/[MITgcm]/manual/s_algorithm/text/nonlin_frsurf.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/nonlin_frsurf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by jmc, Fri Aug 17 18:38:10 2001 UTC revision 1.15 by jmc, Tue Feb 26 21:24:12 2013 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
 %\section{Time Integration}  
4    
 \subsection{Non-linear free surface}  
5    
6  Recently, 2 options have added to the model  \subsection{Non-linear free-surface}
7  (and therefore, have not yet been extensively tested)  \label{sec:nonlinear-freesurface}
8    
9    Recently, new options have been added to the model
10  that concern the free surface formulation.  that concern the free surface formulation.
11    
 %------------------------------------------  
 \subsubsection{Non-uniform linear-relation for the surface potential}  
12    
13  The linear relation between  \subsubsection{pressure/geo-potential and free surface}
14  surface pressure / geo- potential ($\Phi_{surf}$)  \label{sec:phi-freesurface}
15  and surface displacement ($\eta$)  
16  has been considered as uniform ($b_s =$ Constant)  For the atmosphere, since $\phi = \phi_{topo} - \int^p_{p_s} \alpha dp$,
17  but is in fact  subtracting the reference state defined in section
18  dependent on the position ($x,y,r$)  \ref{sec:hpe-p-geo-potential-split}~:\\
19  since we linearize:  $$
20  $$\Phi_{surf}=\int_{R_o}^{R_o+\eta} b dr \simeq b_s \eta  \phi_o = \phi_{topo} - \int^p_{p_o} \alpha_o dp
21  ~\mathrm{with}~ b_s = b(\theta,S,r)_{r=R_o}  \hspace{5mm}\mathrm{with}\hspace{3mm} \phi_o(p_o)=\phi_{topo}
22  \simeq b_s(\theta_{ref}(R_o),S_{ref}(R_o),R_o)$$  $$
23  Note that, for convinience, the effect of the local  we get:
24  surface $\theta,S$ on $b_s$  $$
25  are not considered here, but incorporated in $\Phi'_{hyd}$.  \phi' = \phi - \phi_o = \int^{p_s}_p \alpha dp - \int^{p_o}_p \alpha_o dp
26    $$
27  For the ocean, $b_s = g \rho_{surf} / \rho_o \simeq g$  For the ocean, the reference state is simpler since $\rho_c$ does not dependent
28  is a fairly good approximation since the relative difference  on $z$ ($b_o=g$) and the surface reference position is uniformly $z=0$ ($R_o=0$),
29  in surface density are usually small and only due to  and the same subtraction leads to a similar relation.
30  local $\theta,S$ gradient (because $R_o = 0$);  For both fluid, using the isomorphic notations, we can write:
31  Therefore, they can easely be incorporated in $\Phi'_{hyd}$.  $$
32    \phi' = \int^{r_{surf}}_r b~ dr - \int^{R_o}_r b_o dr
33  For the atmosphere, because of topographic effects,  $$
34  the reference surface pressure $R_o$ has large spacial differences  and re-write as:
35  that are responsible for significant $b_s$ variations  \begin{equation}
36  (from 0.8 to 1.2 $[m^3/kg]$). For this reason,  \phi' = \int^{r_{surf}}_{R_o} b~ dr + \int^{R_o}_r (b - b_o) dr
37  we use a non-uniform linear coefficient $b_s$.  \label{eq:split-phi-Ro}
38    \end{equation}
39  Practically, in an oceanic configuration or  or:
40  when the default value (TRUE) of the parameter  \begin{equation}
41  {\bf uniformLin\_PhiSurf} is used  \phi' = \int^{r_{surf}}_{R_o} b_o dr + \int^{r_{surf}}_r (b - b_o) dr
42  then $b_s$ is simply set to $g$ for the ocean  \label{eq:split-phi-bo}
43  and $1.$ for the atmosphere.\\  \end{equation}
44  Turning {\bf uniformLin\_PhiSurf} to "FALSE", allows to  
45  evaluate $b_s$ from the reference vertical profile $\theta_{ref}$  In section \ref{sec:finding_the_pressure_field}, following eq.\ref{eq:split-phi-Ro},
46  ({\it S/R INI\_LINEAR\_PHISURF})  the pressure/geo-potential $\phi'$ has been separated into surface ($\phi_s$),
47  according to the reference surface pressure $P_o$ ($=R_o$):  and hydrostatic anomaly ($\phi'_{hyd}$).
