/[MITgcm]/manual/s_algorithm/text/nonlin_frsurf.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/nonlin_frsurf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.5 by cnh, Thu Oct 25 18:36:53 2001 UTC revision 1.10 by jmc, Mon Jul 11 13:49:29 2005 UTC
# Line 3  Line 3 
3    
4    
5    
6  \subsection{Non-linear free surface}  \subsection{Non-linear free-surface}
7    \label{sect:nonlinear-freesurface}
8    
9  Recently, two options have been added to the model (and have not yet  Recently, new options have been added to the model
10  been extensively tested) that concern the free surface formulation.  that concern the free surface formulation.
11    
12    
13  \subsubsection{Non-uniform linear-relation for the surface potential}  \subsubsection{pressure/geo-potential and free surface}
14    
15  The linear relation between surface pressure/geo-potential  For the atmosphere, since $\phi = \phi_{topo} - \int^p_{p_s} \alpha dp$,
16  ($\Phi_{surf}$) and surface displacement ($\eta$) could be considered  subtracting the reference state defined in section
17  to be a constant ($b_s=$ constant)  \ref{sec:hpe-p-geo-potential-split}~:\\
18  \marginpar{add a reference to part.1 here}  $$
19  but is in fact dependent on the position ($x,y,r$)  \phi_o = \phi_{topo} - \int^p_{p_o} \alpha_o dp  
20  since we linearize:  \hspace{5mm}\mathrm{with}\hspace{3mm} \phi_o(p_o)=\phi_{topo}
21  $$\Phi_{surf}=\int_{R_o}^{R_o+\eta} b dr \simeq b_s \eta  $$
22  ~\mathrm{with}~ b_s = b(\theta,S,r)_{r=R_o}  we get:
23  \simeq b_s(\theta_{ref}(R_o),S_{ref}(R_o),R_o)$$  $$
24  Note that, for convenience, the effect on $b_s$ of the local surface  \phi' = \phi - \phi_o = \int^{p_s}_p \alpha dp - \int^{p_o}_p \alpha_o dp
25  $\theta,S$ are not considered here, but are incorporated in to  $$
26  $\Phi'_{hyd}$.  For the ocean, the reference state is simpler since $\rho_c$ does not dependent
27    on $z$ ($b_o=g$) and the surface reference position is uniformly $z=0$ ($R_o=0$),
28  For the ocean, $b_s = g \rho_{surf} / \rho_o \simeq g$ is a very good  and the same subtraction leads to a similar relation.
29  approximation since the relative difference in surface density are  For both fluid, using the isomorphic notations, we can write:
30  usually small and only due to local $\theta,S$ gradients (because the  $$
31  upper surface, $R_o = 0$, is essentially flat). Therefore, they can  \phi' = \int^{r_{surf}}_r b~ dr - \int^{R_o}_r b_o dr
32  easily be incorporated in $\Phi'_{hyd}$.  $$
33    \begin{eqnarray}
34    \mathrm{and~re~write:}\hspace{10mm}
35    \phi' = \int^{r_{surf}}_{R_o} b~ dr & + & \int^{R_o}_r (b - b_o) dr
36    \label{eq:split-phi-Ro} \\
37    \mathrm{or:}\hspace{10mm}
38    \phi' = \int^{r_{surf}}_{R_o} b_o dr & + & \int^{r_{surf}}_r (b - b_o) dr
39    \label{eq:split-phi-bo}
40    \end{eqnarray}
41    
42    In section \ref{sec:finding_the_pressure_field}, following eq.\ref{eq:split-phi-Ro},
43    the pressure/geo-potential $\phi'$ has been separated into surface ($\phi_s$),
44    and hydrostatic anomaly ($\phi'_{hyd}$).
45    In this section, the split between $\phi_s$ and $\phi'_{hyd}$ is
46    made according to equation \ref{eq:split-phi-bo}. This slightly
47    different definition reflects the actual implementation in the code
48    and is valid for both linear and non-linear
49    free-surface formulation, in both r-coordinate and r*-coordinate.
