/[MITgcm]/manual/s_algorithm/text/nonlin_frsurf.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/nonlin_frsurf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.10 - (hide annotations) (download) (as text)
Mon Jul 11 13:49:29 2005 UTC (18 years, 9 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint57l_post
Changes since 1.9: +2 -2 lines
File MIME type: application/x-tex
add recent references

1 jmc 1.10 % $Header: /u/gcmpack/manual/part2/nonlin_frsurf.tex,v 1.9 2004/10/17 04:14:21 jmc Exp $
2 jmc 1.1 % $Name: $
3    
4 adcroft 1.4
5 jmc 1.1
6 jmc 1.9 \subsection{Non-linear free-surface}
7 adcroft 1.6 \label{sect:nonlinear-freesurface}
8 jmc 1.1
9 jmc 1.8 Recently, new options have been added to the model
10     that concern the free surface formulation.
11 adcroft 1.4
12 jmc 1.1
13 jmc 1.9 \subsubsection{pressure/geo-potential and free surface}
14 jmc 1.1
15 jmc 1.9 For the atmosphere, since $\phi = \phi_{topo} - \int^p_{p_s} \alpha dp$,
16     subtracting the reference state defined in section
17     \ref{sec:hpe-p-geo-potential-split}~:\\
18     $$
19     \phi_o = \phi_{topo} - \int^p_{p_o} \alpha_o dp
20     \hspace{5mm}\mathrm{with}\hspace{3mm} \phi_o(p_o)=\phi_{topo}
21     $$
22     we get:
23     $$
24     \phi' = \phi - \phi_o = \int^{p_s}_p \alpha dp - \int^{p_o}_p \alpha_o dp
25     $$
26     For the ocean, the reference state is simpler since $\rho_c$ does not dependent
27     on $z$ ($b_o=g$) and the surface reference position is uniformly $z=0$ ($R_o=0$),
28     and the same subtraction leads to a similar relation.
29     For both fluid, using the isomorphic notations, we can write:
30     $$
31     \phi' = \int^{r_{surf}}_r b~ dr - \int^{R_o}_r b_o dr
32     $$
33     \begin{eqnarray}
34     \mathrm{and~re~write:}\hspace{10mm}
35     \phi' = \int^{r_{surf}}_{R_o} b~ dr & + & \int^{R_o}_r (b - b_o) dr
36     \label{eq:split-phi-Ro} \\
37     \mathrm{or:}\hspace{10mm}
38     \phi' = \int^{r_{surf}}_{R_o} b_o dr & + & \int^{r_{surf}}_r (b - b_o) dr
39     \label{eq:split-phi-bo}
40     \end{eqnarray}
41    
42     In section \ref{sec:finding_the_pressure_field}, following eq.\ref{eq:split-phi-Ro},
43     the pressure/geo-potential $\phi'$ has been separated into surface ($\phi_s$),
44     and hydrostatic anomaly ($\phi'_{hyd}$).
45     In this section, the split between $\phi_s$ and $\phi'_{hyd}$ is
46     made according to equation \ref{eq:split-phi-bo}. This slightly
47     different definition reflects the actual implementation in the code
48     and is valid for both linear and non-linear
49     free-surface formulation, in both r-coordinate and r*-coordinate.
50    
51     Because the linear free-surface approximation ignore the tracer content
52     of the fluid parcel between $R_o$ and $r_{surf}=R_o+\eta$,
53     for consistency reasons, this part is also neglected in $\phi'_{hyd}$~:
54     $$
55     \phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr \simeq \int^{R_o}_r (b - b_o) dr
56     $$
57     Note that in this case, the two definitions of $\phi_s$ and $\phi'_{hyd}$
58     from equation \ref{eq:split-phi-Ro} and \ref{eq:split-phi-bo} converge toward
59     the same (approximated) expressions: $\phi_s = \int^{r_{surf}}_{R_o} b_o dr$
60     and $\phi'_{hyd}=\int^{R_o}_r b' dr$.\\
61     On the contrary, the unapproximated formulation ("non-linear free-surface",
62     see the next section) retains the full expression:
63     $\phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr $~.
