/[MITgcm]/manual/s_algorithm/text/nonlin_frsurf.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/nonlin_frsurf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.13 - (hide annotations) (download) (as text)
Tue Jun 27 22:31:23 2006 UTC (19 years ago) by edhill
Branch: MAIN
Changes since 1.12: +10 -8 lines
File MIME type: application/x-tex
*** empty log message ***

1 edhill 1.13 % $Header: /u/gcmpack/manual/part2/nonlin_frsurf.tex,v 1.12 2006/04/04 20:19:00 jmc Exp $
2 jmc 1.1 % $Name: $
3    
4 adcroft 1.4
5 jmc 1.1
6 jmc 1.9 \subsection{Non-linear free-surface}
7 adcroft 1.6 \label{sect:nonlinear-freesurface}
8 jmc 1.1
9 jmc 1.8 Recently, new options have been added to the model
10     that concern the free surface formulation.
11 adcroft 1.4
12 jmc 1.1
13 jmc 1.9 \subsubsection{pressure/geo-potential and free surface}
14 jmc 1.11 \label{sect:phi-freesurface}
15 jmc 1.1
16 jmc 1.9 For the atmosphere, since $\phi = \phi_{topo} - \int^p_{p_s} \alpha dp$,
17     subtracting the reference state defined in section
18     \ref{sec:hpe-p-geo-potential-split}~:\\
19     $$
20     \phi_o = \phi_{topo} - \int^p_{p_o} \alpha_o dp
21     \hspace{5mm}\mathrm{with}\hspace{3mm} \phi_o(p_o)=\phi_{topo}
22     $$
23     we get:
24     $$
25     \phi' = \phi - \phi_o = \int^{p_s}_p \alpha dp - \int^{p_o}_p \alpha_o dp
26     $$
27     For the ocean, the reference state is simpler since $\rho_c$ does not dependent
28     on $z$ ($b_o=g$) and the surface reference position is uniformly $z=0$ ($R_o=0$),
29     and the same subtraction leads to a similar relation.
30     For both fluid, using the isomorphic notations, we can write:
31     $$
32     \phi' = \int^{r_{surf}}_r b~ dr - \int^{R_o}_r b_o dr
33     $$
34 edhill 1.13 and re-write as:
35     \begin{equation}
36     \phi' = \int^{r_{surf}}_{R_o} b~ dr + \int^{R_o}_r (b - b_o) dr
37     \label{eq:split-phi-Ro}
38     \end{equation}
39     or:
40     \begin{equation}
41     \phi' = \int^{r_{surf}}_{R_o} b_o dr + \int^{r_{surf}}_r (b - b_o) dr
42 jmc 1.9 \label{eq:split-phi-bo}
43 edhill 1.13 \end{equation}
44 jmc 1.9
45     In section \ref{sec:finding_the_pressure_field}, following eq.\ref{eq:split-phi-Ro},
46     the pressure/geo-potential $\phi'$ has been separated into surface ($\phi_s$),
47     and hydrostatic anomaly ($\phi'_{hyd}$).
48     In this section, the split between $\phi_s$ and $\phi'_{hyd}$ is
49     made according to equation \ref{eq:split-phi-bo}. This slightly
50     different definition reflects the actual implementation in the code
51     and is valid for both linear and non-linear
52     free-surface formulation, in both r-coordinate and r*-coordinate.
53    
54     Because the linear free-surface approximation ignore the tracer content
55     of the fluid parcel between $R_o$ and $r_{surf}=R_o+\eta$,
56     for consistency reasons, this part is also neglected in $\phi'_{hyd}$~:
57     $$
58     \phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr \simeq \int^{R_o}_r (b - b_o) dr
59     $$
60     Note that in this case, the two definitions of $\phi_s$ and $\phi'_{hyd}$
61     from equation \ref{eq:split-phi-Ro} and \ref{eq:split-phi-bo} converge toward
62     the same (approximated) expressions: $\phi_s = \int^{r_{surf}}_{R_o} b_o dr$
63     and $\phi'_{hyd}=\int^{R_o}_r b' dr$.\\
64     On the contrary, the unapproximated formulation ("non-linear free-surface",
65     see the next section) retains the full expression:
66     $\phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr $~.