50    
51    Because the linear free-surface approximation ignore the tracer content
52    of the fluid parcel between $R_o$ and $r_{surf}=R_o+\eta$,
53    for consistency reasons, this part is also neglected in $\phi'_{hyd}$~:
54    $$
55    \phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr \simeq \int^{R_o}_r (b - b_o) dr
56    $$
57    Note that in this case, the two definitions of $\phi_s$ and $\phi'_{hyd}$
58    from equation \ref{eq:split-phi-Ro} and \ref{eq:split-phi-bo} converge toward
59    the same (approximated) expressions: $\phi_s = \int^{r_{surf}}_{R_o} b_o dr$
60    and $\phi'_{hyd}=\int^{R_o}_r b' dr$.\\
61    On the contrary, the unapproximated formulation ("non-linear free-surface",
62    see the next section) retains the full expression:
63    $\phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr $~.
64    This is obtained by selecting {\bf nonlinFreeSurf}=4 in parameter
65    file {\em data}.\\
66    
67    Regarding the surface potential:
68    $$\phi_s = \int_{R_o}^{R_o+\eta} b_o dr = b_s \eta
69    \hspace{5mm}\mathrm{with}\hspace{5mm}
70    b_s = \frac{1}{\eta} \int_{R_o}^{R_o+\eta} b_o dr $$
71    $b_s \simeq b_o(R_o)$ is an excellent approximation (better than
72    the usual numerical truncation, since generally $|\eta|$ is smaller
73    than the vertical grid increment).
74    
75    For the ocean, $\phi_s = g \eta$ and $b_s = g$ is uniform.
76  For the atmosphere, however, because of topographic effects, the  For the atmosphere, however, because of topographic effects, the
77  reference surface pressure $R_o$ has large spatial variations that  reference surface pressure $R_o=p_o$ has large spatial variations that
78  are responsible for significant $b_s$ variations (from 0.8 to 1.2  are responsible for significant $b_s$ variations (from 0.8 to 1.2
79  $[m^3/kg]$). For this reason, we use a non-uniform linear coefficient  $[m^3/kg]$). For this reason, when {\bf uniformLin\_PhiSurf} {\em=.FALSE.}
80  $b_s$.  (parameter file {\em data}, namelist {\em PARAM01})
81    a non-uniform linear coefficient $b_s$ is used and computed
82  In practice, in an oceanic configuration or when the default value  ({\it S/R INI\_LINEAR\_PHISURF}) according to the reference surface
83  (TRUE) of the parameter {\bf uniformLin\_PhiSurf} is used, then $b_s$  pressure $p_o$:
84  is simply set to $g$ for the ocean and $1.$ for the atmosphere.  $b_s = b_o(R_o) = c_p \kappa (p_o / P^o_{SL})^{(\kappa - 1)} \theta_{ref}(p_o)$.
85  Turning {\bf uniformLin\_PhiSurf} to "FALSE", tells the code to  with $P^o_{SL}$ the mean sea-level pressure.
 evaluate $b_s$ from the reference vertical profile $\theta_{ref}$  
 ({\it S/R INI\_LINEAR\_PHISURF}) according to the reference surface  
 pressure $P_o$ ($=R_o$): $b_s = c_p \kappa (P_o / Pc)^{(\kappa - 1)}  
 \theta_{ref}(P_o)$  
86    
87    
88  \subsubsection{Free surface effect on column total thickness  \subsubsection{Free surface effect on column total thickness
89  (Non-linear free surface)}  (Non-linear free-surface)}
90    
91  The total thickness of the fluid column is $r_{surf} - R_{fixed} =  The total thickness of the fluid column is $r_{surf} - R_{fixed} =
92  \eta + R_o - R_{fixed}$ In the linear free surface approximation  \eta + R_o - R_{fixed}$. In most applications, the free surface
93  (detailed before), only the fixed part of it ($R_o - R_{fixed})$ is  displacements are small compared to the total thickness
94  considered when we integrate the continuity equation or compute tracer  $\eta \ll H_o = R_o - R_{fixed}$.