64     This is obtained by selecting {\bf nonlinFreeSurf}=4 in parameter
65     file {\em data}.\\
66    
67     Regarding the surface potential:
68     $$\phi_s = \int_{R_o}^{R_o+\eta} b_o dr = b_s \eta
69     \hspace{5mm}\mathrm{with}\hspace{5mm}
70     b_s = \frac{1}{\eta} \int_{R_o}^{R_o+\eta} b_o dr $$
71     $b_s \simeq b_o(R_o)$ is an excellent approximation (better than
72     the usual numerical truncation, since generally $|\eta|$ is smaller
73     than the vertical grid increment).
74 adcroft 1.4
75 jmc 1.9 For the ocean, $\phi_s = g \eta$ and $b_s = g$ is uniform.
76 adcroft 1.4 For the atmosphere, however, because of topographic effects, the
77 jmc 1.9 reference surface pressure $R_o=p_o$ has large spatial variations that
78 adcroft 1.4 are responsible for significant $b_s$ variations (from 0.8 to 1.2
79 jmc 1.9 $[m^3/kg]$). For this reason, when {\bf uniformLin\_PhiSurf} {\em=.FALSE.}
80     (parameter file {\em data}, namelist {\em PARAM01})
81     a non-uniform linear coefficient $b_s$ is used and computed
82     ({\it S/R INI\_LINEAR\_PHISURF}) according to the reference surface
83     pressure $p_o$:
84     $b_s = b_o(R_o) = c_p \kappa (p_o / P^o_{SL})^{(\kappa - 1)} \theta_{ref}(p_o)$.
85     with $P^o_{SL}$ the mean sea-level pressure.
86 adcroft 1.4
87 jmc 1.1
88     \subsubsection{Free surface effect on column total thickness
89 jmc 1.9 (Non-linear free-surface)}
90 jmc 1.1
91 adcroft 1.4 The total thickness of the fluid column is $r_{surf} - R_{fixed} =
92 jmc 1.8 \eta + R_o - R_{fixed}$. In most applications, the free surface
93     displacements are small compared to the total thickness
94 jmc 1.9 $\eta \ll H_o = R_o - R_{fixed}$.
95 jmc 1.8 In the previous sections and in older version of the model,
96     the linearized free-surface approximation was made, assuming
97 jmc 1.9 $r_{surf} - R_{fixed} \simeq H_o$ when computing horizontal transports,
98     either in the continuity equation or in tracer and momentum
99 jmc 1.8 advection terms.
100 jmc 1.9 This approximation is dropped when using the non-linear free-surface
101 jmc 1.8 formulation and the total thickness, including the time varying part
102 jmc 1.9 $\eta$, is considered when computing horizontal transports.
103 jmc 1.8 Implications for the barotropic part are presented hereafter.
104 jmc 1.9 In section \ref{sect:freesurf-tracer-advection} consequences for
105     tracer conservation is briefly discussed (more details can be
106     found in \cite{campin:02})~; the general time-stepping is presented
107     in section \ref{sect:nonlin-freesurf-timestepping} with some
108     limitations regarding the vertical resolution in section
109     \ref{sect:nonlin-freesurf-dz_surf}.
110 adcroft 1.4
111 jmc 1.9 In the non-linear formulation, the continuous form of the model
112     equations remains unchanged, except for the 2D continuity equation
113 jmc 1.8 (\ref{eq:discrete-time-backward-free-surface}) which is now
114 adcroft 1.4 integrated from $R_{fixed}(x,y)$ up to $r_{surf}=R_o+\eta$ :
115 jmc 1.1
116     \begin{displaymath}
117     \epsilon_{fs} \partial_t \eta =
118     \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
119 jmc 1.3 - {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta} \vec{\bf v} dr
120 jmc 1.1 + \epsilon_{fw} (P-E)
121     \end{displaymath}
122    
123 adcroft 1.4 Since $\eta$ has a direct effect on the horizontal velocity (through
124     $\nabla_h \Phi_{surf}$), this adds a non-linear term to the free
125     surface equation. Several options for the time discretization of this
126 jmc 1.8 non-linear part can be considered, as detailed below.