67     This is obtained by selecting {\bf nonlinFreeSurf}=4 in parameter
68     file {\em data}.\\
69    
70     Regarding the surface potential:
71     $$\phi_s = \int_{R_o}^{R_o+\eta} b_o dr = b_s \eta
72     \hspace{5mm}\mathrm{with}\hspace{5mm}
73     b_s = \frac{1}{\eta} \int_{R_o}^{R_o+\eta} b_o dr $$
74     $b_s \simeq b_o(R_o)$ is an excellent approximation (better than
75     the usual numerical truncation, since generally $|\eta|$ is smaller
76     than the vertical grid increment).
77 adcroft 1.4
78 jmc 1.9 For the ocean, $\phi_s = g \eta$ and $b_s = g$ is uniform.
79 adcroft 1.4 For the atmosphere, however, because of topographic effects, the
80 jmc 1.9 reference surface pressure $R_o=p_o$ has large spatial variations that
81 adcroft 1.4 are responsible for significant $b_s$ variations (from 0.8 to 1.2
82 jmc 1.9 $[m^3/kg]$). For this reason, when {\bf uniformLin\_PhiSurf} {\em=.FALSE.}
83     (parameter file {\em data}, namelist {\em PARAM01})
84     a non-uniform linear coefficient $b_s$ is used and computed
85     ({\it S/R INI\_LINEAR\_PHISURF}) according to the reference surface
86     pressure $p_o$:
87     $b_s = b_o(R_o) = c_p \kappa (p_o / P^o_{SL})^{(\kappa - 1)} \theta_{ref}(p_o)$.
88     with $P^o_{SL}$ the mean sea-level pressure.
89 adcroft 1.4
90 jmc 1.1
91     \subsubsection{Free surface effect on column total thickness
92 jmc 1.9 (Non-linear free-surface)}
93 jmc 1.1
94 adcroft 1.4 The total thickness of the fluid column is $r_{surf} - R_{fixed} =
95 jmc 1.8 \eta + R_o - R_{fixed}$. In most applications, the free surface
96     displacements are small compared to the total thickness
97 jmc 1.9 $\eta \ll H_o = R_o - R_{fixed}$.
98 jmc 1.8 In the previous sections and in older version of the model,
99     the linearized free-surface approximation was made, assuming
100 jmc 1.9 $r_{surf} - R_{fixed} \simeq H_o$ when computing horizontal transports,
101     either in the continuity equation or in tracer and momentum
102 jmc 1.8 advection terms.
103 jmc 1.9 This approximation is dropped when using the non-linear free-surface
104 jmc 1.8 formulation and the total thickness, including the time varying part
105 jmc 1.9 $\eta$, is considered when computing horizontal transports.
106 jmc 1.8 Implications for the barotropic part are presented hereafter.
107 jmc 1.9 In section \ref{sect:freesurf-tracer-advection} consequences for
108     tracer conservation is briefly discussed (more details can be
109     found in \cite{campin:02})~; the general time-stepping is presented
110     in section \ref{sect:nonlin-freesurf-timestepping} with some
111     limitations regarding the vertical resolution in section
112     \ref{sect:nonlin-freesurf-dz_surf}.
113 adcroft 1.4
114 jmc 1.9 In the non-linear formulation, the continuous form of the model
115     equations remains unchanged, except for the 2D continuity equation
116 jmc 1.8 (\ref{eq:discrete-time-backward-free-surface}) which is now
117 adcroft 1.4 integrated from $R_{fixed}(x,y)$ up to $r_{surf}=R_o+\eta$ :
118 jmc 1.1
119     \begin{displaymath}
120     \epsilon_{fs} \partial_t \eta =
121     \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
122 jmc 1.3 - {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta} \vec{\bf v} dr
123 jmc 1.1 + \epsilon_{fw} (P-E)
124     \end{displaymath}
125    
126 adcroft 1.4 Since $\eta$ has a direct effect on the horizontal velocity (through
127     $\nabla_h \Phi_{surf}$), this adds a non-linear term to the free
128     surface equation. Several options for the time discretization of this
129 jmc 1.8 non-linear part can be considered, as detailed below.