95  and momentum advection term.  In the previous sections and in older version of the model,
96    the linearized free-surface approximation was made, assuming
97  This approximation is dropped when using the non-linear free surface  $r_{surf} - R_{fixed} \simeq H_o$ when computing horizontal transports,
98  formulation.  Here we discuss sections the barotropic part. In  either in the continuity equation or in tracer and momentum
99  sections \ref{sect:freesurf-tracer-advection} and  advection terms.
100  \ref{sect:freesurf-momentum-advection} we consider the baroclinic  This approximation is dropped when using the non-linear free-surface
101  component.  formulation and the total thickness, including the time varying part
102    $\eta$, is considered when computing horizontal transports.
103    Implications for the barotropic part are presented hereafter.
104  The continuous form of the model equations remains unchanged, except  In section \ref{sect:freesurf-tracer-advection} consequences for
105  for the 2D continuity equation (\ref{eq-tCsC-eta}) which is now  tracer conservation is briefly discussed (more details can be
106    found in \cite{campin:02})~; the general time-stepping is presented
107    in section \ref{sect:nonlin-freesurf-timestepping} with some
108    limitations regarding the vertical resolution in section
109    \ref{sect:nonlin-freesurf-dz_surf}.
110    
111    In the non-linear formulation, the continuous form of the model
112    equations remains unchanged, except for the 2D continuity equation
113    (\ref{eq:discrete-time-backward-free-surface}) which is now
114  integrated from $R_{fixed}(x,y)$ up to $r_{surf}=R_o+\eta$ :  integrated from $R_{fixed}(x,y)$ up to $r_{surf}=R_o+\eta$ :
115    
116  \begin{displaymath}  \begin{displaymath}
# Line 76  integrated from $R_{fixed}(x,y)$ up to $ Line 123  integrated from $R_{fixed}(x,y)$ up to $
123  Since $\eta$ has a direct effect on the horizontal velocity (through  Since $\eta$ has a direct effect on the horizontal velocity (through
124  $\nabla_h \Phi_{surf}$), this adds a non-linear term to the free  $\nabla_h \Phi_{surf}$), this adds a non-linear term to the free
125  surface equation. Several options for the time discretization of this  surface equation. Several options for the time discretization of this
126  non-linear part have been tested.  non-linear part can be considered, as detailed below.
127    
128  If the column thickness is evaluated at time step $n$, and with  If the column thickness is evaluated at time step $n$, and with
129  implicit treatment of the surface potential gradient, equations  implicit treatment of the surface potential gradient, equations
# Line 114  column thickness appears only in the int Line 161  column thickness appears only in the int
161  (\ref{eq-solve2D_rhs}) but not directly in the equation  (\ref{eq-solve2D_rhs}) but not directly in the equation
162  (\ref{eq-solve2D}).  (\ref{eq-solve2D}).
163    
164    Those different options (see Table \ref{tab:nonLinFreeSurf_flags})
165    have been tested and show little differences. However, we recommend
166    the use of the most precise method (the 1rst one) since the
167    computation cost involved in the solver matrix update is negligible.