48  $b_s = c_p \kappa (P_o / Pc)^{(\kappa - 1)} \theta_{ref}(P_o)$  In this section, the split between $\phi_s$ and $\phi'_{hyd}$ is
49    made according to equation \ref{eq:split-phi-bo}. This slightly
50    different definition reflects the actual implementation in the code
51    and is valid for both linear and non-linear
52    free-surface formulation, in both r-coordinate and r*-coordinate.
53    
54    Because the linear free-surface approximation ignore the tracer content
55    of the fluid parcel between $R_o$ and $r_{surf}=R_o+\eta$,
56    for consistency reasons, this part is also neglected in $\phi'_{hyd}$~:
57    $$
58    \phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr \simeq \int^{R_o}_r (b - b_o) dr
59    $$
60    Note that in this case, the two definitions of $\phi_s$ and $\phi'_{hyd}$
61    from equation \ref{eq:split-phi-Ro} and \ref{eq:split-phi-bo} converge toward
62    the same (approximated) expressions: $\phi_s = \int^{r_{surf}}_{R_o} b_o dr$
63    and $\phi'_{hyd}=\int^{R_o}_r b' dr$.\\
64    On the contrary, the unapproximated formulation ("non-linear free-surface",
65    see the next section) retains the full expression:
66    $\phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr $~.
67    This is obtained by selecting {\bf nonlinFreeSurf}=4 in parameter
68    file {\em data}.\\
69    
70    Regarding the surface potential:
71    $$\phi_s = \int_{R_o}^{R_o+\eta} b_o dr = b_s \eta
72    \hspace{5mm}\mathrm{with}\hspace{5mm}
73    b_s = \frac{1}{\eta} \int_{R_o}^{R_o+\eta} b_o dr $$
74    $b_s \simeq b_o(R_o)$ is an excellent approximation (better than
75    the usual numerical truncation, since generally $|\eta|$ is smaller
76    than the vertical grid increment).
77    
78    For the ocean, $\phi_s = g \eta$ and $b_s = g$ is uniform.
79    For the atmosphere, however, because of topographic effects, the
80    reference surface pressure $R_o=p_o$ has large spatial variations that
81    are responsible for significant $b_s$ variations (from 0.8 to 1.2
82    $[m^3/kg]$). For this reason, when {\bf uniformLin\_PhiSurf} {\em=.FALSE.}
83    (parameter file {\em data}, namelist {\em PARAM01})
84    a non-uniform linear coefficient $b_s$ is used and computed
85    ({\it S/R INI\_LINEAR\_PHISURF}) according to the reference surface
86    pressure $p_o$:
87    $b_s = b_o(R_o) = c_p \kappa (p_o / P^o_{SL})^{(\kappa - 1)} \theta_{ref}(p_o)$.
88    with $P^o_{SL}$ the mean sea-level pressure.
89    
90    
 %------------------------------------------  
91  \subsubsection{Free surface effect on column total thickness  \subsubsection{Free surface effect on column total thickness
92  (Non-linear free surface)}  (Non-linear free-surface)}
93    
94  The total thickness of the fluid column is  The total thickness of the fluid column is $r_{surf} - R_{fixed} =
95  $r_{surf} - R_{min} = \eta + R_o - R_{min}$  \eta + R_o - R_{fixed}$. In most applications, the free surface
96  In the linear free surface approximation  displacements are small compared to the total thickness
97  (detailed before), only the fixed part of  $\eta \ll H_o = R_o - R_{fixed}$.
98  it ($R_o - R_{min})$ is considered when we integrate the  In the previous sections and in older version of the model,
99  continuity equation or compute tracer and momentum advection term.  the linearized free-surface approximation was made, assuming
100    $r_{surf} - R_{fixed} \simeq H_o$ when computing horizontal transports,
101  This approximation is dropped when using  either in the continuity equation or in tracer and momentum
102  the non-linear free surface formulation.  advection terms.
103  Details follow here after for the barotropic part  This approximation is dropped when using the non-linear free-surface
104  and in the 2 next subsections for the baroclinic  formulation and the total thickness, including the time varying part
105  part.  $\eta$, is considered when computing horizontal transports.
