/[MITgcm]/manual/s_algorithm/text/mom_vecinv.tex
ViewVC logotype

Contents of /manual/s_algorithm/text/mom_vecinv.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (show annotations) (download) (as text)
Sat Oct 16 03:40:12 2004 UTC (20 years, 9 months ago) by edhill
Branch: MAIN
CVS Tags: checkpoint57l_post
Changes since 1.3: +4 -1 lines
File MIME type: application/x-tex
 o add HTML comments as a step towards "URL permanence" which will help
   solve:
   - stale links from the CMI web site
   - rotten indexing by bonniefy.pl
 o also cleanup a merge-mangle in diagnostics.tex

1 % $Header: /u/gcmpack/manual/part2/mom_vecinv.tex,v 1.3 2001/11/13 15:20:12 adcroft Exp $
2 % $Name: $
3
4 \section{Vector invariant momentum equations}
5 \begin{rawhtml}
6 <!-- CMIREDIR:vector_invariant_momentum_eqautions: -->
7 \end{rawhtml}
8
9 The finite volume method lends itself to describing the continuity and
10 tracer equations in curvilinear coordinate systems. However, in
11 curvilinear coordinates many new metric terms appear in the momentum
12 equations (written in Lagrangian or flux-form) making generalization
13 far from elegant. Fortunately, an alternative form of the equations,
14 the vector invariant equations are exactly that; invariant under
15 coordinate transformations so that they can be applied uniformly in
16 any orthogonal curvilinear coordinate system such as spherical
17 coordinates, boundary following or the conformal spherical cube
18 system.
19
20 The non-hydrostatic vector invariant equations read:
21 \begin{equation}
22 \partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
23 - b \hat{r}
24 + \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
25 \end{equation}
26 which describe motions in any orthogonal curvilinear coordinate
27 system. Here, $B$ is the Bernoulli function and $\vec{\zeta}=\nabla
28 \wedge \vec{v}$ is the vorticity vector. We can take advantage of the
29 elegance of these equations when discretizing them and use the
30 discrete definitions of the grad, curl and divergence operators to
31 satisfy constraints. We can also consider the analogy to forming
32 derived equations, such as the vorticity equation, and examine how the
33 discretization can be adjusted to give suitable vorticity advection
34 among other things.
35
36 The underlying algorithm is the same as for the flux form
37 equations. All that has changed is the contents of the ``G's''. For
38 the time-being, only the hydrostatic terms have been coded but we will
39 indicate the points where non-hydrostatic contributions will enter:
40 \begin{eqnarray}
41 G_u & = & G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B}
42 + G_u^{\partial_z \tau^x} + G_u^{h-dissip} + G_u^{v-dissip} \\
43 G_v & = & G_v^{fu} + G_v^{\zeta_3 u} + G_v^{\zeta_1 w} + G_v^{\partial_y B}
44 + G_v^{\partial_z \tau^y} + G_v^{h-dissip} + G_v^{v-dissip} \\
45 G_w & = & G_w^{fu} + G_w^{\zeta_1 v} + G_w^{\zeta_2 u} + G_w^{\partial_z B}
46 + G_w^{h-dissip} + G_w^{v-dissip}
47 \end{eqnarray}
48
49 \fbox{ \begin{minipage}{4.75in}
50 {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_vecinv/calc\_mom\_rhs.F})
51
52 $G_u$: {\bf Gu} ({\em DYNVARS.h})
53
54 $G_v$: {\bf Gv} ({\em DYNVARS.h})
55
56 $G_w$: {\bf Gw} ({\em DYNVARS.h})
57 \end{minipage} }
58
59 \subsection{Relative vorticity}
60
61 The vertical component of relative vorticity is explicitly calculated
62 and use in the discretization. The particular form is crucial for
63 numerical stability; alternative definitions break the conservation
64 properties of the discrete equations.
65
66 Relative vorticity is defined:
67 \begin{equation}
68 \zeta_3 = \frac{\Gamma}{A_\zeta}
69 = \frac{1}{{\cal A}_\zeta} ( \delta_i \Delta y_c v - \delta_j \Delta x_c u )
70 \end{equation}
71 where ${\cal A}_\zeta$ is the area of the vorticity cell presented in
72 the vertical and $\Gamma$ is the circulation about that cell.
