/[MITgcm]/manual/s_algorithm/text/nonlin_frsurf.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/nonlin_frsurf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.16 - (hide annotations) (download) (as text)
Thu Apr 18 03:36:16 2013 UTC (12 years, 2 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.15: +2 -2 lines
File MIME type: application/x-tex
correct spelling

1 jmc 1.16 % $Header: /u/gcmpack/manual/s_algorithm/text/nonlin_frsurf.tex,v 1.15 2013/02/26 21:24:12 jmc Exp $
2 jmc 1.1 % $Name: $
3    
4 adcroft 1.4
5 jmc 1.1
6 jmc 1.9 \subsection{Non-linear free-surface}
7 jmc 1.14 \label{sec:nonlinear-freesurface}
8 jmc 1.1
9 jmc 1.8 Recently, new options have been added to the model
10     that concern the free surface formulation.
11 adcroft 1.4
12 jmc 1.1
13 jmc 1.9 \subsubsection{pressure/geo-potential and free surface}
14 jmc 1.14 \label{sec:phi-freesurface}
15 jmc 1.1
16 jmc 1.9 For the atmosphere, since $\phi = \phi_{topo} - \int^p_{p_s} \alpha dp$,
17     subtracting the reference state defined in section
18     \ref{sec:hpe-p-geo-potential-split}~:\\
19     $$
20 jmc 1.15 \phi_o = \phi_{topo} - \int^p_{p_o} \alpha_o dp
21 jmc 1.9 \hspace{5mm}\mathrm{with}\hspace{3mm} \phi_o(p_o)=\phi_{topo}
22     $$
23     we get:
24     $$
25     \phi' = \phi - \phi_o = \int^{p_s}_p \alpha dp - \int^{p_o}_p \alpha_o dp
26     $$
27     For the ocean, the reference state is simpler since $\rho_c$ does not dependent
28     on $z$ ($b_o=g$) and the surface reference position is uniformly $z=0$ ($R_o=0$),
29     and the same subtraction leads to a similar relation.
30     For both fluid, using the isomorphic notations, we can write:
31 jmc 1.15 $$
32 jmc 1.9 \phi' = \int^{r_{surf}}_r b~ dr - \int^{R_o}_r b_o dr
33     $$
34 edhill 1.13 and re-write as:
35     \begin{equation}
36     \phi' = \int^{r_{surf}}_{R_o} b~ dr + \int^{R_o}_r (b - b_o) dr
37     \label{eq:split-phi-Ro}
38     \end{equation}
39     or:
40     \begin{equation}
41     \phi' = \int^{r_{surf}}_{R_o} b_o dr + \int^{r_{surf}}_r (b - b_o) dr
42 jmc 1.9 \label{eq:split-phi-bo}
43 edhill 1.13 \end{equation}
44 jmc 1.9
45     In section \ref{sec:finding_the_pressure_field}, following eq.\ref{eq:split-phi-Ro},
46     the pressure/geo-potential $\phi'$ has been separated into surface ($\phi_s$),
47     and hydrostatic anomaly ($\phi'_{hyd}$).
48 jmc 1.15 In this section, the split between $\phi_s$ and $\phi'_{hyd}$ is
49 jmc 1.9 made according to equation \ref{eq:split-phi-bo}. This slightly
50 jmc 1.15 different definition reflects the actual implementation in the code
51 jmc 1.9 and is valid for both linear and non-linear
52     free-surface formulation, in both r-coordinate and r*-coordinate.
53    
54     Because the linear free-surface approximation ignore the tracer content
55 jmc 1.15 of the fluid parcel between $R_o$ and $r_{surf}=R_o+\eta$,
56 jmc 1.9 for consistency reasons, this part is also neglected in $\phi'_{hyd}$~:
57     $$
58     \phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr \simeq \int^{R_o}_r (b - b_o) dr
59     $$
60 jmc 1.15 Note that in this case, the two definitions of $\phi_s$ and $\phi'_{hyd}$
61     from equation \ref{eq:split-phi-Ro} and \ref{eq:split-phi-bo} converge toward
62     the same (approximated) expressions: $\phi_s = \int^{r_{surf}}_{R_o} b_o dr$
63 jmc 1.9 and $\phi'_{hyd}=\int^{R_o}_r b' dr$.\\
64     On the contrary, the unapproximated formulation ("non-linear free-surface",
65     see the next section) retains the full expression:
66     $\phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr $~.