127 adcroft 1.4
128     If the column thickness is evaluated at time step $n$, and with
129     implicit treatment of the surface potential gradient, equations
130     (\ref{eq-solve2D} and \ref{eq-solve2D_rhs}) becomes:
131 jmc 1.1 \begin{eqnarray*}
132     \epsilon_{fs} {\eta}^{n+1} -
133 jmc 1.3 {\bf \nabla}_h \cdot \Delta t^2 (\eta^{n}+R_o-R_{fixed})
134 jmc 1.2 {\bf \nabla}_h b_s {\eta}^{n+1}
135 jmc 1.1 = {\eta}^*
136     \end{eqnarray*}
137     where
138     \begin{eqnarray*}
139     {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
140 jmc 1.3 \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta^n} \vec{\bf v}^* dr
141 jmc 1.1 \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
142     \end{eqnarray*}
143 adcroft 1.4 This method requires us to update the solver matrix at each time step.
144 jmc 1.1
145     Alternatively, the non-linear contribution can be evaluated fully
146     explicitly:
147     \begin{eqnarray*}
148     \epsilon_{fs} {\eta}^{n+1} -
149 jmc 1.3 {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})
150 jmc 1.2 {\bf \nabla}_h b_s {\eta}^{n+1}
151 jmc 1.1 = {\eta}^*
152 jmc 1.2 +{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})
153     {\bf \nabla}_h b_s {\eta}^{n}
154 jmc 1.1 \end{eqnarray*}
155 adcroft 1.4 This formulation allows one to keep the initial solver matrix
156     unchanged though throughout the integration, since the non-linear free
157     surface only affects the RHS.
158    
159     Finally, another option is a "linearized" formulation where the total
160     column thickness appears only in the integral term of the RHS
161     (\ref{eq-solve2D_rhs}) but not directly in the equation
162     (\ref{eq-solve2D}).
163 jmc 1.1
164 jmc 1.9 Those different options (see Table \ref{tab:nonLinFreeSurf_flags})
165     have been tested and show little differences. However, we recommend
166 jmc 1.8 the use of the most precise method (the 1rst one) since the
167 jmc 1.9 computation cost involved in the solver matrix update is negligible.
168 jmc 1.8
169 jmc 1.9 \begin{table}[htb]
170     %\begin{center}
171     \centering
172 jmc 1.8 \begin{tabular}[htb]{|l|c|l|}
173     \hline
174     parameter & value & description \\
175     \hline
176     & -1 & linear free-surface, restart from a pickup file \\
177     & & produced with \#undef EXACT\_CONSERV code\\
178     \cline{2-3}
179 jmc 1.9 & 0 & Linear free-surface \\
180 jmc 1.8 \cline{2-3}
181     nonlinFreeSurf & 4 & Non-linear free-surface \\
182     \cline{2-3}
183     & 3 & same as 4 but neglecting
184     $\int_{R_o}^{R_o+\eta} b' dr $ in $\Phi'_{hyd}$ \\
185     \cline{2-3}
186     & 2 & same as 3 but do not update cg2d solver matrix \\
187     \cline{2-3}
188     & 1 & same as 2 but treat momentum as in Linear FS \\
189     \hline
190     & 0 & do not use $r*$ vertical coordinate (= default)\\
191     \cline{2-3}
192     select\_rStar & 2 & use $r^*$ vertical coordinate \\
193     \cline{2-3}
194     & 1 & same as 2 but without the contribution of the\\
195     & & slope of the coordinate in $\nabla \Phi$ \\
196     \hline
197     \end{tabular}
198 jmc 1.9 \caption{Non-linear free-surface flags}
199     \label{tab:nonLinFreeSurf_flags}
200     %\end{center}
201     \end{table}
202 jmc 1.8
203 jmc 1.1
204 jmc 1.9 \subsubsection{Tracer conservation with non-linear free-surface}
205 adcroft 1.4 \label{sect:freesurf-tracer-advection}
206 jmc 1.1
207 adcroft 1.4 To ensure global tracer conservation (i.e., the total amount) as well
208     as local conservation, the change in the surface level thickness must
209     be consistent with the way the continuity equation is integrated, both
210     in the barotropic part (to find $\eta$) and baroclinic part (to find
211     $w = \dot{r}$).