106    Implications for the barotropic part are presented hereafter.
107  %------------------------------------------  In section \ref{sec:freesurf-tracer-advection} consequences for
108  % Non-Linear Barotropic part  tracer conservation is briefly discussed (more details can be
109    found in \cite{campin:02})~; the general time-stepping is presented
110  The continuous form of the model equations remains  in section \ref{sec:nonlin-freesurf-timestepping} with some
111  unchanged, except for the 2D continuity equation  limitations regarding the vertical resolution in section
112  (\ref{eq-tCsC-eta}) that is now integrated  \ref{sec:nonlin-freesurf-dz_surf}.
113  from $R_{min}(x,y)$ up to $r_{surf}=R_o+\eta$ :  
114    In the non-linear formulation, the continuous form of the model
115    equations remains unchanged, except for the 2D continuity equation
116    (\ref{eq:discrete-time-backward-free-surface}) which is now
117    integrated from $R_{fixed}(x,y)$ up to $r_{surf}=R_o+\eta$ :
118    
119  \begin{displaymath}  \begin{displaymath}
120  \epsilon_{fs} \partial_t \eta =  \epsilon_{fs} \partial_t \eta =
121  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
122  - {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o+\eta} \vec{\bf v} dr  - {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta} \vec{\bf v} dr
123  + \epsilon_{fw} (P-E)  + \epsilon_{fw} (P-E)
124  \end{displaymath}  \end{displaymath}
125    
126  Since $\eta$ has a direct effect on the horizontal  Since $\eta$ has a direct effect on the horizontal velocity (through
127  velocity (through $\nabla_h \Phi_{surf}$), this  $\nabla_h \Phi_{surf}$), this adds a non-linear term to the free
128  adds a non-linear term to the free surface equation.  surface equation. Several options for the time discretization of this
129    non-linear part can be considered, as detailed below.
130  Regarding the time discretization of this non-linear part,  
131  several options are now being tested:  If the column thickness is evaluated at time step $n$, and with
132    implicit treatment of the surface potential gradient, equations
133  With the column thickness evaluated at time step $n$,  (\ref{eq-solve2D} and \ref{eq-solve2D_rhs}) becomes:
 and the surface potential gradient still implicit,  
 equation (\ref{eq-solve2D} \& \ref{eq-solve2D_rhs})  
 become:  
134  \begin{eqnarray*}  \begin{eqnarray*}
135  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
136  {\bf \nabla}_h \cdot \Delta t^2 (\eta^{n}+R_o-R_{min})  {\bf \nabla}_h \cdot \Delta t^2 (\eta^{n}+R_o-R_{fixed})
137  {\bf \nabla}_h b_s {\eta}^{n+1}  {\bf \nabla}_h b_s {\eta}^{n+1}
138  = {\eta}^*  = {\eta}^*
 %\label{solve_2d}  
139  \end{eqnarray*}  \end{eqnarray*}
140  where  where
141  \begin{eqnarray*}  \begin{eqnarray*}
142  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
143  \Delta t {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o+\eta^n} \vec{\bf v}^* dr  \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta^n} \vec{\bf v}^* dr
144  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
145  %\label{solve_2d_rhs}  \end{eqnarray*}
146  \end{eqnarray*}  This method requires us to update the solver matrix at each time step.
 This method requires to update the solver matrix at each time step.  
147    
148  Alternatively, the non-linear contribution can be evaluated fully  Alternatively, the non-linear contribution can be evaluated fully
149  explicitly:  explicitly:
150  \begin{eqnarray*}  \begin{eqnarray*}
151  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
152  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{min})  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})
153  {\bf \nabla}_h b_s {\eta}^{n+1}  {\bf \nabla}_h b_s {\eta}^{n+1}
154  = {\eta}^*  = {\eta}^*
155  +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})  +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})
156  {\bf \nabla}_h b_s {\eta}^{n}  {\bf \nabla}_h b_s {\eta}^{n}
157  \end{eqnarray*}  \end{eqnarray*}
158  This formulation allows to keep the initial solver matrix  This formulation allows one to keep the initial solver matrix
159  since the non-linear free surface only affects the RHS.  unchanged though throughout the integration, since the non-linear free
160    surface only affects the RHS.
161  An other option is a "linearized" formulation where the  
162  total column thickness appears only in the integral term of  Finally, another option is a "linearized" formulation where the total
163  the RHS (\ref{eq-solve2D_rhs}) but not directly in  column thickness appears only in the integral term of the RHS
164  the equation (\ref{eq-solve2D}).  (\ref{eq-solve2D_rhs}) but not directly in the equation
165    (\ref{eq-solve2D}).