67     This is obtained by selecting {\bf nonlinFreeSurf}=4 in parameter
68     file {\em data}.\\
69    
70 jmc 1.15 Regarding the surface potential:
71 jmc 1.9 $$\phi_s = \int_{R_o}^{R_o+\eta} b_o dr = b_s \eta
72 jmc 1.15 \hspace{5mm}\mathrm{with}\hspace{5mm}
73 jmc 1.9 b_s = \frac{1}{\eta} \int_{R_o}^{R_o+\eta} b_o dr $$
74 jmc 1.15 $b_s \simeq b_o(R_o)$ is an excellent approximation (better than
75     the usual numerical truncation, since generally $|\eta|$ is smaller
76 jmc 1.9 than the vertical grid increment).
77 adcroft 1.4
78 jmc 1.9 For the ocean, $\phi_s = g \eta$ and $b_s = g$ is uniform.
79 adcroft 1.4 For the atmosphere, however, because of topographic effects, the
80 jmc 1.9 reference surface pressure $R_o=p_o$ has large spatial variations that
81 adcroft 1.4 are responsible for significant $b_s$ variations (from 0.8 to 1.2
82 jmc 1.15 $[m^3/kg]$). For this reason, when {\bf uniformLin\_PhiSurf} {\em=.FALSE.}
83 jmc 1.9 (parameter file {\em data}, namelist {\em PARAM01})
84     a non-uniform linear coefficient $b_s$ is used and computed
85 jmc 1.15 ({\it S/R INI\_LINEAR\_PHISURF}) according to the reference surface
86 jmc 1.9 pressure $p_o$:
87     $b_s = b_o(R_o) = c_p \kappa (p_o / P^o_{SL})^{(\kappa - 1)} \theta_{ref}(p_o)$.
88     with $P^o_{SL}$ the mean sea-level pressure.
89 adcroft 1.4
90 jmc 1.1
91     \subsubsection{Free surface effect on column total thickness
92 jmc 1.9 (Non-linear free-surface)}
93 jmc 1.1
94 adcroft 1.4 The total thickness of the fluid column is $r_{surf} - R_{fixed} =
95 jmc 1.15 \eta + R_o - R_{fixed}$. In most applications, the free surface
96 jmc 1.8 displacements are small compared to the total thickness
97 jmc 1.15 $\eta \ll H_o = R_o - R_{fixed}$.
98 jmc 1.8 In the previous sections and in older version of the model,
99     the linearized free-surface approximation was made, assuming
100 jmc 1.9 $r_{surf} - R_{fixed} \simeq H_o$ when computing horizontal transports,
101 jmc 1.15 either in the continuity equation or in tracer and momentum
102 jmc 1.8 advection terms.
103 jmc 1.9 This approximation is dropped when using the non-linear free-surface
104 jmc 1.8 formulation and the total thickness, including the time varying part
105 jmc 1.9 $\eta$, is considered when computing horizontal transports.
106 jmc 1.8 Implications for the barotropic part are presented hereafter.
107 jmc 1.15 In section \ref{sec:freesurf-tracer-advection} consequences for
108     tracer conservation is briefly discussed (more details can be
109     found in \cite{campin:02})~; the general time-stepping is presented
110     in section \ref{sec:nonlin-freesurf-timestepping} with some
111     limitations regarding the vertical resolution in section
112 jmc 1.14 \ref{sec:nonlin-freesurf-dz_surf}.
113 adcroft 1.4
114 jmc 1.15 In the non-linear formulation, the continuous form of the model
115     equations remains unchanged, except for the 2D continuity equation
116 jmc 1.8 (\ref{eq:discrete-time-backward-free-surface}) which is now
117 adcroft 1.4 integrated from $R_{fixed}(x,y)$ up to $r_{surf}=R_o+\eta$ :
118 jmc 1.1
119     \begin{displaymath}
120     \epsilon_{fs} \partial_t \eta =
121     \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
122 jmc 1.3 - {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta} \vec{\bf v} dr
123 jmc 1.1 + \epsilon_{fw} (P-E)
124     \end{displaymath}
125    
126 adcroft 1.4 Since $\eta$ has a direct effect on the horizontal velocity (through
127     $\nabla_h \Phi_{surf}$), this adds a non-linear term to the free
128     surface equation. Several options for the time discretization of this
129 jmc 1.8 non-linear part can be considered, as detailed below.
