC revision 1.2 by jmc, Fri Aug 17 18:38:10 2001 UTC
# Line 15  that concern the free surface formulatio Line 15  that concern the free surface formulatio
15  The linear relation between  The linear relation between
16  surface pressure / geo- potential ($\Phi_{surf}$)  surface pressure / geo- potential ($\Phi_{surf}$)
17  and surface displacement ($\eta$)  and surface displacement ($\eta$)
18  has been considered as uniform ($b_{surf} = Constant$)  has been considered as uniform ($b_s =$ Constant)
19  but is in fact  but is in fact
20  dependent on the position  dependent on the position ($x,y,r$)
21  since we have  since we linearize:
22  $\Phi_{surf}=\int_{R_o}^{R_o+\eta} b dr \simeq b_{surf} \eta$  $$\Phi_{surf}=\int_{R_o}^{R_o+\eta} b dr \simeq b_s \eta
23    ~\mathrm{with}~ b_s = b(\theta,S,r)_{r=R_o}
24    \simeq b_s(\theta_{ref}(R_o),S_{ref}(R_o),R_o)$$
25    Note that, for convinience, the effect of the local
26    surface $\theta,S$ on $b_s$
27    are not considered here, but incorporated in $\Phi'_{hyd}$.
28    
29  For the ocean, $b_{surf} = g \rho_{surf} / \rho_o \simeq g$  For the ocean, $b_s = g \rho_{surf} / \rho_o \simeq g$
30  is a fairly good approximation since the relative difference  is a fairly good approximation since the relative difference
31  in surface density are usually small.  in surface density are usually small and only due to
32    local $\theta,S$ gradient (because $R_o = 0$);
33    Therefore, they can easely be incorporated in $\Phi'_{hyd}$.
34    
35  For the atmosphere, because of topographic effects,  For the atmosphere, because of topographic effects,
36  the reference surface pressure $R_o$ has large spacial differences  the reference surface pressure $R_o$ has large spacial differences
37  that are responsible for significant $b_surf$ variations  that are responsible for significant $b_s$ variations
38  (from 0.8 to 1.2 $[]$).  (from 0.8 to 1.2 $[m^3/kg]$). For this reason,
39    we use a non-uniform linear coefficient $b_s$.
40    
41  Practically, in an oceanic configuration or  Practically, in an oceanic configuration or
42  when the default value (TRUE) of the parameter {\bf uniformLin\_PhiSurf}  when the default value (TRUE) of the parameter
43  is used )  {\bf uniformLin\_PhiSurf} is used
44  then $b_{surf}$ is simply set to $g$ for the ocean  then $b_s$ is simply set to $g$ for the ocean
45  and $1.$ for the atmosphere.\\  and $1.$ for the atmosphere.\\
46  Turning {\bf uniformLin\_PhiSurf} to "FALSE", allows to  Turning {\bf uniformLin\_PhiSurf} to "FALSE", allows to
47  evaluate $b_{surf}$ from the reference Theta,Q vertical profile  evaluate $b_s$ from the reference vertical profile $\theta_{ref}$
48  ({\it S/R INI\_LINEAR\_PHISURF})  ({\it S/R INI\_LINEAR\_PHISURF})
49  according to the reference surface pressure $P_o$ ($=R_o$):  according to the reference surface pressure $P_o$ ($=R_o$):
50  $b_{surf} = c_p \kappa (P_o / Pc)^{(\kappa - 1)} \theta_{ref}(P_o)$  $b_s = c_p \kappa (P_o / Pc)^{(\kappa - 1)} \theta_{ref}(P_o)$
51    
52  %------------------------------------------  %------------------------------------------
53  \subsubsection{Free surface effect on column total thickness  \subsubsection{Free surface effect on column total thickness
# Line 52  it ($R_o - R_{min})$ is considered when Line 61  it ($R_o - R_{min})$ is considered when
61  continuity equation or compute tracer and momentum advection term.  continuity equation or compute tracer and momentum advection term.
62    
63  This approximation is dropped when using  This approximation is dropped when using
64  the non linear free surface formulation.  the non-linear free surface formulation.
65  Details follow here after for the barotropic part  Details follow here after for the barotropic part
66  and in the 2 next subsection for the baroclinic  and in the 2 next subsections for the baroclinic
67  part.  part.