166  %------------------------------------------  
167  \subsubsection{Free surface effect on the surface level thickness  Those different options (see Table \ref{tab:nonLinFreeSurf_flags})
168  (Non-linear free surface): Tracer advection}  have been tested and show little differences. However, we recommend
169    the use of the most precise method (the 1rst one) since the
170  To ensure a global tracer conservation (i.e., the total amount)  computation cost involved in the solver matrix update is negligible.
171  as well as the local one (see tracer section for more details),  
172  the change in the surface level thickness must be consistent with  \begin{table}[htb]
173  the way the continuity equation is integrated, both in  %\begin{center}
174  in the barotropic part (to find $\eta$) and baroclinic part  \centering
175  (to find $w = \dot{r}$).   \begin{tabular}[htb]{|l|c|l|}
176       \hline
177       parameter & value & description \\
178       \hline
179                       & -1 & linear free-surface, restart from a pickup file \\
180                       &    & produced with \#undef EXACT\_CONSERV code\\
181       \cline{2-3}
182                       & 0 & Linear free-surface \\
183       \cline{2-3}
184        nonlinFreeSurf & 4 & Non-linear free-surface \\
185       \cline{2-3}
186                       & 3 & same as 4 but neglecting
187                               $\int_{R_o}^{R_o+\eta} b' dr $ in $\Phi'_{hyd}$ \\
188       \cline{2-3}
189                       & 2 & same as 3 but do not update cg2d solver matrix \\
190       \cline{2-3}
191                      & 1 & same as 2 but treat momentum as in Linear FS \\
192       \hline
193                      & 0 & do not use $r*$ vertical coordinate (= default)\\
194       \cline{2-3}
195        select\_rStar & 2 & use $r^*$ vertical coordinate \\
196       \cline{2-3}
197                      & 1 & same as 2 but without the contribution of the\\
198                      &   & slope of the coordinate in $\nabla \Phi$ \\
199       \hline
200      \end{tabular}
201      \caption{Non-linear free-surface flags}
202      \label{tab:nonLinFreeSurf_flags}
203    %\end{center}
204    \end{table}
205    
206    
207    \subsubsection{Tracer conservation with non-linear free-surface}
208    \label{sec:freesurf-tracer-advection}
209    
210    To ensure global tracer conservation (i.e., the total amount) as well
211    as local conservation, the change in the surface level thickness must
212    be consistent with the way the continuity equation is integrated, both
213    in the barotropic part (to find $\eta$) and baroclinic part (to find
214    $w = \dot{r}$).
215    
216  To illustrate this, let's consider the shallow water model,  To illustrate this, consider the shallow water model, with a source
217  with uniform cartesian horizontal grid:  of fresh water (P):
218  $$  $$
219  \partial_t h + \nabla \cdot h \vec{\bf v} = 0  \partial_t h + \nabla \cdot h \vec{\bf v} = P
220  $$  $$
221  where $h$ is the total thickness of the water column.  where $h$ is the total thickness of the water column.
222  To conserve the tracer $\theta$ we have to discretize:  To conserve the tracer $\theta$ we have to discretize:
223  $$  $$
224  \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})= 0  \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})
225      = P \theta_{\mathrm{rain}}
226  $$  $$
227  Using the implicit (non-linear) free surface described before, we have:  Using the implicit (non-linear) free surface described above (section
228    \ref{sec:pressure-method-linear-backward}) we have:
229  \begin{eqnarray*}  \begin{eqnarray*}
230  h^{n+1} = h^{n} - \Delta_t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) \\  h^{n+1} = h^{n} - \Delta t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) + \Delta t P \\
231  \end{eqnarray*}  \end{eqnarray*}
232  The discretized form of the tracer equation must use the same  The discretized form of the tracer equation must adopt the same
233  "geometry" to compute the tracer fluxes, that is, the same value of  ``form'' in the computation of tracer fluxes, that is, the same value
234  h, as the continuity equation did:  of $h$, as used in the continuity equation:
235  \begin{eqnarray*}  \begin{eqnarray*}
236  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
237          - \Delta_t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})          - \Delta t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
238            + \Delta t P \theta_{rain}
239  \end{eqnarray*}  \end{eqnarray*}
240    
241  In order to deal with the Adams-Bashforth time stepping,  The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth
242  we implement this scheme slightly differently, in two step:  make the conservation sightly tricky.
