/[MITgcm]/manual/s_algorithm/text/nonlin_frsurf.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/nonlin_frsurf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.12 - (hide annotations) (download) (as text)
Tue Apr 4 20:19:00 2006 UTC (19 years, 3 months ago) by jmc
Branch: MAIN
Changes since 1.11: +5 -4 lines
File MIME type: application/x-tex
split a "too long" equation array in 2.

1 jmc 1.12 % $Header: /u/gcmpack/manual/part2/nonlin_frsurf.tex,v 1.11 2005/08/09 18:21:53 jmc Exp $
2 jmc 1.1 % $Name: $
3    
4 adcroft 1.4
5 jmc 1.1
6 jmc 1.9 \subsection{Non-linear free-surface}
7 adcroft 1.6 \label{sect:nonlinear-freesurface}
8 jmc 1.1
9 jmc 1.8 Recently, new options have been added to the model
10     that concern the free surface formulation.
11 adcroft 1.4
12 jmc 1.1
13 jmc 1.9 \subsubsection{pressure/geo-potential and free surface}
14 jmc 1.11 \label{sect:phi-freesurface}
15 jmc 1.1
16 jmc 1.9 For the atmosphere, since $\phi = \phi_{topo} - \int^p_{p_s} \alpha dp$,
17     subtracting the reference state defined in section
18     \ref{sec:hpe-p-geo-potential-split}~:\\
19     $$
20     \phi_o = \phi_{topo} - \int^p_{p_o} \alpha_o dp
21     \hspace{5mm}\mathrm{with}\hspace{3mm} \phi_o(p_o)=\phi_{topo}
22     $$
23     we get:
24     $$
25     \phi' = \phi - \phi_o = \int^{p_s}_p \alpha dp - \int^{p_o}_p \alpha_o dp
26     $$
27     For the ocean, the reference state is simpler since $\rho_c$ does not dependent
28     on $z$ ($b_o=g$) and the surface reference position is uniformly $z=0$ ($R_o=0$),
29     and the same subtraction leads to a similar relation.
30     For both fluid, using the isomorphic notations, we can write:
31     $$
32     \phi' = \int^{r_{surf}}_r b~ dr - \int^{R_o}_r b_o dr
33     $$
34     \begin{eqnarray}
35     \mathrm{and~re~write:}\hspace{10mm}
36     \phi' = \int^{r_{surf}}_{R_o} b~ dr & + & \int^{R_o}_r (b - b_o) dr
37     \label{eq:split-phi-Ro} \\
38     \mathrm{or:}\hspace{10mm}
39     \phi' = \int^{r_{surf}}_{R_o} b_o dr & + & \int^{r_{surf}}_r (b - b_o) dr
40     \label{eq:split-phi-bo}
41     \end{eqnarray}
42    
43     In section \ref{sec:finding_the_pressure_field}, following eq.\ref{eq:split-phi-Ro},
44     the pressure/geo-potential $\phi'$ has been separated into surface ($\phi_s$),
45     and hydrostatic anomaly ($\phi'_{hyd}$).
46     In this section, the split between $\phi_s$ and $\phi'_{hyd}$ is
47     made according to equation \ref{eq:split-phi-bo}. This slightly
48     different definition reflects the actual implementation in the code
49     and is valid for both linear and non-linear
50     free-surface formulation, in both r-coordinate and r*-coordinate.
51    
52     Because the linear free-surface approximation ignore the tracer content
53     of the fluid parcel between $R_o$ and $r_{surf}=R_o+\eta$,
54     for consistency reasons, this part is also neglected in $\phi'_{hyd}$~:
55     $$
56     \phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr \simeq \int^{R_o}_r (b - b_o) dr
57     $$
58     Note that in this case, the two definitions of $\phi_s$ and $\phi'_{hyd}$
59     from equation \ref{eq:split-phi-Ro} and \ref{eq:split-phi-bo} converge toward
60     the same (approximated) expressions: $\phi_s = \int^{r_{surf}}_{R_o} b_o dr$
61     and $\phi'_{hyd}=\int^{R_o}_r b' dr$.\\
62     On the contrary, the unapproximated formulation ("non-linear free-surface",
63     see the next section) retains the full expression:
64     $\phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr $~.