212 jmc 1.1
213 jmc 1.9 To illustrate this, consider the shallow water model, with a source
214     of fresh water (P):
215 jmc 1.1 $$
216 jmc 1.9 \partial_t h + \nabla \cdot h \vec{\bf v} = P
217 jmc 1.1 $$
218     where $h$ is the total thickness of the water column.
219     To conserve the tracer $\theta$ we have to discretize:
220     $$
221 jmc 1.9 \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})
222     = P \theta_{\mathrm{rain}}
223 jmc 1.1 $$
224 adcroft 1.4 Using the implicit (non-linear) free surface described above (section
225 adcroft 1.6 \ref{sect:pressure-method-linear-backward}) we have:
226 jmc 1.1 \begin{eqnarray*}
227 jmc 1.9 h^{n+1} = h^{n} - \Delta t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) + \Delta t P \\
228 jmc 1.1 \end{eqnarray*}
229 adcroft 1.4 The discretized form of the tracer equation must adopt the same
230     ``form'' in the computation of tracer fluxes, that is, the same value
231     of $h$, as used in the continuity equation:
232 jmc 1.1 \begin{eqnarray*}
233     h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
234 jmc 1.9 - \Delta t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
235     + \Delta t P \theta_{rain}
236 jmc 1.1 \end{eqnarray*}
237    
238 jmc 1.9 The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth
239     make the conservation sightly tricky.
240 jmc 1.8 The current implementation with the Adams-Bashforth time-stepping
241     provides an exact local conservation and prevents any drift in
242     the global tracer content (\cite{campin:02}).
243     Compared to the linear free-surface method, an additional step is required:
244     the variation of the water column thickness (from $h^n$ to $h^{n+1}$) is
245 adcroft 1.4 not incorporated directly into the tracer equation. Instead, the
246     model uses the $G_\theta$ terms (first step) as in the linear free
247     surface formulation (with the "{\it surface correction}" turned "on",
248     see tracer section):
249 jmc 1.1 $$
250 jmc 1.2 G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
251     - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n
252 jmc 1.1 $$
253 adcroft 1.4 Then, in a second step, the thickness variation (expansion/reduction)
254     is taken into account:
255 jmc 1.1 $$
256 jmc 1.9 \theta^{n+1} = \theta^n + \Delta t \frac{h^n}{h^{n+1}}
257     \left( G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n )/h^n \right)
258     %\theta^{n+1} = \theta^n + \frac{\Delta t}{h^{n+1}}
259     % \left( h^n G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n ) \right)
260 jmc 1.1 $$
261     Note that with a simple forward time step (no Adams-Bashforth),
262 jmc 1.9 these two formulations are equivalent,
263 jmc 1.1 since
264     $
265 jmc 1.9 (h^{n+1} - h^{n})/ \Delta t =
266     P - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = P + \dot{r}_{surf}^{n+1}
267 jmc 1.1 $
268 adcroft 1.4
269 jmc 1.9 \subsubsection{Time stepping implementation of the
270     non-linear free-surface}
271     \label{sect:nonlin-freesurf-timestepping}
272    
273     The grid cell thickness was hold constant with the linear
274     free-surface~; with the non-linear free-surface, it is now varying
275     in time, at least at the surface level.
276     This implies some modifications of the general algorithm described
277     earlier in sections \ref{sect:adams-bashforth-sync} and
278     \ref{sect:adams-bashforth-staggered}.
279    
280     A simplified version of the staggered in time, non-linear
281     free-surface algorithm is detailed hereafter, and can be compared
282     to the equivalent linear free-surface case (eq. \ref{eq:Gv-n-staggered}
283     to \ref{eq:t-n+1-staggered}) and can also be easily transposed
284     to the synchronous time-stepping case.
285     Among the simplifications, salinity equation, implicit operator
286     and detailed elliptic equation are omitted. Surface forcing is
287     explicitly written as fluxes of temperature, fresh water and
288     momentum, $Q^{n+1/2}, P^{n+1/2}, F_{\bf v}^n$ respectively.
289     $h^n$ and $dh^n$ are the column and grid box thickness in r-coordinate.