243  the variation of the water column thickness (from  The current implementation with the Adams-Bashforth time-stepping
244  $h^n$ to $h^{n+1}$)  provides an exact local conservation and prevents any drift in
245  is not incorporated directly to the tracer equation.  the global tracer content (\cite{campin:02}).
246  Instead,  Compared to the linear free-surface method, an additional step is required:
247  the model continues to evaluate the $G_\theta$ term (first step)  the variation of the water column thickness (from $h^n$ to $h^{n+1}$) is
248  as it use to do with the Linear free surface formulation  not incorporated directly into the tracer equation.  Instead, the
249  (with the "{\it surface correction}" turned "on", see tracer section):  model uses the $G_\theta$ terms (first step) as in the linear free
250    surface formulation (with the "{\it surface correction}" turned "on",
251    see tracer section):
252  $$  $$
253  G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})  G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
254           - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n           - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n
255  $$  $$
256  Then in a second step,  Then, in a second step, the thickness variation (expansion/reduction)
257  thickness variation (expansion/reduction) is taken into account :  is taken into account:
258  $$  $$
259  \theta^{n+1} = \theta^n + \Delta_t \frac{h^n}{h^{n+1}} G_\theta^{(n+1/2)}  \theta^{n+1} = \theta^n + \Delta t \frac{h^n}{h^{n+1}}
260       \left( G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n )/h^n \right)
261    %\theta^{n+1} = \theta^n + \frac{\Delta t}{h^{n+1}}
262    %   \left( h^n G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n ) \right)
263  $$  $$
264  Note that with a simple forward time step (no Adams-Bashforth),  Note that with a simple forward time step (no Adams-Bashforth),
265    these two formulations are equivalent,
266  since  since
267  $  $
268  \dot{r}_{surf}^{n+1}  (h^{n+1} - h^{n})/ \Delta t =
269  = - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = (h^{n+1} - h^{n})  P - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = P + \dot{r}_{surf}^{n+1}
 / \Delta_t  
270  $  $
 those 2 formulations are equivalent.  
271    
272  The implementation in the MITgcm follows this scheme.  \subsubsection{Time stepping implementation of the
273  The model "geometry" (here the {\bf hFacC,W,S}) is updated  non-linear free-surface}
274  just before entering {\it SOLVE\_FOR\_PRESSURE},  \label{sec:nonlin-freesurf-timestepping}
275  according to the current $\eta$ field.  
276  Then, at the end of the time step, the variables are  The grid cell thickness was hold constant with the linear
277  advanced in time, so that $\eta^n$ becomes $\eta^{n-1}$.  free-surface~; with the non-linear free-surface, it is now varying
278  At the next time step, the tracer tendency ($G_\theta$) is computed  in time, at least at the surface level.
279  using the same geometry, that is now consistent with  This implies some modifications of the general algorithm described
280  $\eta^{n-1}$.  earlier in sections \ref{sec:adams-bashforth-sync} and
281  Finally, in S/R {\it TIMESTEP\_TRACER}, the expansion/reduction  \ref{sec:adams-bashforth-staggered}.
282  ratio is applied to the surface level to compute the new tracer field.  
283    A simplified version of the staggered in time, non-linear
284  %------------------------------------------  free-surface algorithm is detailed hereafter, and can be compared
285  \subsubsection{Free surface effect on the surface level thickness  to the equivalent linear free-surface case (eq. \ref{eq:Gv-n-staggered}
286  (Non-linear free surface): Momentum advection}      to \ref{eq:t-n+1-staggered}) and can also be easily transposed
287    to the synchronous time-stepping case.
288  Regarding momentum advection,  Among the simplifications, salinity equation, implicit operator
289  the vector invariant formulation is similar to the  and detailed elliptic equation are omitted. Surface forcing is
290  advective form (as opposed to the flux form) and therefore  explicitly written as fluxes of temperature, fresh water and
291  does not need specific modification to include the  momentum, $Q^{n+1/2}, P^{n+1/2}, F_{\bf v}^n$ respectively.
292  free surface effect on the surface level thickness.  $h^n$ and $dh^n$ are the column and grid box thickness in r-coordinate.