65     This is obtained by selecting {\bf nonlinFreeSurf}=4 in parameter
66     file {\em data}.\\
67    
68     Regarding the surface potential:
69     $$\phi_s = \int_{R_o}^{R_o+\eta} b_o dr = b_s \eta
70     \hspace{5mm}\mathrm{with}\hspace{5mm}
71     b_s = \frac{1}{\eta} \int_{R_o}^{R_o+\eta} b_o dr $$
72     $b_s \simeq b_o(R_o)$ is an excellent approximation (better than
73     the usual numerical truncation, since generally $|\eta|$ is smaller
74     than the vertical grid increment).
75 adcroft 1.4
76 jmc 1.9 For the ocean, $\phi_s = g \eta$ and $b_s = g$ is uniform.
77 adcroft 1.4 For the atmosphere, however, because of topographic effects, the
78 jmc 1.9 reference surface pressure $R_o=p_o$ has large spatial variations that
79 adcroft 1.4 are responsible for significant $b_s$ variations (from 0.8 to 1.2
80 jmc 1.9 $[m^3/kg]$). For this reason, when {\bf uniformLin\_PhiSurf} {\em=.FALSE.}
81     (parameter file {\em data}, namelist {\em PARAM01})
82     a non-uniform linear coefficient $b_s$ is used and computed
83     ({\it S/R INI\_LINEAR\_PHISURF}) according to the reference surface
84     pressure $p_o$:
85     $b_s = b_o(R_o) = c_p \kappa (p_o / P^o_{SL})^{(\kappa - 1)} \theta_{ref}(p_o)$.
86     with $P^o_{SL}$ the mean sea-level pressure.
87 adcroft 1.4
88 jmc 1.1
89     \subsubsection{Free surface effect on column total thickness
90 jmc 1.9 (Non-linear free-surface)}
91 jmc 1.1
92 adcroft 1.4 The total thickness of the fluid column is $r_{surf} - R_{fixed} =
93 jmc 1.8 \eta + R_o - R_{fixed}$. In most applications, the free surface
94     displacements are small compared to the total thickness
95 jmc 1.9 $\eta \ll H_o = R_o - R_{fixed}$.
96 jmc 1.8 In the previous sections and in older version of the model,
97     the linearized free-surface approximation was made, assuming
98 jmc 1.9 $r_{surf} - R_{fixed} \simeq H_o$ when computing horizontal transports,
99     either in the continuity equation or in tracer and momentum
100 jmc 1.8 advection terms.
101 jmc 1.9 This approximation is dropped when using the non-linear free-surface
102 jmc 1.8 formulation and the total thickness, including the time varying part
103 jmc 1.9 $\eta$, is considered when computing horizontal transports.
104 jmc 1.8 Implications for the barotropic part are presented hereafter.
105 jmc 1.9 In section \ref{sect:freesurf-tracer-advection} consequences for
106     tracer conservation is briefly discussed (more details can be
107     found in \cite{campin:02})~; the general time-stepping is presented
108     in section \ref{sect:nonlin-freesurf-timestepping} with some
109     limitations regarding the vertical resolution in section
110     \ref{sect:nonlin-freesurf-dz_surf}.
111 adcroft 1.4
112 jmc 1.9 In the non-linear formulation, the continuous form of the model
113     equations remains unchanged, except for the 2D continuity equation
114 jmc 1.8 (\ref{eq:discrete-time-backward-free-surface}) which is now
115 adcroft 1.4 integrated from $R_{fixed}(x,y)$ up to $r_{surf}=R_o+\eta$ :
116 jmc 1.1
117     \begin{displaymath}
118     \epsilon_{fs} \partial_t \eta =
119     \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
120 jmc 1.3 - {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta} \vec{\bf v} dr
121 jmc 1.1 + \epsilon_{fw} (P-E)
122     \end{displaymath}
123    
124 adcroft 1.4 Since $\eta$ has a direct effect on the horizontal velocity (through
125     $\nabla_h \Phi_{surf}$), this adds a non-linear term to the free
126     surface equation. Several options for the time discretization of this
127 jmc 1.8 non-linear part can be considered, as detailed below.