168    
169    \begin{table}[htb]
170    %\begin{center}
171    \centering
172     \begin{tabular}[htb]{|l|c|l|}
173       \hline
174       parameter & value & description \\
175       \hline
176                       & -1 & linear free-surface, restart from a pickup file \\
177                       &    & produced with \#undef EXACT\_CONSERV code\\
178       \cline{2-3}
179                       & 0 & Linear free-surface \\
180       \cline{2-3}
181        nonlinFreeSurf & 4 & Non-linear free-surface \\
182       \cline{2-3}
183                       & 3 & same as 4 but neglecting
184                               $\int_{R_o}^{R_o+\eta} b' dr $ in $\Phi'_{hyd}$ \\
185       \cline{2-3}
186                       & 2 & same as 3 but do not update cg2d solver matrix \\
187       \cline{2-3}
188                      & 1 & same as 2 but treat momentum as in Linear FS \\
189       \hline
190                      & 0 & do not use $r*$ vertical coordinate (= default)\\
191       \cline{2-3}
192        select\_rStar & 2 & use $r^*$ vertical coordinate \\
193       \cline{2-3}
194                      & 1 & same as 2 but without the contribution of the\\
195                      &   & slope of the coordinate in $\nabla \Phi$ \\
196       \hline
197      \end{tabular}
198      \caption{Non-linear free-surface flags}
199      \label{tab:nonLinFreeSurf_flags}
200    %\end{center}
201    \end{table}
202    
203    
204  \subsubsection{Free surface effect on the surface level thickness  \subsubsection{Tracer conservation with non-linear free-surface}
 (Non-linear free surface): Tracer advection}  
205  \label{sect:freesurf-tracer-advection}  \label{sect:freesurf-tracer-advection}
206    
207  To ensure global tracer conservation (i.e., the total amount) as well  To ensure global tracer conservation (i.e., the total amount) as well
# Line 125  be consistent with the way the continuit Line 210  be consistent with the way the continuit
210  in the barotropic part (to find $\eta$) and baroclinic part (to find  in the barotropic part (to find $\eta$) and baroclinic part (to find
211  $w = \dot{r}$).  $w = \dot{r}$).
212    
213  To illustrate this, consider the shallow water model, with uniform  To illustrate this, consider the shallow water model, with a source
214  Cartesian horizontal grid:  of fresh water (P):
215  $$  $$
216  \partial_t h + \nabla \cdot h \vec{\bf v} = 0  \partial_t h + \nabla \cdot h \vec{\bf v} = P
217  $$  $$
218  where $h$ is the total thickness of the water column.  where $h$ is the total thickness of the water column.
219  To conserve the tracer $\theta$ we have to discretize:  To conserve the tracer $\theta$ we have to discretize:
220  $$  $$
221  \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})= 0  \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})
222      = P \theta_{\mathrm{rain}}
223  $$  $$
224  Using the implicit (non-linear) free surface described above (section  Using the implicit (non-linear) free surface described above (section
225  \ref{sect:??}, we have:  \ref{sect:pressure-method-linear-backward}) we have:
226  \begin{eqnarray*}  \begin{eqnarray*}
227  h^{n+1} = h^{n} - \Delta_t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) \\  h^{n+1} = h^{n} - \Delta t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) + \Delta t P \\
228  \end{eqnarray*}  \end{eqnarray*}
229  The discretized form of the tracer equation must adopt the same  The discretized form of the tracer equation must adopt the same
230  ``form'' in the computation of tracer fluxes, that is, the same value  ``form'' in the computation of tracer fluxes, that is, the same value
231  of $h$, as used in the continuity equation:  of $h$, as used in the continuity equation:
232  \begin{eqnarray*}  \begin{eqnarray*}
233  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n  h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
234          - \Delta_t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})          - \Delta t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
235            + \Delta t P \theta_{rain}
236  \end{eqnarray*}  \end{eqnarray*}
237    
238  For Adams-Bashforth time-stepping, we implement this scheme slightly  The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth
239  differently from the linear free-surface method, using two steps: the  make the conservation sightly tricky.
240  variation of the water column thickness (from $h^n$ to $h^{n+1}$) is  The current implementation with the Adams-Bashforth time-stepping
241    provides an exact local conservation and prevents any drift in
242    the global tracer content (\cite{campin:02}).