293  Updating the {\bf hFacC,W,S} and the {\bf recip\_hFac}(s)  %-------------------------------------------------------------
294  at one given place (like describe before) is sufficient.  \begin{eqnarray}
295    \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n},r) dr
296  With the flux form formulation, advection of momentum  \label{eq:phi-hyd-nlfs} \\
297  can be treated exactly as the tracer advection is.  \vec{\bf G}_{\vec{\bf v}}^{n-1/2}\hspace{-2mm} & = &
298  Here the expansion/reduction factors ($hFacW^{n+1}/hFacW^n$ for $u$  \vec{\bf G}_{\vec{\bf v}} (dh^{n-1},\vec{\bf v}^{n-1/2})
299  and $hFacS^{n+1}/hFacS^n$ for $v$) are simply applied in the  \hspace{+2mm};\hspace{+2mm}
300  subroutine {\it TIMESTEP}.  \vec{\bf G}_{\vec{\bf v}}^{(n)} =
301       \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
302    -  \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
303    \label{eq:Gv-n-nlfs} \\
304    %\vec{\bf G}_{\vec{\bf v}}^{(n)} & = &
305    %   \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
306    %-  \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
307    %\label{eq:Gv-n+5-nlfs} \\
308    %\vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \frac{\Delta t}{dh^{n}} \left(
309    %dh^{n-1}\vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n} \right)
310    \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \frac{dh^{n-1}}{dh^{n}} \left(
311    \vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n}/dh^{n-1} \right)
312    - \Delta t \nabla \phi_{hyd}^{n}
313    \label{eq:vstar-nlfs}
314    \end{eqnarray}
315    \hspace{3cm}$\longrightarrow$~~{\it update model~geometry~:~}${\bf hFac}(dh^n)$\\
316    \begin{eqnarray}
317    \eta^{n+1/2} \hspace{-2mm} & = &
318    \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
319      \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n} \nonumber \\
320                 & = & \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
321      \nabla \cdot \int \!\!\! \left( \vec{\bf v}^* - g \Delta t \nabla \eta^{n+1/2} \right) dh^{n}
322    \label{eq:nstar-nlfs} \\
323    \vec{\bf v}^{n+1/2}\hspace{-2mm} & = &
324    \vec{\bf v}^{*} - g \Delta t \nabla \eta^{n+1/2}
325    \label{eq:v-n+1-nlfs} \\
326    h^{n+1} & = & h^{n} + \Delta t P^{n+1/2} - \Delta t
327      \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n}
328    \label{eq:h-n+1-nlfs} \\
329    G_{\theta}^{n} & = & G_{\theta} ( dh^{n}, u^{n+1/2}, \theta^{n} )
330    \hspace{+2mm};\hspace{+2mm}
331    G_{\theta}^{(n+1/2)} = \frac{3}{2} G_{\theta}^{n} - \frac{1}{2} G_{\theta}^{n-1}
332    \label{eq:Gt-n-nlfs} \\
333    %\theta^{n+1} & = &\theta^{n} + \frac{\Delta t}{dh^{n+1}} \left( dh^n
334    %G_{\theta}^{(n+1/2)} + Q^{n+1/2} + P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) \right)
335    \theta^{n+1} & = &\theta^{n} + \Delta t \frac{dh^n}{dh^{n+1}} \left(
336    G_{\theta}^{(n+1/2)}
337    +( P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) + Q^{n+1/2})/dh^n \right)
338    \nonumber \\
339    & & \label{eq:t-n+1-nlfs}
340    \end{eqnarray}
341    %-------------------------------------------------------------
342    Two steps have been added to linear free-surface algorithm
343    (eq. \ref{eq:Gv-n-staggered} to \ref{eq:t-n+1-staggered}):
344    Firstly, the model ``geometry''
345    (here the {\bf hFacC,W,S}) is updated just before entering {\it
346    SOLVE\_FOR\_PRESSURE}, using the current $dh^{n}$ field.
347    Secondly, the vertically integrated continuity equation
348    (eq.\ref{eq:h-n+1-nlfs}) has been added ({\bf exactConserv}{\em =TRUE},
349    in parameter file {\em data}, namelist {\em PARM01})
350    just before computing the vertical velocity, in subroutine
351    {\em INTEGR\_CONTINUITY}.
352    %This ensures that tracer and continuity equation discretization a
353    Although this equation might appear redundant with eq.\ref{eq:nstar-nlfs},
354    the integrated column thickness $h^{n+1}$ will be different from
355    $\eta^{n+1/2} + H$~ in the following cases:
356    \begin{itemize}
357    \item when Crank-Nickelson time-stepping is used (see section
358    \ref{sec:freesurf-CrankNick}).