68    
69  %------------------------------------------  %------------------------------------------
70  % Non Linear Barotropic part  % Non-Linear Barotropic part
71    
72  The continuous form of the model equations remains  The continuous form of the model equations remains
73  unchanged, except for the 2D continuity equation  unchanged, except for the 2D continuity equation
74  (\ref{eq-cont-2D}) that is now integrated  (\ref{eq-tCsC-eta}) that is now integrated
75  from $R_{min}(x,y)$ up to $r_{surf}=R_o+\eta$ :  from $R_{min}(x,y)$ up to $r_{surf}=R_o+\eta$ :
76    
77  \begin{displaymath}  \begin{displaymath}
78  \epsilon_{fs} \partial_t \eta =  \epsilon_{fs} \partial_t \eta =
79  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
80  - {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o+\eta} \vec{\bf v} dr  - {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o+\eta} \vec{\bf v} dr
81  + \epsilon_{fw} (P-E)  + \epsilon_{fw} (P-E)
82  \end{displaymath}  \end{displaymath}
83    
84  Since $\eta$ has a direct effect on the horizontal  Since $\eta$ has a direct effect on the horizontal
85  velocity (through $\nabla_r \Phi_{surf}$), this  velocity (through $\nabla_h \Phi_{surf}$), this
86  add a non linear term to the free surface equation.  adds a non-linear term to the free surface equation.
87    
88  Regarding the time discretization of this non linear part,  Regarding the time discretization of this non-linear part,
89  several option are now being tested:  several options are now being tested:
90    
91  With the column thickness evaluated at time step $n$,  With the column thickness evaluated at time step $n$,
92  and the surface potential gradient still implicit,  and the surface potential gradient still implicit,
93  equation (\ref{solve_2d} \& \ref{solve_2d_rhs})  equation (\ref{eq-solve2D} \& \ref{eq-solve2D_rhs})
94  become:  become:
95  \begin{eqnarray*}  \begin{eqnarray*}
96  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
97  {\bf \nabla}_r \cdot \Delta t^2 (\eta^{n}+R_o-R_{min})  {\bf \nabla}_h \cdot \Delta t^2 (\eta^{n}+R_o-R_{min})
98  {\bf \nabla}_r B_o {\eta}^{n+1}  {\bf \nabla}_h b_s {\eta}^{n+1}
99  = {\eta}^*  = {\eta}^*
100  %\label{solve_2d}  %\label{solve_2d}
101  \end{eqnarray*}  \end{eqnarray*}
102  where  where
103  \begin{eqnarray*}  \begin{eqnarray*}
104  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
105  \Delta t {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o+\eta} \vec{\bf v}^* dr  \Delta t {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o+\eta^n} \vec{\bf v}^* dr
106  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
107  %\label{solve_2d_rhs}  %\label{solve_2d_rhs}
108  \end{eqnarray*}  \end{eqnarray*}
# Line 103  Alternatively, the non-linear contributi Line 112  Alternatively, the non-linear contributi
112  explicitly:  explicitly:
113  \begin{eqnarray*}  \begin{eqnarray*}
114  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
115  {\bf \nabla}_r \cdot \Delta t^2 (R_o-R_{min})  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{min})
116  {\bf \nabla}_r B_o {\eta}^{n+1}  {\bf \nabla}_h b_s {\eta}^{n+1}
117  = {\eta}^*  = {\eta}^*
118  +{\bf \nabla}_r \cdot \Delta t^2 (\eta^{n})  +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})
119  {\bf \nabla}_r B_o {\eta}^{n}  {\bf \nabla}_h b_s {\eta}^{n}
120  \end{eqnarray*}  \end{eqnarray*}
121  This formulation allows to keep the initial solver matrix  This formulation allows to keep the initial solver matrix
122  since the non-linear free surface only affects the RHS.  since the non-linear free surface only affects the RHS.
123    
124  An other option is a "linearized" formulation where the  An other option is a "linearized" formulation where the
125  total column thickness appears only in the integral term of  total column thickness appears only in the integral term of
126  the RHS (\ref{solve_2d_rhs}) but not directly in  the RHS (\ref{eq-solve2D_rhs}) but not directly in
127  the equation (\ref{solve_2d}).  the equation (\ref{eq-solve2D}).
128    
129  %------------------------------------------  %------------------------------------------
130  \subsubsection{Free surface effect on the surface level thickness  \subsubsection{Free surface effect on the surface level thickness
# Line 126  as well as the local one (see tracer sec Line 135  as well as the local one (see tracer sec
135  the change in the surface level thickness must be consistent with  the change in the surface level thickness must be consistent with
136  the way the continuity equation is integrated, both in  the way the continuity equation is integrated, both in
137  in the barotropic part (to find $\eta$) and baroclinic part  in the barotropic part (to find $\eta$) and baroclinic part
138  (to find $\dot{r}$).  (to find $w = \dot{r}$).