73
74 \fbox{ \begin{minipage}{4.75in}
75 {\em S/R MOM\_VI\_CALC\_RELVORT3} ({\em mom\_vi\_calc\_relvort3.F})
76
77 $\zeta_3$: {\bf vort3} (local to {\em calc\_mom\_rhs.F})
78 \end{minipage} }
79
80
81 \subsection{Kinetic energy}
82
83 The kinetic energy, denoted $KE$, is defined:
84 \begin{equation}
85 KE = \frac{1}{2} ( \overline{ u^2 }^i + \overline{ v^2 }^j
86 + \epsilon_{nh} \overline{ w^2 }^k )
87 \end{equation}
88
89 \fbox{ \begin{minipage}{4.75in}
90 {\em S/R MOM\_VI\_CALC\_KE} ({\em mom\_vi\_calc\_ke.F})
91
92 $KE$: {\bf KE} (local to {\em calc\_mom\_rhs.F})
93 \end{minipage} }
94
95
96 \subsection{Coriolis terms}
97
98 The potential enstrophy conserving form of the linear Coriolis terms
99 are written:
100 \begin{eqnarray}
101 G_u^{fv} & = &
102 \frac{1}{\Delta x_c}
103 \overline{ \frac{f}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
104 G_v^{fu} & = & -
105 \frac{1}{\Delta y_c}
106 \overline{ \frac{f}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
107 \end{eqnarray}
108 Here, the Coriolis parameter $f$ is defined at vorticity (corner)
109 points.
110 \marginpar{$f$: {\bf fCoriG}}
111 \marginpar{$h_\zeta$: {\bf hFacZ}}
112
113 The potential enstrophy conserving form of the non-linear Coriolis
114 terms are written:
115 \begin{eqnarray}
116 G_u^{\zeta_3 v} & = &
117 \frac{1}{\Delta x_c}
118 \overline{ \frac{\zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
119 G_v^{\zeta_3 u} & = & -
120 \frac{1}{\Delta y_c}
121 \overline{ \frac{\zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
122 \end{eqnarray}
123 \marginpar{$\zeta_3$: {\bf vort3}}
124
125 The Coriolis terms can also be evaluated together and expressed in
126 terms of absolute vorticity $f+\zeta_3$. The potential enstrophy
127 conserving form using the absolute vorticity is written:
128 \begin{eqnarray}
129 G_u^{fv} + G_u^{\zeta_3 v} & = &
130 \frac{1}{\Delta x_c}
131 \overline{ \frac{f + \zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
132 G_v^{fu} + G_v^{\zeta_3 u} & = & -
133 \frac{1}{\Delta y_c}
134 \overline{ \frac{f + \zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
135 \end{eqnarray}
136
137 \marginpar{Run-time control needs to be added for these options} The
138 distinction between using absolute vorticity or relative vorticity is
139 useful when constructing higher order advection schemes; monotone
140 advection of relative vorticity behaves differently to monotone
141 advection of absolute vorticity. Currently the choice of
142 relative/absolute vorticity, centered/upwind/high order advection is
143 available only through commented subroutine calls.
144
145 \fbox{ \begin{minipage}{4.75in}
146 {\em S/R MOM\_VI\_CORIOLIS} ({\em mom\_vi\_coriolis.F})
147
148 {\em S/R MOM\_VI\_U\_CORIOLIS} ({\em mom\_vi\_u\_coriolis.F})
149
150 {\em S/R MOM\_VI\_V\_CORIOLIS} ({\em mom\_vi\_v\_coriolis.F})
151
152 $G_u^{fv}$, $G_u^{\zeta_3 v}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
153
154 $G_v^{fu}$, $G_v^{\zeta_3 u}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
155 \end{minipage} }
156
157
158 \subsection{Shear terms}
159
160 The shear terms ($\zeta_2w$ and $\zeta_1w$) are are discretized to
161 guarantee that no spurious generation of kinetic energy is possible;
162 the horizontal gradient of Bernoulli function has to be consistent
163 with the vertical advection of shear:
164 \marginpar{N-H terms have not been tried!}
165 \begin{eqnarray}
166 G_u^{\zeta_2 w} & = &
167 \frac{1}{ {\cal A}_w \Delta r_f h_w } \overline{
168 \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
169 }^k \\
170 G_v^{\zeta_1 w} & = &
171 \frac{1}{ {\cal A}_s \Delta r_f h_s } \overline{
172 \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
173 }^k
174 \end{eqnarray}
175