130 adcroft 1.4
131     If the column thickness is evaluated at time step $n$, and with
132     implicit treatment of the surface potential gradient, equations
133     (\ref{eq-solve2D} and \ref{eq-solve2D_rhs}) becomes:
134 jmc 1.1 \begin{eqnarray*}
135     \epsilon_{fs} {\eta}^{n+1} -
136 jmc 1.3 {\bf \nabla}_h \cdot \Delta t^2 (\eta^{n}+R_o-R_{fixed})
137 jmc 1.2 {\bf \nabla}_h b_s {\eta}^{n+1}
138 jmc 1.1 = {\eta}^*
139     \end{eqnarray*}
140     where
141     \begin{eqnarray*}
142     {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
143 jmc 1.3 \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta^n} \vec{\bf v}^* dr
144 jmc 1.1 \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
145 jmc 1.15 \end{eqnarray*}
146 adcroft 1.4 This method requires us to update the solver matrix at each time step.
147 jmc 1.1
148     Alternatively, the non-linear contribution can be evaluated fully
149     explicitly:
150     \begin{eqnarray*}
151     \epsilon_{fs} {\eta}^{n+1} -
152 jmc 1.3 {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})
153 jmc 1.2 {\bf \nabla}_h b_s {\eta}^{n+1}
154 jmc 1.1 = {\eta}^*
155 jmc 1.2 +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})
156     {\bf \nabla}_h b_s {\eta}^{n}
157 jmc 1.15 \end{eqnarray*}
158 adcroft 1.4 This formulation allows one to keep the initial solver matrix
159     unchanged though throughout the integration, since the non-linear free
160     surface only affects the RHS.
161    
162     Finally, another option is a "linearized" formulation where the total
163     column thickness appears only in the integral term of the RHS
164     (\ref{eq-solve2D_rhs}) but not directly in the equation
165     (\ref{eq-solve2D}).
166 jmc 1.1
167 jmc 1.9 Those different options (see Table \ref{tab:nonLinFreeSurf_flags})
168     have been tested and show little differences. However, we recommend
169 jmc 1.15 the use of the most precise method (the 1rst one) since the
170 jmc 1.9 computation cost involved in the solver matrix update is negligible.
171 jmc 1.8
172 jmc 1.9 \begin{table}[htb]
173     %\begin{center}
174     \centering
175 jmc 1.8 \begin{tabular}[htb]{|l|c|l|}
176     \hline
177 jmc 1.15 parameter & value & description \\
178 jmc 1.8 \hline
179     & -1 & linear free-surface, restart from a pickup file \\
180     & & produced with \#undef EXACT\_CONSERV code\\
181     \cline{2-3}
182 jmc 1.15 & 0 & Linear free-surface \\
183 jmc 1.8 \cline{2-3}
184     nonlinFreeSurf & 4 & Non-linear free-surface \\
185     \cline{2-3}
186     & 3 & same as 4 but neglecting
187     $\int_{R_o}^{R_o+\eta} b' dr $ in $\Phi'_{hyd}$ \\
188     \cline{2-3}
189     & 2 & same as 3 but do not update cg2d solver matrix \\
190     \cline{2-3}
191     & 1 & same as 2 but treat momentum as in Linear FS \\
192     \hline
193     & 0 & do not use $r*$ vertical coordinate (= default)\\
194     \cline{2-3}
195     select\_rStar & 2 & use $r^*$ vertical coordinate \\
196     \cline{2-3}
197     & 1 & same as 2 but without the contribution of the\\
198     & & slope of the coordinate in $\nabla \Phi$ \\
199     \hline
200     \end{tabular}
201 jmc 1.9 \caption{Non-linear free-surface flags}
202     \label{tab:nonLinFreeSurf_flags}
203     %\end{center}
204     \end{table}
205 jmc 1.8
206 jmc 1.1
207 jmc 1.9 \subsubsection{Tracer conservation with non-linear free-surface}
208 jmc 1.14 \label{sec:freesurf-tracer-advection}
209 jmc 1.1
210 adcroft 1.4 To ensure global tracer conservation (i.e., the total amount) as well
211     as local conservation, the change in the surface level thickness must
212     be consistent with the way the continuity equation is integrated, both
213     in the barotropic part (to find $\eta$) and baroclinic part (to find
214     $w = \dot{r}$).
215 jmc 1.1
216 jmc 1.9 To illustrate this, consider the shallow water model, with a source
217     of fresh water (P):
218 jmc 1.1 $$
219 jmc 1.9 \partial_t h + \nabla \cdot h \vec{\bf v} = P
220 jmc 1.1 $$
221     where $h$ is the total thickness of the water column.