139    
140  To illustrate this, let's consider the shallow water model,  To illustrate this, let's consider the shallow water model,
141  with uniform cartesian horizontal grid:  with uniform cartesian horizontal grid:
# Line 140  $$ Line 149  $$
149  $$  $$
150  Using the implicit (non-linear) free surface described before, we have:  Using the implicit (non-linear) free surface described before, we have:
151  \begin{eqnarray*}  \begin{eqnarray*}
152  h^{n+1} = h^{n} - \Delta_t \nabla (h^n \, \vec{\bf v}^{n+1} ) \\  h^{n+1} = h^{n} - \Delta_t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) \\
153  \end{eqnarray*}  \end{eqnarray*}
154  The discretized form of the tracer equation must use the same  The discretized form of the tracer equation must use the same
155  "geometry" to compute the tracer fluxes, that is, the same value of  "geometry" to compute the tracer fluxes, that is, the same value of
156  h, as the continuity equation did:  h, as the continuity equation did:
157  \begin{eqnarray*}  \begin{eqnarray*}
158  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
159          - \Delta_t \nabla (h^n \, \theta^n \, \vec{\bf v}^{n+1})          - \Delta_t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
160  \end{eqnarray*}  \end{eqnarray*}
161    
162  In order to deal with the Adams-Bashforth time stepping,  In order to deal with the Adams-Bashforth time stepping,
163  we implement this scheme slightly differently:  we implement this scheme slightly differently, in two step:
164  the variation of the water column thickness (from  the variation of the water column thickness (from
165  $h^n$ to $h^{n+1}$)  $h^n$ to $h^{n+1}$)
166  is not incorporated directly to the tracer equation.  is not incorporated directly to the tracer equation.
167  Instead,  Instead,
168  the model continues to evaluate the $G_\theta$ term  the model continues to evaluate the $G_\theta$ term (first step)
169  exactly as it did with the Linear free surface formulation,  as it use to do with the Linear free surface formulation
170  with the "{\it surface correction}" turned "on" (see tracer section):  (with the "{\it surface correction}" turned "on", see tracer section):
171  $$  $$
172  G_\theta = \left(- \nabla (h^n \, \theta^n \, \vec{\bf v}^{n+1})  G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
173           + w_{surf}^{n+1} \theta^n \right) / h^n           - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n
174  $$  $$
175  Then after,  Then in a second step,
176  thickness variation (expansion/reduction) is taken into account :  thickness variation (expansion/reduction) is taken into account :
177  $$  $$
178  \theta^{n+1} = (\theta^n + \Delta_t G_\theta^{(n+1)}) \frac{h^{n+1}}{h^n}  \theta^{n+1} = \theta^n + \Delta_t \frac{h^n}{h^{n+1}} G_\theta^{(n+1/2)}
179  $$  $$
180  Note that with a simple forward time step (no Adams-Bashforth),  Note that with a simple forward time step (no Adams-Bashforth),
181  since  since
182  $  $
183  w_{surf} = - \nabla (h^n \, \vec{\bf v}^{n+1} ) = (h^{n+1} - h^{n})  \dot{r}_{surf}^{n+1}
184    = - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = (h^{n+1} - h^{n})
185  / \Delta_t  / \Delta_t
186  $  $
187  those 2 formulations are equivalent.  those 2 formulations are equivalent.
188    
189  The implementation in the MITgcm follows this scheme.  The implementation in the MITgcm follows this scheme.
190  The model "geometry" (here the {\bf hFacC,W,S}) is updated  The model "geometry" (here the {\bf hFacC,W,S}) is updated
191  at the beginning of {\it SOLVE\_FOR\_PRESSURE}  just before entering {\it SOLVE\_FOR\_PRESSURE},
192  according to the current $\eta$ field.  according to the current $\eta$ field.
193  Then, at the end of the time step, the variables are  Then, at the end of the time step, the variables are
194  advanced in time, so that $\eta^n$ becomes $\eta^{n-1}$.  advanced in time, so that $\eta^n$ becomes $\eta^{n-1}$.
# Line 201  Updating the {\bf hFacC,W,S} and the {\b Line 211  Updating the {\bf hFacC,W,S} and the {\b
211  at one given place (like describe before) is sufficient.  at one given place (like describe before) is sufficient.
212    
213  With the flux form formulation, advection of momentum  With the flux form formulation, advection of momentum
214  can be treated exactly as the tracer advection is,  can be treated exactly as the tracer advection is.
215  Here the expansion/reduction factors ($hFacW^{n+1}/hFacW^n$ for $u$  Here the expansion/reduction factors ($hFacW^{n+1}/hFacW^n$ for $u$
216  and $hFacS^{n+1}/hFacS^n$ for $v$) are simply applied in the  and $hFacS^{n+1}/hFacS^n$ for $v$) are simply applied in the
217  subroutine {\it TIMESTEP}.  subroutine {\it TIMESTEP}.

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.2

  ViewVC Help
Powered by ViewVC 1.1.22