/[MITgcm]/manual/s_algorithm/text/nonlin_frsurf.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/nonlin_frsurf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Thu Aug 9 16:22:09 2001 UTC (22 years, 8 months ago) by jmc
Branch: MAIN
File MIME type: application/x-tex
add doc for Non-linear Free surface

1 jmc 1.1 % $Header: $
2     % $Name: $
3    
4     %\section{Time Integration}
5    
6     \subsection{Non-linear free surface}
7    
8     Recently, 2 options have added to the model
9     (and therefore, have not yet been extensively tested)
10     that concern the free surface formulation.
11    
12     %------------------------------------------
13     \subsubsection{Non-uniform linear-relation for the surface potential}
14    
15     The linear relation between
16     surface pressure / geo- potential ($\Phi_{surf}$)
17     and surface displacement ($\eta$)
18     has been considered as uniform ($b_{surf} = Constant$)
19     but is in fact
20     dependent on the position
21     since we have
22     $\Phi_{surf}=\int_{R_o}^{R_o+\eta} b dr \simeq b_{surf} \eta$
23    
24     For the ocean, $b_{surf} = g \rho_{surf} / \rho_o \simeq g$
25     is a fairly good approximation since the relative difference
26     in surface density are usually small.
27     For the atmosphere, because of topographic effects,
28     the reference surface pressure $R_o$ has large spacial differences
29     that are responsible for significant $b_surf$ variations
30     (from 0.8 to 1.2 $[]$).
31    
32     Practically, in an oceanic configuration or
33     when the default value (TRUE) of the parameter {\bf uniformLin\_PhiSurf}
34     is used )
35     then $b_{surf}$ is simply set to $g$ for the ocean
36     and $1.$ for the atmosphere.\\
37     Turning {\bf uniformLin\_PhiSurf} to "FALSE", allows to
38     evaluate $b_{surf}$ from the reference Theta,Q vertical profile
39     ({\it S/R INI\_LINEAR\_PHISURF})
40     according to the reference surface pressure $P_o$ ($=R_o$):
41     $b_{surf} = c_p \kappa (P_o / Pc)^{(\kappa - 1)} \theta_{ref}(P_o)$
42    
43     %------------------------------------------
44     \subsubsection{Free surface effect on column total thickness
45     (Non-linear free surface)}
46    
47     The total thickness of the fluid column is
48     $r_{surf} - R_{min} = \eta + R_o - R_{min}$
49     In the linear free surface approximation
50     (detailed before), only the fixed part of
51     it ($R_o - R_{min})$ is considered when we integrate the
52     continuity equation or compute tracer and momentum advection term.
53    
54     This approximation is dropped when using
55     the non linear free surface formulation.
56     Details follow here after for the barotropic part
57     and in the 2 next subsection for the baroclinic
58     part.
59    
60     %------------------------------------------
61     % Non Linear Barotropic part
62    
63     The continuous form of the model equations remains
64     unchanged, except for the 2D continuity equation
65     (\ref{eq-cont-2D}) that is now integrated
66     from $R_{min}(x,y)$ up to $r_{surf}=R_o+\eta$ :
67    
68     \begin{displaymath}
69     \epsilon_{fs} \partial_t \eta =
70     \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
71     - {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o+\eta} \vec{\bf v} dr
72     + \epsilon_{fw} (P-E)
73     \end{displaymath}
74    
75     Since $\eta$ has a direct effect on the horizontal
76     velocity (through $\nabla_r \Phi_{surf}$), this
77     add a non linear term to the free surface equation.
78    
79     Regarding the time discretization of this non linear part,
80     several option are now being tested:
81    
82     With the column thickness evaluated at time step $n$,
83     and the surface potential gradient still implicit,
84     equation (\ref{solve_2d} \& \ref{solve_2d_rhs})
85     become:
86     \begin{eqnarray*}
87     \epsilon_{fs} {\eta}^{n+1} -
88     {\bf \nabla}_r \cdot \Delta t^2 (\eta^{n}+R_o-R_{min})
89     {\bf \nabla}_r B_o {\eta}^{n+1}
90     = {\eta}^*
91     %\label{solve_2d}
92     \end{eqnarray*}
93     where
94     \begin{eqnarray*}
95     {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
96     \Delta t {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o+\eta} \vec{\bf v}^* dr
97     \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
98     %\label{solve_2d_rhs}
99     \end{eqnarray*}
100     This method requires to update the solver matrix at each time step.
101    
102     Alternatively, the non-linear contribution can be evaluated fully
103     explicitly:
104     \begin{eqnarray*}
105     \epsilon_{fs} {\eta}^{n+1} -
106     {\bf \nabla}_r \cdot \Delta t^2 (R_o-R_{min})
107     {\bf \nabla}_r B_o {\eta}^{n+1}
108     = {\eta}^*
109     +{\bf \nabla}_r \cdot \Delta t^2 (\eta^{n})
110     {\bf \nabla}_r B_o {\eta}^{n}
111     \end{eqnarray*}
112     This formulation allows to keep the initial solver matrix
113     since the non-linear free surface only affects the RHS.