128 adcroft 1.4
129     If the column thickness is evaluated at time step $n$, and with
130     implicit treatment of the surface potential gradient, equations
131     (\ref{eq-solve2D} and \ref{eq-solve2D_rhs}) becomes:
132 jmc 1.1 \begin{eqnarray*}
133     \epsilon_{fs} {\eta}^{n+1} -
134 jmc 1.3 {\bf \nabla}_h \cdot \Delta t^2 (\eta^{n}+R_o-R_{fixed})
135 jmc 1.2 {\bf \nabla}_h b_s {\eta}^{n+1}
136 jmc 1.1 = {\eta}^*
137     \end{eqnarray*}
138     where
139     \begin{eqnarray*}
140     {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
141 jmc 1.3 \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta^n} \vec{\bf v}^* dr
142 jmc 1.1 \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
143     \end{eqnarray*}
144 adcroft 1.4 This method requires us to update the solver matrix at each time step.
145 jmc 1.1
146     Alternatively, the non-linear contribution can be evaluated fully
147     explicitly:
148     \begin{eqnarray*}
149     \epsilon_{fs} {\eta}^{n+1} -
150 jmc 1.3 {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})
151 jmc 1.2 {\bf \nabla}_h b_s {\eta}^{n+1}
152 jmc 1.1 = {\eta}^*
153 jmc 1.2 +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})
154     {\bf \nabla}_h b_s {\eta}^{n}
155 jmc 1.1 \end{eqnarray*}
156 adcroft 1.4 This formulation allows one to keep the initial solver matrix
157     unchanged though throughout the integration, since the non-linear free
158     surface only affects the RHS.
159    
160     Finally, another option is a "linearized" formulation where the total
161     column thickness appears only in the integral term of the RHS
162     (\ref{eq-solve2D_rhs}) but not directly in the equation
163     (\ref{eq-solve2D}).
164 jmc 1.1
165 jmc 1.9 Those different options (see Table \ref{tab:nonLinFreeSurf_flags})
166     have been tested and show little differences. However, we recommend
167 jmc 1.8 the use of the most precise method (the 1rst one) since the
168 jmc 1.9 computation cost involved in the solver matrix update is negligible.
169 jmc 1.8
170 jmc 1.9 \begin{table}[htb]
171     %\begin{center}
172     \centering
173 jmc 1.8 \begin{tabular}[htb]{|l|c|l|}
174     \hline
175     parameter & value & description \\
176     \hline
177     & -1 & linear free-surface, restart from a pickup file \\
178     & & produced with \#undef EXACT\_CONSERV code\\
179     \cline{2-3}
180 jmc 1.9 & 0 & Linear free-surface \\
181 jmc 1.8 \cline{2-3}
182     nonlinFreeSurf & 4 & Non-linear free-surface \\
183     \cline{2-3}
184     & 3 & same as 4 but neglecting
185     $\int_{R_o}^{R_o+\eta} b' dr $ in $\Phi'_{hyd}$ \\
186     \cline{2-3}
187     & 2 & same as 3 but do not update cg2d solver matrix \\
188     \cline{2-3}
189     & 1 & same as 2 but treat momentum as in Linear FS \\
190     \hline
191     & 0 & do not use $r*$ vertical coordinate (= default)\\
192     \cline{2-3}
193     select\_rStar & 2 & use $r^*$ vertical coordinate \\
194     \cline{2-3}
195     & 1 & same as 2 but without the contribution of the\\
196     & & slope of the coordinate in $\nabla \Phi$ \\
197     \hline
198     \end{tabular}
199 jmc 1.9 \caption{Non-linear free-surface flags}
200     \label{tab:nonLinFreeSurf_flags}
201     %\end{center}
202     \end{table}
203 jmc 1.8
204 jmc 1.1
205 jmc 1.9 \subsubsection{Tracer conservation with non-linear free-surface}
206 adcroft 1.4 \label{sect:freesurf-tracer-advection}
207 jmc 1.1
208 adcroft 1.4 To ensure global tracer conservation (i.e., the total amount) as well
209     as local conservation, the change in the surface level thickness must
210     be consistent with the way the continuity equation is integrated, both
211     in the barotropic part (to find $\eta$) and baroclinic part (to find
212     $w = \dot{r}$).