222     To conserve the tracer $\theta$ we have to discretize:
223     $$
224 jmc 1.9 \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})
225     = P \theta_{\mathrm{rain}}
226 jmc 1.1 $$
227 adcroft 1.4 Using the implicit (non-linear) free surface described above (section
228 jmc 1.14 \ref{sec:pressure-method-linear-backward}) we have:
229 jmc 1.1 \begin{eqnarray*}
230 jmc 1.9 h^{n+1} = h^{n} - \Delta t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) + \Delta t P \\
231 jmc 1.1 \end{eqnarray*}
232 adcroft 1.4 The discretized form of the tracer equation must adopt the same
233     ``form'' in the computation of tracer fluxes, that is, the same value
234     of $h$, as used in the continuity equation:
235 jmc 1.1 \begin{eqnarray*}
236 jmc 1.15 h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
237 jmc 1.9 - \Delta t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
238     + \Delta t P \theta_{rain}
239 jmc 1.1 \end{eqnarray*}
240    
241 jmc 1.9 The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth
242     make the conservation sightly tricky.
243 jmc 1.8 The current implementation with the Adams-Bashforth time-stepping
244     provides an exact local conservation and prevents any drift in
245     the global tracer content (\cite{campin:02}).
246     Compared to the linear free-surface method, an additional step is required:
247     the variation of the water column thickness (from $h^n$ to $h^{n+1}$) is
248 adcroft 1.4 not incorporated directly into the tracer equation. Instead, the
249     model uses the $G_\theta$ terms (first step) as in the linear free
250     surface formulation (with the "{\it surface correction}" turned "on",
251     see tracer section):
252 jmc 1.1 $$
253 jmc 1.15 G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
254 jmc 1.2 - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n
255 jmc 1.1 $$
256 adcroft 1.4 Then, in a second step, the thickness variation (expansion/reduction)
257     is taken into account:
258 jmc 1.1 $$
259 jmc 1.15 \theta^{n+1} = \theta^n + \Delta t \frac{h^n}{h^{n+1}}
260 jmc 1.9 \left( G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n )/h^n \right)
261 jmc 1.15 %\theta^{n+1} = \theta^n + \frac{\Delta t}{h^{n+1}}
262 jmc 1.9 % \left( h^n G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n ) \right)
263 jmc 1.1 $$
264 jmc 1.15 Note that with a simple forward time step (no Adams-Bashforth),
265     these two formulations are equivalent,
266 jmc 1.1 since
267     $
268 jmc 1.15 (h^{n+1} - h^{n})/ \Delta t =
269 jmc 1.9 P - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = P + \dot{r}_{surf}^{n+1}
270 jmc 1.1 $
271 adcroft 1.4
272 jmc 1.9 \subsubsection{Time stepping implementation of the
273 jmc 1.15 non-linear free-surface}
274 jmc 1.14 \label{sec:nonlin-freesurf-timestepping}
275 jmc 1.9
276     The grid cell thickness was hold constant with the linear
277 jmc 1.15 free-surface~; with the non-linear free-surface, it is now varying
278 jmc 1.9 in time, at least at the surface level.
279 jmc 1.15 This implies some modifications of the general algorithm described
280     earlier in sections \ref{sec:adams-bashforth-sync} and
281 jmc 1.14 \ref{sec:adams-bashforth-staggered}.
282 jmc 1.9
283 jmc 1.15 A simplified version of the staggered in time, non-linear
284     free-surface algorithm is detailed hereafter, and can be compared
285 jmc 1.9 to the equivalent linear free-surface case (eq. \ref{eq:Gv-n-staggered}
286     to \ref{eq:t-n+1-staggered}) and can also be easily transposed
287     to the synchronous time-stepping case.
288     Among the simplifications, salinity equation, implicit operator
289     and detailed elliptic equation are omitted. Surface forcing is
290     explicitly written as fluxes of temperature, fresh water and
291     momentum, $Q^{n+1/2}, P^{n+1/2}, F_{\bf v}^n$ respectively.
292     $h^n$ and $dh^n$ are the column and grid box thickness in r-coordinate.