130 adcroft 1.4
131     If the column thickness is evaluated at time step $n$, and with
132     implicit treatment of the surface potential gradient, equations
133     (\ref{eq-solve2D} and \ref{eq-solve2D_rhs}) becomes:
134 jmc 1.1 \begin{eqnarray*}
135     \epsilon_{fs} {\eta}^{n+1} -
136 jmc 1.3 {\bf \nabla}_h \cdot \Delta t^2 (\eta^{n}+R_o-R_{fixed})
137 jmc 1.2 {\bf \nabla}_h b_s {\eta}^{n+1}
138 jmc 1.1 = {\eta}^*
139     \end{eqnarray*}
140     where
141     \begin{eqnarray*}
142     {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
143 jmc 1.3 \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta^n} \vec{\bf v}^* dr
144 jmc 1.1 \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
145     \end{eqnarray*}
146 adcroft 1.4 This method requires us to update the solver matrix at each time step.
147 jmc 1.1
148     Alternatively, the non-linear contribution can be evaluated fully
149     explicitly:
150     \begin{eqnarray*}
151     \epsilon_{fs} {\eta}^{n+1} -
152 jmc 1.3 {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})
153 jmc 1.2 {\bf \nabla}_h b_s {\eta}^{n+1}
154 jmc 1.1 = {\eta}^*
155 jmc 1.2 +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})
156     {\bf \nabla}_h b_s {\eta}^{n}
157 jmc 1.1 \end{eqnarray*}
158 adcroft 1.4 This formulation allows one to keep the initial solver matrix
159     unchanged though throughout the integration, since the non-linear free
160     surface only affects the RHS.
161    
162     Finally, another option is a "linearized" formulation where the total
163     column thickness appears only in the integral term of the RHS
164     (\ref{eq-solve2D_rhs}) but not directly in the equation
165     (\ref{eq-solve2D}).
166 jmc 1.1
167 jmc 1.9 Those different options (see Table \ref{tab:nonLinFreeSurf_flags})
168     have been tested and show little differences. However, we recommend
169 jmc 1.8 the use of the most precise method (the 1rst one) since the
170 jmc 1.9 computation cost involved in the solver matrix update is negligible.
171 jmc 1.8
172 jmc 1.9 \begin{table}[htb]
173     %\begin{center}
174     \centering
175 jmc 1.8 \begin{tabular}[htb]{|l|c|l|}
176     \hline
177     parameter & value & description \\
178     \hline
179     & -1 & linear free-surface, restart from a pickup file \\
180     & & produced with \#undef EXACT\_CONSERV code\\
181     \cline{2-3}
182 jmc 1.9 & 0 & Linear free-surface \\
183 jmc 1.8 \cline{2-3}
184     nonlinFreeSurf & 4 & Non-linear free-surface \\
185     \cline{2-3}
186     & 3 & same as 4 but neglecting
187     $\int_{R_o}^{R_o+\eta} b' dr $ in $\Phi'_{hyd}$ \\
188     \cline{2-3}
189     & 2 & same as 3 but do not update cg2d solver matrix \\
190     \cline{2-3}
191     & 1 & same as 2 but treat momentum as in Linear FS \\
192     \hline
193     & 0 & do not use $r*$ vertical coordinate (= default)\\
194     \cline{2-3}
195     select\_rStar & 2 & use $r^*$ vertical coordinate \\
196     \cline{2-3}
197     & 1 & same as 2 but without the contribution of the\\
198     & & slope of the coordinate in $\nabla \Phi$ \\
199     \hline
200     \end{tabular}
201 jmc 1.9 \caption{Non-linear free-surface flags}
202     \label{tab:nonLinFreeSurf_flags}
203     %\end{center}
204     \end{table}
205 jmc 1.8
206 jmc 1.1
207 jmc 1.9 \subsubsection{Tracer conservation with non-linear free-surface}
208 adcroft 1.4 \label{sect:freesurf-tracer-advection}
209 jmc 1.1
210 adcroft 1.4 To ensure global tracer conservation (i.e., the total amount) as well
211     as local conservation, the change in the surface level thickness must
212     be consistent with the way the continuity equation is integrated, both
213     in the barotropic part (to find $\eta$) and baroclinic part (to find
214     $w = \dot{r}$).