176 \fbox{ \begin{minipage}{4.75in}
177 {\em S/R MOM\_VI\_U\_VERTSHEAR} ({\em mom\_vi\_u\_vertshear.F})
178
179 {\em S/R MOM\_VI\_V\_VERTSHEAR} ({\em mom\_vi\_v\_vertshear.F})
180
181 $G_u^{\zeta_2 w}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
182
183 $G_v^{\zeta_1 w}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
184 \end{minipage} }
185
186
187
188 \subsection{Gradient of Bernoulli function}
189
190 \begin{eqnarray}
191 G_u^{\partial_x B} & = &
192 \frac{1}{\Delta x_c} \delta_i ( \phi' + KE ) \\
193 G_v^{\partial_y B} & = &
194 \frac{1}{\Delta x_y} \delta_j ( \phi' + KE )
195 %G_w^{\partial_z B} & = &
196 %\frac{1}{\Delta r_c} h_c \delta_k ( \phi' + KE )
197 \end{eqnarray}
198
199 \fbox{ \begin{minipage}{4.75in}
200 {\em S/R MOM\_VI\_U\_GRAD\_KE} ({\em mom\_vi\_u\_grad\_ke.F})
201
202 {\em S/R MOM\_VI\_V\_GRAD\_KE} ({\em mom\_vi\_v\_grad\_ke.F})
203
204 $G_u^{\partial_x KE}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
205
206 $G_v^{\partial_y KE}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
207 \end{minipage} }
208
209
210
211 \subsection{Horizontal dissipation}
212
213 The horizontal divergence, a complimentary quantity to relative
214 vorticity, is used in parameterizing the Reynolds stresses and is
215 discretized:
216 \begin{equation}
217 D = \frac{1}{{\cal A}_c h_c} (
218 \delta_i \Delta y_g h_w u
219 + \delta_j \Delta x_g h_s v )
220 \end{equation}
221
222 \fbox{ \begin{minipage}{4.75in}
223 {\em S/R MOM\_VI\_CALC\_HDIV} ({\em mom\_vi\_calc\_hdiv.F})
224
225 $D$: {\bf hDiv} (local to {\em calc\_mom\_rhs.F})
226 \end{minipage} }
227
228
229 \subsection{Horizontal dissipation}
230
231 The following discretization of horizontal dissipation conserves
232 potential vorticity (thickness weighted relative vorticity) and
233 divergence and dissipates energy, enstrophy and divergence squared:
234 \begin{eqnarray}
235 G_u^{h-dissip} & = &
236 \frac{1}{\Delta x_c} \delta_i ( A_D D - A_{D4} D^*)
237 - \frac{1}{\Delta y_u h_w} \delta_j h_\zeta ( A_\zeta \zeta - A_{\zeta4} \zeta^* )
238 \\
239 G_v^{h-dissip} & = &
240 \frac{1}{\Delta x_v h_s} \delta_i h_\zeta ( A_\zeta \zeta - A_\zeta \zeta^* )
241 + \frac{1}{\Delta y_c} \delta_j ( A_D D - A_{D4} D^* )
242 \end{eqnarray}
243 where
244 \begin{eqnarray}
245 D^* & = & \frac{1}{{\cal A}_c h_c} (
246 \delta_i \Delta y_g h_w \nabla^2 u
247 + \delta_j \Delta x_g h_s \nabla^2 v ) \\
248 \zeta^* & = & \frac{1}{{\cal A}_\zeta} (
249 \delta_i \Delta y_c \nabla^2 v
250 - \delta_j \Delta x_c \nabla^2 u )
251 \end{eqnarray}
252
253 \fbox{ \begin{minipage}{4.75in}
254 {\em S/R MOM\_VI\_HDISSIP} ({\em mom\_vi\_hdissip.F})
255
256 $G_u^{h-dissip}$: {\bf uDiss} (local to {\em calc\_mom\_rhs.F})
257
258 $G_v^{h-dissip}$: {\bf vDiss} (local to {\em calc\_mom\_rhs.F})
259 \end{minipage} }
260
261
262 \subsection{Vertical dissipation}
263
264 Currently, this is exactly the same code as the flux form equations.
265 \begin{eqnarray}
266 G_u^{v-diss} & = &
267 \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
268 G_v^{v-diss} & = &
269 \frac{1}{\Delta r_f h_s} \delta_k \tau_{23}
270 \end{eqnarray}
271 represents the general discrete form of the vertical dissipation terms.
272
273 In the interior the vertical stresses are discretized:
274 \begin{eqnarray}
275 \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
276 \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v
277 \end{eqnarray}
278
279 \fbox{ \begin{minipage}{4.75in}
280 {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
281
282 {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
283
284 $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})
285
286 $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})
287 \end{minipage} }

  ViewVC Help
Powered by ViewVC 1.1.22