213 jmc 1.1
214 jmc 1.9 To illustrate this, consider the shallow water model, with a source
215     of fresh water (P):
216 jmc 1.1 $$
217 jmc 1.9 \partial_t h + \nabla \cdot h \vec{\bf v} = P
218 jmc 1.1 $$
219     where $h$ is the total thickness of the water column.
220     To conserve the tracer $\theta$ we have to discretize:
221     $$
222 jmc 1.9 \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})
223     = P \theta_{\mathrm{rain}}
224 jmc 1.1 $$
225 adcroft 1.4 Using the implicit (non-linear) free surface described above (section
226 adcroft 1.6 \ref{sect:pressure-method-linear-backward}) we have:
227 jmc 1.1 \begin{eqnarray*}
228 jmc 1.9 h^{n+1} = h^{n} - \Delta t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) + \Delta t P \\
229 jmc 1.1 \end{eqnarray*}
230 adcroft 1.4 The discretized form of the tracer equation must adopt the same
231     ``form'' in the computation of tracer fluxes, that is, the same value
232     of $h$, as used in the continuity equation:
233 jmc 1.1 \begin{eqnarray*}
234     h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
235 jmc 1.9 - \Delta t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
236     + \Delta t P \theta_{rain}
237 jmc 1.1 \end{eqnarray*}
238    
239 jmc 1.9 The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth
240     make the conservation sightly tricky.
241 jmc 1.8 The current implementation with the Adams-Bashforth time-stepping
242     provides an exact local conservation and prevents any drift in
243     the global tracer content (\cite{campin:02}).
244     Compared to the linear free-surface method, an additional step is required:
245     the variation of the water column thickness (from $h^n$ to $h^{n+1}$) is
246 adcroft 1.4 not incorporated directly into the tracer equation. Instead, the
247     model uses the $G_\theta$ terms (first step) as in the linear free
248     surface formulation (with the "{\it surface correction}" turned "on",
249     see tracer section):
250 jmc 1.1 $$
251 jmc 1.2 G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
252     - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n
253 jmc 1.1 $$
254 adcroft 1.4 Then, in a second step, the thickness variation (expansion/reduction)
255     is taken into account:
256 jmc 1.1 $$
257 jmc 1.9 \theta^{n+1} = \theta^n + \Delta t \frac{h^n}{h^{n+1}}
258     \left( G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n )/h^n \right)
259     %\theta^{n+1} = \theta^n + \frac{\Delta t}{h^{n+1}}
260     % \left( h^n G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n ) \right)
261 jmc 1.1 $$
262     Note that with a simple forward time step (no Adams-Bashforth),
263 jmc 1.9 these two formulations are equivalent,
264 jmc 1.1 since
265     $
266 jmc 1.9 (h^{n+1} - h^{n})/ \Delta t =
267     P - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = P + \dot{r}_{surf}^{n+1}
268 jmc 1.1 $
269 adcroft 1.4
270 jmc 1.9 \subsubsection{Time stepping implementation of the
271     non-linear free-surface}
272     \label{sect:nonlin-freesurf-timestepping}
273    
274     The grid cell thickness was hold constant with the linear
275     free-surface~; with the non-linear free-surface, it is now varying
276     in time, at least at the surface level.
277     This implies some modifications of the general algorithm described
278     earlier in sections \ref{sect:adams-bashforth-sync} and
279     \ref{sect:adams-bashforth-staggered}.
280    
281     A simplified version of the staggered in time, non-linear
282     free-surface algorithm is detailed hereafter, and can be compared
283     to the equivalent linear free-surface case (eq. \ref{eq:Gv-n-staggered}
284     to \ref{eq:t-n+1-staggered}) and can also be easily transposed
285     to the synchronous time-stepping case.
286     Among the simplifications, salinity equation, implicit operator
287     and detailed elliptic equation are omitted. Surface forcing is
288     explicitly written as fluxes of temperature, fresh water and
289     momentum, $Q^{n+1/2}, P^{n+1/2}, F_{\bf v}^n$ respectively.
290     $h^n$ and $dh^n$ are the column and grid box thickness in r-coordinate.