215 jmc 1.1
216 jmc 1.9 To illustrate this, consider the shallow water model, with a source
217     of fresh water (P):
218 jmc 1.1 $$
219 jmc 1.9 \partial_t h + \nabla \cdot h \vec{\bf v} = P
220 jmc 1.1 $$
221     where $h$ is the total thickness of the water column.
222     To conserve the tracer $\theta$ we have to discretize:
223     $$
224 jmc 1.9 \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})
225     = P \theta_{\mathrm{rain}}
226 jmc 1.1 $$
227 adcroft 1.4 Using the implicit (non-linear) free surface described above (section
228 adcroft 1.6 \ref{sect:pressure-method-linear-backward}) we have:
229 jmc 1.1 \begin{eqnarray*}
230 jmc 1.9 h^{n+1} = h^{n} - \Delta t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) + \Delta t P \\
231 jmc 1.1 \end{eqnarray*}
232 adcroft 1.4 The discretized form of the tracer equation must adopt the same
233     ``form'' in the computation of tracer fluxes, that is, the same value
234     of $h$, as used in the continuity equation:
235 jmc 1.1 \begin{eqnarray*}
236     h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
237 jmc 1.9 - \Delta t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
238     + \Delta t P \theta_{rain}
239 jmc 1.1 \end{eqnarray*}
240    
241 jmc 1.9 The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth
242     make the conservation sightly tricky.
243 jmc 1.8 The current implementation with the Adams-Bashforth time-stepping
244     provides an exact local conservation and prevents any drift in
245     the global tracer content (\cite{campin:02}).
246     Compared to the linear free-surface method, an additional step is required:
247     the variation of the water column thickness (from $h^n$ to $h^{n+1}$) is
248 adcroft 1.4 not incorporated directly into the tracer equation. Instead, the
249     model uses the $G_\theta$ terms (first step) as in the linear free
250     surface formulation (with the "{\it surface correction}" turned "on",
251     see tracer section):
252 jmc 1.1 $$
253 jmc 1.2 G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
254     - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n
255 jmc 1.1 $$
256 adcroft 1.4 Then, in a second step, the thickness variation (expansion/reduction)
257     is taken into account:
258 jmc 1.1 $$
259 jmc 1.9 \theta^{n+1} = \theta^n + \Delta t \frac{h^n}{h^{n+1}}
260     \left( G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n )/h^n \right)
261     %\theta^{n+1} = \theta^n + \frac{\Delta t}{h^{n+1}}
262     % \left( h^n G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n ) \right)
263 jmc 1.1 $$
264     Note that with a simple forward time step (no Adams-Bashforth),
265 jmc 1.9 these two formulations are equivalent,
266 jmc 1.1 since
267     $
268 jmc 1.9 (h^{n+1} - h^{n})/ \Delta t =
269     P - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = P + \dot{r}_{surf}^{n+1}
270 jmc 1.1 $
271 adcroft 1.4
272 jmc 1.9 \subsubsection{Time stepping implementation of the
273     non-linear free-surface}
274     \label{sect:nonlin-freesurf-timestepping}
275    
276     The grid cell thickness was hold constant with the linear
277     free-surface~; with the non-linear free-surface, it is now varying
278     in time, at least at the surface level.
279     This implies some modifications of the general algorithm described
280     earlier in sections \ref{sect:adams-bashforth-sync} and
281     \ref{sect:adams-bashforth-staggered}.
282    
283     A simplified version of the staggered in time, non-linear
284     free-surface algorithm is detailed hereafter, and can be compared
285     to the equivalent linear free-surface case (eq. \ref{eq:Gv-n-staggered}
286     to \ref{eq:t-n+1-staggered}) and can also be easily transposed
287     to the synchronous time-stepping case.
288     Among the simplifications, salinity equation, implicit operator
289     and detailed elliptic equation are omitted. Surface forcing is
290     explicitly written as fluxes of temperature, fresh water and
291     momentum, $Q^{n+1/2}, P^{n+1/2}, F_{\bf v}^n$ respectively.
292     $h^n$ and $dh^n$ are the column and grid box thickness in r-coordinate.