293     %-------------------------------------------------------------
294     \begin{eqnarray}
295     \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n},r) dr
296     \label{eq:phi-hyd-nlfs} \\
297 jmc 1.15 \vec{\bf G}_{\vec{\bf v}}^{n-1/2}\hspace{-2mm} & = &
298 jmc 1.9 \vec{\bf G}_{\vec{\bf v}} (dh^{n-1},\vec{\bf v}^{n-1/2})
299     \hspace{+2mm};\hspace{+2mm}
300 jmc 1.15 \vec{\bf G}_{\vec{\bf v}}^{(n)} =
301     \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
302 jmc 1.9 - \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
303     \label{eq:Gv-n-nlfs} \\
304 jmc 1.15 %\vec{\bf G}_{\vec{\bf v}}^{(n)} & = &
305     % \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
306 jmc 1.9 %- \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
307     %\label{eq:Gv-n+5-nlfs} \\
308     %\vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \frac{\Delta t}{dh^{n}} \left(
309     %dh^{n-1}\vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n} \right)
310     \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \frac{dh^{n-1}}{dh^{n}} \left(
311     \vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n}/dh^{n-1} \right)
312     - \Delta t \nabla \phi_{hyd}^{n}
313 jmc 1.12 \label{eq:vstar-nlfs}
314     \end{eqnarray}
315     \hspace{3cm}$\longrightarrow$~~{\it update model~geometry~:~}${\bf hFac}(dh^n)$\\
316     \begin{eqnarray}
317 jmc 1.15 \eta^{n+1/2} \hspace{-2mm} & = &
318 jmc 1.9 \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
319     \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n} \nonumber \\
320     & = & \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
321     \nabla \cdot \int \!\!\! \left( \vec{\bf v}^* - g \Delta t \nabla \eta^{n+1/2} \right) dh^{n}
322     \label{eq:nstar-nlfs} \\
323 jmc 1.15 \vec{\bf v}^{n+1/2}\hspace{-2mm} & = &
324 jmc 1.9 \vec{\bf v}^{*} - g \Delta t \nabla \eta^{n+1/2}
325     \label{eq:v-n+1-nlfs} \\
326     h^{n+1} & = & h^{n} + \Delta t P^{n+1/2} - \Delta t
327     \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n}
328     \label{eq:h-n+1-nlfs} \\
329     G_{\theta}^{n} & = & G_{\theta} ( dh^{n}, u^{n+1/2}, \theta^{n} )
330     \hspace{+2mm};\hspace{+2mm}
331     G_{\theta}^{(n+1/2)} = \frac{3}{2} G_{\theta}^{n} - \frac{1}{2} G_{\theta}^{n-1}
332     \label{eq:Gt-n-nlfs} \\
333 jmc 1.15 %\theta^{n+1} & = &\theta^{n} + \frac{\Delta t}{dh^{n+1}} \left( dh^n
334 jmc 1.9 %G_{\theta}^{(n+1/2)} + Q^{n+1/2} + P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) \right)
335 jmc 1.15 \theta^{n+1} & = &\theta^{n} + \Delta t \frac{dh^n}{dh^{n+1}} \left(
336 jmc 1.9 G_{\theta}^{(n+1/2)}
337     +( P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) + Q^{n+1/2})/dh^n \right)
338     \nonumber \\
339     & & \label{eq:t-n+1-nlfs}
340     \end{eqnarray}
341     %-------------------------------------------------------------
342 jmc 1.15 Two steps have been added to linear free-surface algorithm
343 jmc 1.9 (eq. \ref{eq:Gv-n-staggered} to \ref{eq:t-n+1-staggered}):
344     Firstly, the model ``geometry''
345 adcroft 1.4 (here the {\bf hFacC,W,S}) is updated just before entering {\it
346 jmc 1.9 SOLVE\_FOR\_PRESSURE}, using the current $dh^{n}$ field.
347 jmc 1.15 Secondly, the vertically integrated continuity equation
348 jmc 1.9 (eq.\ref{eq:h-n+1-nlfs}) has been added ({\bf exactConserv}{\em =TRUE},
349     in parameter file {\em data}, namelist {\em PARM01})
350     just before computing the vertical velocity, in subroutine
351 jmc 1.15 {\em INTEGR\_CONTINUITY}.
352     %This ensures that tracer and continuity equation discretization a
353     Although this equation might appear redundant with eq.\ref{eq:nstar-nlfs},
354     the integrated column thickness $h^{n+1}$ will be different from
355     $\eta^{n+1/2} + H$~ in the following cases:
356 jmc 1.9 \begin{itemize}
357 jmc 1.16 \item when Crank-Nicolson time-stepping is used (see section
358 jmc 1.14 \ref{sec:freesurf-CrankNick}).
359 jmc 1.9 \item when filters are applied to the flow field, after
360     (\ref{eq:v-n+1-nlfs}) and alter the divergence of the flow.