114    
115     An other option is a "linearized" formulation where the
116     total column thickness appears only in the integral term of
117     the RHS (\ref{solve_2d_rhs}) but not directly in
118     the equation (\ref{solve_2d}).
119    
120     %------------------------------------------
121     \subsubsection{Free surface effect on the surface level thickness
122     (Non-linear free surface): Tracer advection}
123    
124     To ensure a global tracer conservation (i.e., the total amount)
125     as well as the local one (see tracer section for more details),
126     the change in the surface level thickness must be consistent with
127     the way the continuity equation is integrated, both in
128     in the barotropic part (to find $\eta$) and baroclinic part
129     (to find $\dot{r}$).
130    
131     To illustrate this, let's consider the shallow water model,
132     with uniform cartesian horizontal grid:
133     $$
134     \partial_t h + \nabla \cdot h \vec{\bf v} = 0
135     $$
136     where $h$ is the total thickness of the water column.
137     To conserve the tracer $\theta$ we have to discretize:
138     $$
139     \partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})= 0
140     $$
141     Using the implicit (non-linear) free surface described before, we have:
142     \begin{eqnarray*}
143     h^{n+1} = h^{n} - \Delta_t \nabla (h^n \, \vec{\bf v}^{n+1} ) \\
144     \end{eqnarray*}
145     The discretized form of the tracer equation must use the same
146     "geometry" to compute the tracer fluxes, that is, the same value of
147     h, as the continuity equation did:
148     \begin{eqnarray*}
149     h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
150     - \Delta_t \nabla (h^n \, \theta^n \, \vec{\bf v}^{n+1})
151     \end{eqnarray*}
152    
153     In order to deal with the Adams-Bashforth time stepping,
154     we implement this scheme slightly differently:
155     the variation of the water column thickness (from
156     $h^n$ to $h^{n+1}$)
157     is not incorporated directly to the tracer equation.
158     Instead,
159     the model continues to evaluate the $G_\theta$ term
160     exactly as it did with the Linear free surface formulation,
161     with the "{\it surface correction}" turned "on" (see tracer section):
162     $$
163     G_\theta = \left(- \nabla (h^n \, \theta^n \, \vec{\bf v}^{n+1})
164     + w_{surf}^{n+1} \theta^n \right) / h^n
165     $$
166     Then after,
167     thickness variation (expansion/reduction) is taken into account :
168     $$
169     \theta^{n+1} = (\theta^n + \Delta_t G_\theta^{(n+1)}) \frac{h^{n+1}}{h^n}
170     $$
171     Note that with a simple forward time step (no Adams-Bashforth),
172     since
173     $
174     w_{surf} = - \nabla (h^n \, \vec{\bf v}^{n+1} ) = (h^{n+1} - h^{n})
175     / \Delta_t
176     $
177     those 2 formulations are equivalent.
178    
179     The implementation in the MITgcm follows this scheme.
180     The model "geometry" (here the {\bf hFacC,W,S}) is updated
181     at the beginning of {\it SOLVE\_FOR\_PRESSURE}
182     according to the current $\eta$ field.
183     Then, at the end of the time step, the variables are
184     advanced in time, so that $\eta^n$ becomes $\eta^{n-1}$.
185     At the next time step, the tracer tendency ($G_\theta$) is computed
186     using the same geometry, that is now consistent with
187     $\eta^{n-1}$.
188     Finally, in S/R {\it TIMESTEP\_TRACER}, the expansion/reduction
189     ratio is applied to the surface level to compute the new tracer field.
190    
191     %------------------------------------------
192     \subsubsection{Free surface effect on the surface level thickness
193     (Non-linear free surface): Momentum advection}
194    
195     Regarding momentum advection,
196     the vector invariant formulation is similar to the
197     advective form (as opposed to the flux form) and therefore
198     does not need specific modification to include the
199     free surface effect on the surface level thickness.
200     Updating the {\bf hFacC,W,S} and the {\bf recip\_hFac}(s)
201     at one given place (like describe before) is sufficient.
202    
203     With the flux form formulation, advection of momentum
204     can be treated exactly as the tracer advection is,
205     Here the expansion/reduction factors ($hFacW^{n+1}/hFacW^n$ for $u$
206     and $hFacS^{n+1}/hFacS^n$ for $v$) are simply applied in the
207     subroutine {\it TIMESTEP}.
208    

  ViewVC Help
Powered by ViewVC 1.1.22