293     %-------------------------------------------------------------
294     \begin{eqnarray}
295     \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n},r) dr
296     \label{eq:phi-hyd-nlfs} \\
297     \vec{\bf G}_{\vec{\bf v}}^{n-1/2}\hspace{-2mm} & = &
298     \vec{\bf G}_{\vec{\bf v}} (dh^{n-1},\vec{\bf v}^{n-1/2})
299     \hspace{+2mm};\hspace{+2mm}
300     \vec{\bf G}_{\vec{\bf v}}^{(n)} =
301     \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
302     - \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
303     \label{eq:Gv-n-nlfs} \\
304     %\vec{\bf G}_{\vec{\bf v}}^{(n)} & = &
305     % \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
306     %- \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
307     %\label{eq:Gv-n+5-nlfs} \\
308     %\vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \frac{\Delta t}{dh^{n}} \left(
309     %dh^{n-1}\vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n} \right)
310     \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \frac{dh^{n-1}}{dh^{n}} \left(
311     \vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n}/dh^{n-1} \right)
312     - \Delta t \nabla \phi_{hyd}^{n}
313 jmc 1.12 \label{eq:vstar-nlfs}
314     \end{eqnarray}
315     \hspace{3cm}$\longrightarrow$~~{\it update model~geometry~:~}${\bf hFac}(dh^n)$\\
316     \begin{eqnarray}
317 jmc 1.9 \eta^{n+1/2} \hspace{-2mm} & = &
318     \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
319     \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n} \nonumber \\
320     & = & \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
321     \nabla \cdot \int \!\!\! \left( \vec{\bf v}^* - g \Delta t \nabla \eta^{n+1/2} \right) dh^{n}
322     \label{eq:nstar-nlfs} \\
323     \vec{\bf v}^{n+1/2}\hspace{-2mm} & = &
324     \vec{\bf v}^{*} - g \Delta t \nabla \eta^{n+1/2}
325     \label{eq:v-n+1-nlfs} \\
326     h^{n+1} & = & h^{n} + \Delta t P^{n+1/2} - \Delta t
327     \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n}
328     \label{eq:h-n+1-nlfs} \\
329     G_{\theta}^{n} & = & G_{\theta} ( dh^{n}, u^{n+1/2}, \theta^{n} )
330     \hspace{+2mm};\hspace{+2mm}
331     G_{\theta}^{(n+1/2)} = \frac{3}{2} G_{\theta}^{n} - \frac{1}{2} G_{\theta}^{n-1}
332     \label{eq:Gt-n-nlfs} \\
333     %\theta^{n+1} & = &\theta^{n} + \frac{\Delta t}{dh^{n+1}} \left( dh^n
334     %G_{\theta}^{(n+1/2)} + Q^{n+1/2} + P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) \right)
335     \theta^{n+1} & = &\theta^{n} + \Delta t \frac{dh^n}{dh^{n+1}} \left(
336     G_{\theta}^{(n+1/2)}
337     +( P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) + Q^{n+1/2})/dh^n \right)
338     \nonumber \\
339     & & \label{eq:t-n+1-nlfs}
340     \end{eqnarray}
341     %-------------------------------------------------------------
342     Two steps have been added to linear free-surface algorithm
343     (eq. \ref{eq:Gv-n-staggered} to \ref{eq:t-n+1-staggered}):
344     Firstly, the model ``geometry''
345 adcroft 1.4 (here the {\bf hFacC,W,S}) is updated just before entering {\it
346 jmc 1.9 SOLVE\_FOR\_PRESSURE}, using the current $dh^{n}$ field.
347     Secondly, the vertically integrated continuity equation
348     (eq.\ref{eq:h-n+1-nlfs}) has been added ({\bf exactConserv}{\em =TRUE},
349     in parameter file {\em data}, namelist {\em PARM01})
350     just before computing the vertical velocity, in subroutine
351     {\em INTEGR\_CONTINUITY}. This ensures that tracer and continuity equation
352     discretization a Although this equation might appear
353     redundant with eq.\ref{eq:nstar-nlfs}, the integrated column
354     thickness $h^{n+1}$ can be different from $\eta^{n+1/2} + H$~:
355     \begin{itemize}
356     \item when Crank-Nickelson time-stepping is used (see section
357     \ref{sect:freesurf-CrankNick}).
358     \item when filters are applied to the flow field, after
359     (\ref{eq:v-n+1-nlfs}) and alter the divergence of the flow.