291     %-------------------------------------------------------------
292     \begin{eqnarray}
293     \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n},r) dr
294     \label{eq:phi-hyd-nlfs} \\
295     \vec{\bf G}_{\vec{\bf v}}^{n-1/2}\hspace{-2mm} & = &
296     \vec{\bf G}_{\vec{\bf v}} (dh^{n-1},\vec{\bf v}^{n-1/2})
297     \hspace{+2mm};\hspace{+2mm}
298     \vec{\bf G}_{\vec{\bf v}}^{(n)} =
299     \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
300     - \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
301     \label{eq:Gv-n-nlfs} \\
302     %\vec{\bf G}_{\vec{\bf v}}^{(n)} & = &
303     % \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
304     %- \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
305     %\label{eq:Gv-n+5-nlfs} \\
306     %\vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \frac{\Delta t}{dh^{n}} \left(
307     %dh^{n-1}\vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n} \right)
308     \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \frac{dh^{n-1}}{dh^{n}} \left(
309     \vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n}/dh^{n-1} \right)
310     - \Delta t \nabla \phi_{hyd}^{n}
311 jmc 1.12 \label{eq:vstar-nlfs}
312     \end{eqnarray}
313     \hspace{3cm}$\longrightarrow$~~{\it update model~geometry~:~}${\bf hFac}(dh^n)$\\
314     \begin{eqnarray}
315 jmc 1.9 \eta^{n+1/2} \hspace{-2mm} & = &
316     \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
317     \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n} \nonumber \\
318     & = & \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
319     \nabla \cdot \int \!\!\! \left( \vec{\bf v}^* - g \Delta t \nabla \eta^{n+1/2} \right) dh^{n}
320     \label{eq:nstar-nlfs} \\
321     \vec{\bf v}^{n+1/2}\hspace{-2mm} & = &
322     \vec{\bf v}^{*} - g \Delta t \nabla \eta^{n+1/2}
323     \label{eq:v-n+1-nlfs} \\
324     h^{n+1} & = & h^{n} + \Delta t P^{n+1/2} - \Delta t
325     \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n}
326     \label{eq:h-n+1-nlfs} \\
327     G_{\theta}^{n} & = & G_{\theta} ( dh^{n}, u^{n+1/2}, \theta^{n} )
328     \hspace{+2mm};\hspace{+2mm}
329     G_{\theta}^{(n+1/2)} = \frac{3}{2} G_{\theta}^{n} - \frac{1}{2} G_{\theta}^{n-1}
330     \label{eq:Gt-n-nlfs} \\
331     %\theta^{n+1} & = &\theta^{n} + \frac{\Delta t}{dh^{n+1}} \left( dh^n
332     %G_{\theta}^{(n+1/2)} + Q^{n+1/2} + P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) \right)
333     \theta^{n+1} & = &\theta^{n} + \Delta t \frac{dh^n}{dh^{n+1}} \left(
334     G_{\theta}^{(n+1/2)}
335     +( P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) + Q^{n+1/2})/dh^n \right)
336     \nonumber \\
337     & & \label{eq:t-n+1-nlfs}
338     \end{eqnarray}
339     %-------------------------------------------------------------
340     Two steps have been added to linear free-surface algorithm
341     (eq. \ref{eq:Gv-n-staggered} to \ref{eq:t-n+1-staggered}):
342     Firstly, the model ``geometry''
343 adcroft 1.4 (here the {\bf hFacC,W,S}) is updated just before entering {\it
344 jmc 1.9 SOLVE\_FOR\_PRESSURE}, using the current $dh^{n}$ field.
345     Secondly, the vertically integrated continuity equation
346     (eq.\ref{eq:h-n+1-nlfs}) has been added ({\bf exactConserv}{\em =TRUE},
347     in parameter file {\em data}, namelist {\em PARM01})
348     just before computing the vertical velocity, in subroutine
349     {\em INTEGR\_CONTINUITY}. This ensures that tracer and continuity equation
350     discretization a Although this equation might appear
351     redundant with eq.\ref{eq:nstar-nlfs}, the integrated column
352     thickness $h^{n+1}$ can be different from $\eta^{n+1/2} + H$~:
353     \begin{itemize}
354     \item when Crank-Nickelson time-stepping is used (see section
355     \ref{sect:freesurf-CrankNick}).
356     \item when filters are applied to the flow field, after
357     (\ref{eq:v-n+1-nlfs}) and alter the divergence of the flow.