243    Compared to the linear free-surface method, an additional step is required:
244    the variation of the water column thickness (from $h^n$ to $h^{n+1}$) is
245  not incorporated directly into the tracer equation.  Instead, the  not incorporated directly into the tracer equation.  Instead, the
246  model uses the $G_\theta$ terms (first step) as in the linear free  model uses the $G_\theta$ terms (first step) as in the linear free
247  surface formulation (with the "{\it surface correction}" turned "on",  surface formulation (with the "{\it surface correction}" turned "on",
# Line 162  $$ Line 253  $$
253  Then, in a second step, the thickness variation (expansion/reduction)  Then, in a second step, the thickness variation (expansion/reduction)
254  is taken into account:  is taken into account:
255  $$  $$
256  \theta^{n+1} = \theta^n + \Delta_t \frac{h^n}{h^{n+1}} G_\theta^{(n+1/2)}  \theta^{n+1} = \theta^n + \Delta t \frac{h^n}{h^{n+1}}
257       \left( G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n )/h^n \right)
258    %\theta^{n+1} = \theta^n + \frac{\Delta t}{h^{n+1}}
259    %   \left( h^n G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n ) \right)
260  $$  $$
261  Note that with a simple forward time step (no Adams-Bashforth),  Note that with a simple forward time step (no Adams-Bashforth),
262    these two formulations are equivalent,  
263  since  since
264  $  $
265  \dot{r}_{surf}^{n+1}  (h^{n+1} - h^{n})/ \Delta t =
266  = - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = (h^{n+1} - h^{n})  P - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = P + \dot{r}_{surf}^{n+1}
 / \Delta_t  
267  $  $
 these two formulations are equivalent.  
268    
269  Implementation in the MITgcm is as follows.  The model ``geometry''  \subsubsection{Time stepping implementation of the
270    non-linear free-surface}    
271    \label{sect:nonlin-freesurf-timestepping}
272    
273    The grid cell thickness was hold constant with the linear
274    free-surface~; with the non-linear free-surface, it is now varying
275    in time, at least at the surface level.
276    This implies some modifications of the general algorithm described
277    earlier in sections \ref{sect:adams-bashforth-sync} and
278    \ref{sect:adams-bashforth-staggered}.
279    
280    A simplified version of the staggered in time, non-linear
281    free-surface algorithm is detailed hereafter, and can be compared
282    to the equivalent linear free-surface case (eq. \ref{eq:Gv-n-staggered}
283    to \ref{eq:t-n+1-staggered}) and can also be easily transposed
284    to the synchronous time-stepping case.
285    Among the simplifications, salinity equation, implicit operator
286    and detailed elliptic equation are omitted. Surface forcing is
287    explicitly written as fluxes of temperature, fresh water and
288    momentum, $Q^{n+1/2}, P^{n+1/2}, F_{\bf v}^n$ respectively.
289    $h^n$ and $dh^n$ are the column and grid box thickness in r-coordinate.
290    %-------------------------------------------------------------
291    \begin{eqnarray}
292    \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n},r) dr
293    \label{eq:phi-hyd-nlfs} \\
294    \vec{\bf G}_{\vec{\bf v}}^{n-1/2}\hspace{-2mm} & = &
295    \vec{\bf G}_{\vec{\bf v}} (dh^{n-1},\vec{\bf v}^{n-1/2})
296    \hspace{+2mm};\hspace{+2mm}
297    \vec{\bf G}_{\vec{\bf v}}^{(n)} =  
298       \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
299    -  \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
300    \label{eq:Gv-n-nlfs} \\
301    %\vec{\bf G}_{\vec{\bf v}}^{(n)} & = &
302    %   \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
303    %-  \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
304    %\label{eq:Gv-n+5-nlfs} \\
305    %\vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \frac{\Delta t}{dh^{n}} \left(
306    %dh^{n-1}\vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n} \right)
307    \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \frac{dh^{n-1}}{dh^{n}} \left(
308    \vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n}/dh^{n-1} \right)