361     \item when the solver does not iterate until convergence~;
362     for example, because a too large residual target was set
363     ({\bf cg2dTargetResidual}, parameter file {\em data}, namelist
364     {\em PARM02}).
365     \end{itemize}\noindent
366     In this staggered time-stepping algorithm, the momentum tendencies
367     are computed using $dh^{n-1}$ geometry factors.
368     (eq.\ref{eq:Gv-n-nlfs}) and then rescaled in subroutine {\it TIMESTEP},
369     (eq.\ref{eq:vstar-nlfs}), similarly to tracer tendencies (see section
370 jmc 1.14 \ref{sec:freesurf-tracer-advection}).
371 jmc 1.9 The tracers are stepped forward later, using the recently updated
372     flow field ${\bf v}^{n+1/2}$ and the corresponding model geometry
373     $dh^{n}$ to compute the tendencies (eq.\ref{eq:Gt-n-nlfs});
374     Then the tendencies are rescaled by $dh^n/dh^{n+1}$ to derive
375     the new tracers values $(\theta,S)^{n+1}$ (eq.\ref{eq:t-n+1-nlfs},
376     in subroutine {\em CALC\_GT, CALC\_GS}).
377    
378 jmc 1.15 Note that the fresh-water input is added in a consistent way in the
379 jmc 1.9 continuity equation and in the tracer equation, taking into account
380     the fresh-water temperature $\theta_{\mathrm{rain}}$.
381    
382     Regarding the restart procedure,
383 jmc 1.15 two 2.D fields $h^{n-1}$ and $(h^n-h^{n-1})/\Delta t$
384 jmc 1.9 in addition to the standard
385     state variables and tendencies ($\eta^{n-1/2}$, ${\bf v}^{n-1/2}$,
386     $\theta^n$, $S^n$, ${\bf G}_{\bf v}^{n-3/2}$, $G_{\theta,S}^{n-1}$)
387     are stored in a "{\em pickup}" file.
388     The model restarts reading this "{\em pickup}" file,
389     then update the model geometry according to $h^{n-1}$,
390     and compute $h^n$ and the vertical velocity
391     %$h^n=h^{n-1} + \Delta t [(h^n-h^{n-1})/\Delta t]$,
392 jmc 1.15 before starting the main calling sequence (eq.\ref{eq:phi-hyd-nlfs}
393 jmc 1.9 to \ref{eq:t-n+1-nlfs}, {\em S/R FORWARD\_STEP}).
394     \\
395    
396     \fbox{ \begin{minipage}{4.75in}
397     {\em INTEGR\_CONTINUITY} ({\em integr\_continuity.F})
398    
399     $h^{n+1} -H_o$: {\bf etaH} ({\em DYNVARS.h})
400    
401     $h^{n} -H_o$: {\bf etaHnm1} ({\em SURFACE.h})
402    
403 jmc 1.15 $(h^{n+1}-h^{n})/\Delta t$: {\bf dEtaHdt} ({\em SURFACE.h})
404 jmc 1.9
405     \end{minipage} }
406 jmc 1.1
407 jmc 1.9 \subsubsection{Non-linear free-surface and vertical resolution}
408 jmc 1.14 \label{sec:nonlin-freesurf-dz_surf}
409 jmc 1.8
410     When the amplitude of the free-surface variations becomes
411     as large as the vertical resolution near the surface,
412     the surface layer thickness can decrease to nearly zero or
413 jmc 1.15 can even vanish completely.
414     This later possibility has not been implemented, and a
415     minimum relative thickness is imposed ({\bf hFacInf},
416     parameter file {\em data}, namelist {\em PARM01}) to prevent
417 jmc 1.8 numerical instabilities caused by very thin surface level.
418    
419 jmc 1.15 A better alternative to the vanishing level problem has been
420     found and implemented recently, and rely on a different
421 jmc 1.8 vertical coordinate $r^*$~:
422     The time variation ot the total column thickness becomes
423     part of the r* coordinate motion, as in a $\sigma_{z},\sigma_{p}$
424     model, but the fixed part related to topography is treated
425     as in a height or pressure coordinate model.
426 jmc 1.15 A complete description is given in \cite{adcroft:04a}.
427 jmc 1.8
428     The time-stepping implementation of the $r^*$ coordinate is
429     identical to the non-linear free-surface in $r$ coordinate,
430 jmc 1.9 and differences appear only in the spacial discretization.
431 jmc 1.8 \marginpar{needs a subsection ref. here}
432 jmc 1.1

  ViewVC Help
Powered by ViewVC 1.1.22