359    \item when filters are applied to the flow field, after
360    (\ref{eq:v-n+1-nlfs}) and alter the divergence of the flow.
361    \item when the solver does not iterate until convergence~;
362     for example, because a too large residual target was set
363     ({\bf cg2dTargetResidual}, parameter file {\em data}, namelist
364     {\em PARM02}).
365    \end{itemize}\noindent
366    In this staggered time-stepping algorithm, the momentum tendencies
367    are computed using $dh^{n-1}$ geometry factors.
368    (eq.\ref{eq:Gv-n-nlfs}) and then rescaled in subroutine {\it TIMESTEP},
369    (eq.\ref{eq:vstar-nlfs}), similarly to tracer tendencies (see section
370    \ref{sec:freesurf-tracer-advection}).
371    The tracers are stepped forward later, using the recently updated
372    flow field ${\bf v}^{n+1/2}$ and the corresponding model geometry
373    $dh^{n}$ to compute the tendencies (eq.\ref{eq:Gt-n-nlfs});
374    Then the tendencies are rescaled by $dh^n/dh^{n+1}$ to derive
375    the new tracers values $(\theta,S)^{n+1}$ (eq.\ref{eq:t-n+1-nlfs},
376    in subroutine {\em CALC\_GT, CALC\_GS}).
377    
378    Note that the fresh-water input is added in a consistent way in the
379    continuity equation and in the tracer equation, taking into account
380    the fresh-water temperature $\theta_{\mathrm{rain}}$.
381    
382    Regarding the restart procedure,
383    two 2.D fields $h^{n-1}$ and $(h^n-h^{n-1})/\Delta t$
384    in addition to the standard
385    state variables and tendencies ($\eta^{n-1/2}$, ${\bf v}^{n-1/2}$,
386    $\theta^n$, $S^n$, ${\bf G}_{\bf v}^{n-3/2}$, $G_{\theta,S}^{n-1}$)
387    are stored in a "{\em pickup}" file.
388    The model restarts reading this "{\em pickup}" file,
389    then update the model geometry according to $h^{n-1}$,
390    and compute $h^n$ and the vertical velocity
391    %$h^n=h^{n-1} + \Delta t [(h^n-h^{n-1})/\Delta t]$,
392    before starting the main calling sequence (eq.\ref{eq:phi-hyd-nlfs}
393    to \ref{eq:t-n+1-nlfs}, {\em S/R FORWARD\_STEP}).
394    \\
395    
396    \fbox{ \begin{minipage}{4.75in}
397    {\em INTEGR\_CONTINUITY} ({\em integr\_continuity.F})
398    
399    $h^{n+1} -H_o$: {\bf etaH} ({\em DYNVARS.h})
400    
401    $h^{n} -H_o$: {\bf etaHnm1} ({\em SURFACE.h})
402    
403    $(h^{n+1}-h^{n})/\Delta t$: {\bf dEtaHdt} ({\em SURFACE.h})
404    
405    \end{minipage} }
406    
407    \subsubsection{Non-linear free-surface and vertical resolution}
408    \label{sec:nonlin-freesurf-dz_surf}
409    
410    When the amplitude of the free-surface variations becomes
411    as large as the vertical resolution near the surface,
412    the surface layer thickness can decrease to nearly zero or
413    can even vanish completely.
414    This later possibility has not been implemented, and a
415    minimum relative thickness is imposed ({\bf hFacInf},
416    parameter file {\em data}, namelist {\em PARM01}) to prevent
417    numerical instabilities caused by very thin surface level.
418    
419    A better alternative to the vanishing level problem has been
420    found and implemented recently, and rely on a different
421    vertical coordinate $r^*$~:
422    The time variation ot the total column thickness becomes
423    part of the r* coordinate motion, as in a $\sigma_{z},\sigma_{p}$
424    model, but the fixed part related to topography is treated
425    as in a height or pressure coordinate model.
426    A complete description is given in \cite{adcroft:04a}.
427    
428    The time-stepping implementation of the $r^*$ coordinate is
429    identical to the non-linear free-surface in $r$ coordinate,
430    and differences appear only in the spacial discretization.
431    \marginpar{needs a subsection ref. here}
432    

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.15

  ViewVC Help
Powered by ViewVC 1.1.22