309    - \Delta t \nabla \phi_{hyd}^{n}
310    \label{eq:vstar-nlfs} \\
311      \mathrm{update}\hspace{-4mm} & & \hspace{-4mm}\mathrm{
312      model~geometry~:~{\bf hFac}}(dh^n)\nonumber \\
313    \eta^{n+1/2} \hspace{-2mm} & = &
314    \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
315      \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n} \nonumber \\
316                 & = & \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
317      \nabla \cdot \int \!\!\! \left( \vec{\bf v}^* - g \Delta t \nabla \eta^{n+1/2} \right) dh^{n}
318    \label{eq:nstar-nlfs} \\
319    \vec{\bf v}^{n+1/2}\hspace{-2mm} & = &
320    \vec{\bf v}^{*} - g \Delta t \nabla \eta^{n+1/2}
321    \label{eq:v-n+1-nlfs} \\
322    h^{n+1} & = & h^{n} + \Delta t P^{n+1/2} - \Delta t
323      \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n}
324    \label{eq:h-n+1-nlfs} \\
325    G_{\theta}^{n} & = & G_{\theta} ( dh^{n}, u^{n+1/2}, \theta^{n} )
326    \hspace{+2mm};\hspace{+2mm}
327    G_{\theta}^{(n+1/2)} = \frac{3}{2} G_{\theta}^{n} - \frac{1}{2} G_{\theta}^{n-1}
328    \label{eq:Gt-n-nlfs} \\
329    %\theta^{n+1} & = &\theta^{n} + \frac{\Delta t}{dh^{n+1}} \left( dh^n
330    %G_{\theta}^{(n+1/2)} + Q^{n+1/2} + P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) \right)
331    \theta^{n+1} & = &\theta^{n} + \Delta t \frac{dh^n}{dh^{n+1}} \left(
332    G_{\theta}^{(n+1/2)}
333    +( P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) + Q^{n+1/2})/dh^n \right)
334    \nonumber \\
335    & & \label{eq:t-n+1-nlfs}
336    \end{eqnarray}
337    %-------------------------------------------------------------
338    Two steps have been added to linear free-surface algorithm
339    (eq. \ref{eq:Gv-n-staggered} to \ref{eq:t-n+1-staggered}):
340    Firstly, the model ``geometry''
341  (here the {\bf hFacC,W,S}) is updated just before entering {\it  (here the {\bf hFacC,W,S}) is updated just before entering {\it
342  SOLVE\_FOR\_PRESSURE}, using the current $\eta$ field.  Then, at the  SOLVE\_FOR\_PRESSURE}, using the current $dh^{n}$ field.
343  end of the time step, the variables are advanced in time, so that  Secondly, the vertically integrated continuity equation
344  $\eta^n$ replaces $\eta^{n-1}$.  At the next time step, the tracer  (eq.\ref{eq:h-n+1-nlfs}) has been added ({\bf exactConserv}{\em =TRUE},
345  tendency ($G_\theta$) is computed using the same geometry, which is  in parameter file {\em data}, namelist {\em PARM01})
346  now consistent with $\eta^{n-1}$.  Finally, in S/R {\it  just before computing the vertical velocity, in subroutine
347  TIMESTEP\_TRACER}, the expansion/reduction ratio is applied to the  {\em INTEGR\_CONTINUITY}. This ensures that tracer and continuity equation
348  surface level to compute the new tracer field.  discretization  a Although this equation might appear
349    redundant with eq.\ref{eq:nstar-nlfs}, the integrated column
350    thickness $h^{n+1}$ can be different from $\eta^{n+1/2} + H$~:
351  \subsubsection{Free surface effect on the surface level thickness  \begin{itemize}
352  (Non-linear free surface): Momentum advection}      \item when Crank-Nickelson time-stepping is used (see section
353  \label{sect:freesurf-momentum-advection}  \ref{sect:freesurf-CrankNick}).
354    \item when filters are applied to the flow field, after
355  Regarding momentum advection,  (\ref{eq:v-n+1-nlfs}) and alter the divergence of the flow.
356  the vector invariant formulation is similar to the  \item when the solver does not iterate until convergence~;
357  advective form (as opposed to the flux form) and therefore   for example, because a too large residual target was set
358  does not need specific modification to include the   ({\bf cg2dTargetResidual}, parameter file {\em data}, namelist
359  free surface effect on the surface level thickness.   {\em PARM02}).
360  Updating the {\bf hFacC,W,S} and the {\bf recip\_hFac}(s)  \end{itemize}\noindent
361  at one given place (like describe before) is sufficient.  In this staggered time-stepping algorithm, the momentum tendencies
362    are computed using $dh^{n-1}$ geometry factors.