290     %-------------------------------------------------------------
291     \begin{eqnarray}
292     \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n},r) dr
293     \label{eq:phi-hyd-nlfs} \\
294     \vec{\bf G}_{\vec{\bf v}}^{n-1/2}\hspace{-2mm} & = &
295     \vec{\bf G}_{\vec{\bf v}} (dh^{n-1},\vec{\bf v}^{n-1/2})
296     \hspace{+2mm};\hspace{+2mm}
297     \vec{\bf G}_{\vec{\bf v}}^{(n)} =
298     \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
299     - \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
300     \label{eq:Gv-n-nlfs} \\
301     %\vec{\bf G}_{\vec{\bf v}}^{(n)} & = &
302     % \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
303     %- \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
304     %\label{eq:Gv-n+5-nlfs} \\
305     %\vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \frac{\Delta t}{dh^{n}} \left(
306     %dh^{n-1}\vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n} \right)
307     \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \frac{dh^{n-1}}{dh^{n}} \left(
308     \vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n}/dh^{n-1} \right)
309     - \Delta t \nabla \phi_{hyd}^{n}
310     \label{eq:vstar-nlfs} \\
311     \mathrm{update}\hspace{-4mm} & & \hspace{-4mm}\mathrm{
312     model~geometry~:~{\bf hFac}}(dh^n)\nonumber \\
313     \eta^{n+1/2} \hspace{-2mm} & = &
314     \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
315     \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n} \nonumber \\
316     & = & \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
317     \nabla \cdot \int \!\!\! \left( \vec{\bf v}^* - g \Delta t \nabla \eta^{n+1/2} \right) dh^{n}
318     \label{eq:nstar-nlfs} \\
319     \vec{\bf v}^{n+1/2}\hspace{-2mm} & = &
320     \vec{\bf v}^{*} - g \Delta t \nabla \eta^{n+1/2}
321     \label{eq:v-n+1-nlfs} \\
322     h^{n+1} & = & h^{n} + \Delta t P^{n+1/2} - \Delta t
323     \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n}
324     \label{eq:h-n+1-nlfs} \\
325     G_{\theta}^{n} & = & G_{\theta} ( dh^{n}, u^{n+1/2}, \theta^{n} )
326     \hspace{+2mm};\hspace{+2mm}
327     G_{\theta}^{(n+1/2)} = \frac{3}{2} G_{\theta}^{n} - \frac{1}{2} G_{\theta}^{n-1}
328     \label{eq:Gt-n-nlfs} \\
329     %\theta^{n+1} & = &\theta^{n} + \frac{\Delta t}{dh^{n+1}} \left( dh^n
330     %G_{\theta}^{(n+1/2)} + Q^{n+1/2} + P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) \right)
331     \theta^{n+1} & = &\theta^{n} + \Delta t \frac{dh^n}{dh^{n+1}} \left(
332     G_{\theta}^{(n+1/2)}
333     +( P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) + Q^{n+1/2})/dh^n \right)
334     \nonumber \\
335     & & \label{eq:t-n+1-nlfs}
336     \end{eqnarray}
337     %-------------------------------------------------------------
338     Two steps have been added to linear free-surface algorithm
339     (eq. \ref{eq:Gv-n-staggered} to \ref{eq:t-n+1-staggered}):
340     Firstly, the model ``geometry''
341 adcroft 1.4 (here the {\bf hFacC,W,S}) is updated just before entering {\it
342 jmc 1.9 SOLVE\_FOR\_PRESSURE}, using the current $dh^{n}$ field.
343     Secondly, the vertically integrated continuity equation
344     (eq.\ref{eq:h-n+1-nlfs}) has been added ({\bf exactConserv}{\em =TRUE},
345     in parameter file {\em data}, namelist {\em PARM01})
346     just before computing the vertical velocity, in subroutine
347     {\em INTEGR\_CONTINUITY}. This ensures that tracer and continuity equation
348     discretization a Although this equation might appear
349     redundant with eq.\ref{eq:nstar-nlfs}, the integrated column
350     thickness $h^{n+1}$ can be different from $\eta^{n+1/2} + H$~:
351     \begin{itemize}
352     \item when Crank-Nickelson time-stepping is used (see section
353     \ref{sect:freesurf-CrankNick}).
354     \item when filters are applied to the flow field, after
355     (\ref{eq:v-n+1-nlfs}) and alter the divergence of the flow.
356     \item when the solver does not iterate until convergence~;
357     for example, because a too large residual target was set
358     ({\bf cg2dTargetResidual}, parameter file {\em data}, namelist
359     {\em PARM02}).