360     \item when the solver does not iterate until convergence~;
361     for example, because a too large residual target was set
362     ({\bf cg2dTargetResidual}, parameter file {\em data}, namelist
363     {\em PARM02}).
364     \end{itemize}\noindent
365     In this staggered time-stepping algorithm, the momentum tendencies
366     are computed using $dh^{n-1}$ geometry factors.
367     (eq.\ref{eq:Gv-n-nlfs}) and then rescaled in subroutine {\it TIMESTEP},
368     (eq.\ref{eq:vstar-nlfs}), similarly to tracer tendencies (see section
369     \ref{sect:freesurf-tracer-advection}).
370     The tracers are stepped forward later, using the recently updated
371     flow field ${\bf v}^{n+1/2}$ and the corresponding model geometry
372     $dh^{n}$ to compute the tendencies (eq.\ref{eq:Gt-n-nlfs});
373     Then the tendencies are rescaled by $dh^n/dh^{n+1}$ to derive
374     the new tracers values $(\theta,S)^{n+1}$ (eq.\ref{eq:t-n+1-nlfs},
375     in subroutine {\em CALC\_GT, CALC\_GS}).
376    
377     Note that the fresh-water input is added in a consistent way in the
378     continuity equation and in the tracer equation, taking into account
379     the fresh-water temperature $\theta_{\mathrm{rain}}$.
380    
381     Regarding the restart procedure,
382     two 2.D fields $h^{n-1}$ and $(h^n-h^{n-1})/\Delta t$
383     in addition to the standard
384     state variables and tendencies ($\eta^{n-1/2}$, ${\bf v}^{n-1/2}$,
385     $\theta^n$, $S^n$, ${\bf G}_{\bf v}^{n-3/2}$, $G_{\theta,S}^{n-1}$)
386     are stored in a "{\em pickup}" file.
387     The model restarts reading this "{\em pickup}" file,
388     then update the model geometry according to $h^{n-1}$,
389     and compute $h^n$ and the vertical velocity
390     %$h^n=h^{n-1} + \Delta t [(h^n-h^{n-1})/\Delta t]$,
391     before starting the main calling sequence (eq.\ref{eq:phi-hyd-nlfs}
392     to \ref{eq:t-n+1-nlfs}, {\em S/R FORWARD\_STEP}).
393     \\
394    
395     \fbox{ \begin{minipage}{4.75in}
396     {\em INTEGR\_CONTINUITY} ({\em integr\_continuity.F})
397    
398     $h^{n+1} -H_o$: {\bf etaH} ({\em DYNVARS.h})
399    
400     $h^{n} -H_o$: {\bf etaHnm1} ({\em SURFACE.h})
401    
402     $h^{n+1}-h^{n}/\Delta t$: {\bf dEtaHdt} ({\em SURFACE.h})
403    
404     \end{minipage} }
405 jmc 1.1
406 jmc 1.9 \subsubsection{Non-linear free-surface and vertical resolution}
407 jmc 1.8 \label{sect:nonlin-freesurf-dz_surf}
408    
409     When the amplitude of the free-surface variations becomes
410     as large as the vertical resolution near the surface,
411     the surface layer thickness can decrease to nearly zero or
412 jmc 1.9 can even vanish completely.
413 jmc 1.8 This later possibility has not been implemented, and a
414     minimum relative thickness is imposed ({\bf hFacInf},
415     parameter file {\em data}, namelist {\em PARM01}) to prevent
416     numerical instabilities caused by very thin surface level.
417    
418 jmc 1.9 A better alternative to the vanishing level problem has been
419 jmc 1.8 found and implemented recently, and rely on a different
420     vertical coordinate $r^*$~:
421     The time variation ot the total column thickness becomes
422     part of the r* coordinate motion, as in a $\sigma_{z},\sigma_{p}$
423     model, but the fixed part related to topography is treated
424     as in a height or pressure coordinate model.
425 jmc 1.10 A complete description is given in \cite{adcroft:04a}.
426 jmc 1.8
427     The time-stepping implementation of the $r^*$ coordinate is
428     identical to the non-linear free-surface in $r$ coordinate,
429 jmc 1.9 and differences appear only in the spacial discretization.
430 jmc 1.8 \marginpar{needs a subsection ref. here}
431 jmc 1.1

  ViewVC Help
Powered by ViewVC 1.1.22