358     \item when the solver does not iterate until convergence~;
359     for example, because a too large residual target was set
360     ({\bf cg2dTargetResidual}, parameter file {\em data}, namelist
361     {\em PARM02}).
362     \end{itemize}\noindent
363     In this staggered time-stepping algorithm, the momentum tendencies
364     are computed using $dh^{n-1}$ geometry factors.
365     (eq.\ref{eq:Gv-n-nlfs}) and then rescaled in subroutine {\it TIMESTEP},
366     (eq.\ref{eq:vstar-nlfs}), similarly to tracer tendencies (see section
367     \ref{sect:freesurf-tracer-advection}).
368     The tracers are stepped forward later, using the recently updated
369     flow field ${\bf v}^{n+1/2}$ and the corresponding model geometry
370     $dh^{n}$ to compute the tendencies (eq.\ref{eq:Gt-n-nlfs});
371     Then the tendencies are rescaled by $dh^n/dh^{n+1}$ to derive
372     the new tracers values $(\theta,S)^{n+1}$ (eq.\ref{eq:t-n+1-nlfs},
373     in subroutine {\em CALC\_GT, CALC\_GS}).
374    
375     Note that the fresh-water input is added in a consistent way in the
376     continuity equation and in the tracer equation, taking into account
377     the fresh-water temperature $\theta_{\mathrm{rain}}$.
378    
379     Regarding the restart procedure,
380     two 2.D fields $h^{n-1}$ and $(h^n-h^{n-1})/\Delta t$
381     in addition to the standard
382     state variables and tendencies ($\eta^{n-1/2}$, ${\bf v}^{n-1/2}$,
383     $\theta^n$, $S^n$, ${\bf G}_{\bf v}^{n-3/2}$, $G_{\theta,S}^{n-1}$)
384     are stored in a "{\em pickup}" file.
385     The model restarts reading this "{\em pickup}" file,
386     then update the model geometry according to $h^{n-1}$,
387     and compute $h^n$ and the vertical velocity
388     %$h^n=h^{n-1} + \Delta t [(h^n-h^{n-1})/\Delta t]$,
389     before starting the main calling sequence (eq.\ref{eq:phi-hyd-nlfs}
390     to \ref{eq:t-n+1-nlfs}, {\em S/R FORWARD\_STEP}).
391     \\
392    
393     \fbox{ \begin{minipage}{4.75in}
394     {\em INTEGR\_CONTINUITY} ({\em integr\_continuity.F})
395    
396     $h^{n+1} -H_o$: {\bf etaH} ({\em DYNVARS.h})
397    
398     $h^{n} -H_o$: {\bf etaHnm1} ({\em SURFACE.h})
399    
400     $h^{n+1}-h^{n}/\Delta t$: {\bf dEtaHdt} ({\em SURFACE.h})
401    
402     \end{minipage} }
403 jmc 1.1
404 jmc 1.9 \subsubsection{Non-linear free-surface and vertical resolution}
405 jmc 1.8 \label{sect:nonlin-freesurf-dz_surf}
406    
407     When the amplitude of the free-surface variations becomes
408     as large as the vertical resolution near the surface,
409     the surface layer thickness can decrease to nearly zero or
410 jmc 1.9 can even vanish completely.
411 jmc 1.8 This later possibility has not been implemented, and a
412     minimum relative thickness is imposed ({\bf hFacInf},
413     parameter file {\em data}, namelist {\em PARM01}) to prevent
414     numerical instabilities caused by very thin surface level.
415    
416 jmc 1.9 A better alternative to the vanishing level problem has been
417 jmc 1.8 found and implemented recently, and rely on a different
418     vertical coordinate $r^*$~:
419     The time variation ot the total column thickness becomes
420     part of the r* coordinate motion, as in a $\sigma_{z},\sigma_{p}$
421     model, but the fixed part related to topography is treated
422     as in a height or pressure coordinate model.
423 jmc 1.10 A complete description is given in \cite{adcroft:04a}.
424 jmc 1.8
425     The time-stepping implementation of the $r^*$ coordinate is
426     identical to the non-linear free-surface in $r$ coordinate,
427 jmc 1.9 and differences appear only in the spacial discretization.
428 jmc 1.8 \marginpar{needs a subsection ref. here}
429 jmc 1.1

  ViewVC Help
Powered by ViewVC 1.1.22