360     \end{itemize}\noindent
361     In this staggered time-stepping algorithm, the momentum tendencies
362     are computed using $dh^{n-1}$ geometry factors.
363     (eq.\ref{eq:Gv-n-nlfs}) and then rescaled in subroutine {\it TIMESTEP},
364     (eq.\ref{eq:vstar-nlfs}), similarly to tracer tendencies (see section
365     \ref{sect:freesurf-tracer-advection}).
366     The tracers are stepped forward later, using the recently updated
367     flow field ${\bf v}^{n+1/2}$ and the corresponding model geometry
368     $dh^{n}$ to compute the tendencies (eq.\ref{eq:Gt-n-nlfs});
369     Then the tendencies are rescaled by $dh^n/dh^{n+1}$ to derive
370     the new tracers values $(\theta,S)^{n+1}$ (eq.\ref{eq:t-n+1-nlfs},
371     in subroutine {\em CALC\_GT, CALC\_GS}).
372    
373     Note that the fresh-water input is added in a consistent way in the
374     continuity equation and in the tracer equation, taking into account
375     the fresh-water temperature $\theta_{\mathrm{rain}}$.
376    
377     Regarding the restart procedure,
378     two 2.D fields $h^{n-1}$ and $(h^n-h^{n-1})/\Delta t$
379     in addition to the standard
380     state variables and tendencies ($\eta^{n-1/2}$, ${\bf v}^{n-1/2}$,
381     $\theta^n$, $S^n$, ${\bf G}_{\bf v}^{n-3/2}$, $G_{\theta,S}^{n-1}$)
382     are stored in a "{\em pickup}" file.
383     The model restarts reading this "{\em pickup}" file,
384     then update the model geometry according to $h^{n-1}$,
385     and compute $h^n$ and the vertical velocity
386     %$h^n=h^{n-1} + \Delta t [(h^n-h^{n-1})/\Delta t]$,
387     before starting the main calling sequence (eq.\ref{eq:phi-hyd-nlfs}
388     to \ref{eq:t-n+1-nlfs}, {\em S/R FORWARD\_STEP}).
389     \\
390    
391     \fbox{ \begin{minipage}{4.75in}
392     {\em INTEGR\_CONTINUITY} ({\em integr\_continuity.F})
393    
394     $h^{n+1} -H_o$: {\bf etaH} ({\em DYNVARS.h})
395    
396     $h^{n} -H_o$: {\bf etaHnm1} ({\em SURFACE.h})
397    
398     $h^{n+1}-h^{n}/\Delta t$: {\bf dEtaHdt} ({\em SURFACE.h})
399    
400     \end{minipage} }
401 jmc 1.1
402 jmc 1.9 \subsubsection{Non-linear free-surface and vertical resolution}
403 jmc 1.8 \label{sect:nonlin-freesurf-dz_surf}
404    
405     When the amplitude of the free-surface variations becomes
406     as large as the vertical resolution near the surface,
407     the surface layer thickness can decrease to nearly zero or
408 jmc 1.9 can even vanish completely.
409 jmc 1.8 This later possibility has not been implemented, and a
410     minimum relative thickness is imposed ({\bf hFacInf},
411     parameter file {\em data}, namelist {\em PARM01}) to prevent
412     numerical instabilities caused by very thin surface level.
413    
414 jmc 1.9 A better alternative to the vanishing level problem has been
415 jmc 1.8 found and implemented recently, and rely on a different
416     vertical coordinate $r^*$~:
417     The time variation ot the total column thickness becomes
418     part of the r* coordinate motion, as in a $\sigma_{z},\sigma_{p}$
419     model, but the fixed part related to topography is treated
420     as in a height or pressure coordinate model.
421 jmc 1.10 A complete description is given in \cite{adcroft:04a}.
422 jmc 1.8
423     The time-stepping implementation of the $r^*$ coordinate is
424     identical to the non-linear free-surface in $r$ coordinate,
425 jmc 1.9 and differences appear only in the spacial discretization.
426 jmc 1.8 \marginpar{needs a subsection ref. here}
427 jmc 1.1

  ViewVC Help
Powered by ViewVC 1.1.22