363  With the flux form formulation, advection of momentum  (eq.\ref{eq:Gv-n-nlfs}) and then rescaled in subroutine {\it TIMESTEP},
364  can be treated exactly as the tracer advection is.  (eq.\ref{eq:vstar-nlfs}), similarly to tracer tendencies (see section
365  Here the expansion/reduction factors ($hFacW^{n+1}/hFacW^n$ for $u$  \ref{sect:freesurf-tracer-advection}).
366  and $hFacS^{n+1}/hFacS^n$ for $v$) are simply applied in the  The tracers are stepped forward later, using the recently updated
367  subroutine {\it TIMESTEP}.  flow field ${\bf v}^{n+1/2}$ and the corresponding model geometry
368    $dh^{n}$ to compute the tendencies (eq.\ref{eq:Gt-n-nlfs});
369    Then the tendencies are rescaled by $dh^n/dh^{n+1}$ to derive
370    the new tracers values $(\theta,S)^{n+1}$ (eq.\ref{eq:t-n+1-nlfs},
371    in subroutine {\em CALC\_GT, CALC\_GS}).
372    
373    Note that the fresh-water input is added in a consistent way in the
374    continuity equation and in the tracer equation, taking into account
375    the fresh-water temperature $\theta_{\mathrm{rain}}$.
376    
377    Regarding the restart procedure,
378    two 2.D fields $h^{n-1}$ and $(h^n-h^{n-1})/\Delta t$
379    in addition to the standard
380    state variables and tendencies ($\eta^{n-1/2}$, ${\bf v}^{n-1/2}$,
381    $\theta^n$, $S^n$, ${\bf G}_{\bf v}^{n-3/2}$, $G_{\theta,S}^{n-1}$)
382    are stored in a "{\em pickup}" file.
383    The model restarts reading this "{\em pickup}" file,
384    then update the model geometry according to $h^{n-1}$,
385    and compute $h^n$ and the vertical velocity
386    %$h^n=h^{n-1} + \Delta t [(h^n-h^{n-1})/\Delta t]$,
387    before starting the main calling sequence (eq.\ref{eq:phi-hyd-nlfs}
388    to \ref{eq:t-n+1-nlfs}, {\em S/R FORWARD\_STEP}).
389    \\
390    
391    \fbox{ \begin{minipage}{4.75in}
392    {\em INTEGR\_CONTINUITY} ({\em integr\_continuity.F})
393    
394    $h^{n+1} -H_o$: {\bf etaH} ({\em DYNVARS.h})
395    
396    $h^{n} -H_o$: {\bf etaHnm1} ({\em SURFACE.h})
397    
398    $h^{n+1}-h^{n}/\Delta t$: {\bf dEtaHdt} ({\em SURFACE.h})
399    
400    \end{minipage} }
401    
402    \subsubsection{Non-linear free-surface and vertical resolution}
403    \label{sect:nonlin-freesurf-dz_surf}
404    
405    When the amplitude of the free-surface variations becomes
406    as large as the vertical resolution near the surface,
407    the surface layer thickness can decrease to nearly zero or
408    can even vanish completely.
409    This later possibility has not been implemented, and a
410    minimum relative thickness is imposed ({\bf hFacInf},
411    parameter file {\em data}, namelist {\em PARM01}) to prevent
412    numerical instabilities caused by very thin surface level.
413    
414    A better alternative to the vanishing level problem has been
415    found and implemented recently, and rely on a different
416    vertical coordinate $r^*$~:
417    The time variation ot the total column thickness becomes
418    part of the r* coordinate motion, as in a $\sigma_{z},\sigma_{p}$
419    model, but the fixed part related to topography is treated
420    as in a height or pressure coordinate model.
421    A complete description is given in \cite{adcroft:04a}.
422    
423    The time-stepping implementation of the $r^*$ coordinate is
424    identical to the non-linear free-surface in $r$ coordinate,
425    and differences appear only in the spacial discretization.
426    \marginpar{needs a subsection ref. here}
427    

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.10

  ViewVC Help
Powered by ViewVC 1.1.22