/[MITgcm]/manual/s_algorithm/text/mom_vecinv.tex
ViewVC logotype

Contents of /manual/s_algorithm/text/mom_vecinv.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (show annotations) (download) (as text)
Tue Nov 13 15:20:12 2001 UTC (23 years, 8 months ago) by adcroft
Branch: MAIN
Changes since 1.2: +10 -6 lines
File MIME type: application/x-tex
Curvilinear.

1 % $Header: /u/gcmpack/mitgcmdoc/part2/mom_vecinv.tex,v 1.2 2001/10/25 18:36:53 cnh Exp $
2 % $Name: $
3
4 \section{Vector invariant momentum equations}
5
6 The finite volume method lends itself to describing the continuity and
7 tracer equations in curvilinear coordinate systems. However, in
8 curvilinear coordinates many new metric terms appear in the momentum
9 equations (written in Lagrangian or flux-form) making generalization
10 far from elegant. Fortunately, an alternative form of the equations,
11 the vector invariant equations are exactly that; invariant under
12 coordinate transformations so that they can be applied uniformly in
13 any orthogonal curvilinear coordinate system such as spherical
14 coordinates, boundary following or the conformal spherical cube
15 system.
16
17 The non-hydrostatic vector invariant equations read:
18 \begin{equation}
19 \partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
20 - b \hat{r}
21 + \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
22 \end{equation}
23 which describe motions in any orthogonal curvilinear coordinate
24 system. Here, $B$ is the Bernoulli function and $\vec{\zeta}=\nabla
25 \wedge \vec{v}$ is the vorticity vector. We can take advantage of the
26 elegance of these equations when discretizing them and use the
27 discrete definitions of the grad, curl and divergence operators to
28 satisfy constraints. We can also consider the analogy to forming
29 derived equations, such as the vorticity equation, and examine how the
30 discretization can be adjusted to give suitable vorticity advection
31 among other things.
32
33 The underlying algorithm is the same as for the flux form
34 equations. All that has changed is the contents of the ``G's''. For
35 the time-being, only the hydrostatic terms have been coded but we will
36 indicate the points where non-hydrostatic contributions will enter:
37 \begin{eqnarray}
38 G_u & = & G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B}
39 + G_u^{\partial_z \tau^x} + G_u^{h-dissip} + G_u^{v-dissip} \\
40 G_v & = & G_v^{fu} + G_v^{\zeta_3 u} + G_v^{\zeta_1 w} + G_v^{\partial_y B}
41 + G_v^{\partial_z \tau^y} + G_v^{h-dissip} + G_v^{v-dissip} \\
42 G_w & = & G_w^{fu} + G_w^{\zeta_1 v} + G_w^{\zeta_2 u} + G_w^{\partial_z B}
43 + G_w^{h-dissip} + G_w^{v-dissip}
44 \end{eqnarray}
45
46 \fbox{ \begin{minipage}{4.75in}
47 {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_vecinv/calc\_mom\_rhs.F})
48
49 $G_u$: {\bf Gu} ({\em DYNVARS.h})
50
51 $G_v$: {\bf Gv} ({\em DYNVARS.h})
52
53 $G_w$: {\bf Gw} ({\em DYNVARS.h})
54 \end{minipage} }
55
56 \subsection{Relative vorticity}
57
58 The vertical component of relative vorticity is explicitly calculated
59 and use in the discretization. The particular form is crucial for
60 numerical stability; alternative definitions break the conservation
61 properties of the discrete equations.
62
63 Relative vorticity is defined:
64 \begin{equation}
65 \zeta_3 = \frac{\Gamma}{A_\zeta}
66 = \frac{1}{{\cal A}_\zeta} ( \delta_i \Delta y_c v - \delta_j \Delta x_c u )
67 \end{equation}
68 where ${\cal A}_\zeta$ is the area of the vorticity cell presented in
69 the vertical and $\Gamma$ is the circulation about that cell.
70
71 \fbox{ \begin{minipage}{4.75in}
72 {\em S/R MOM\_VI\_CALC\_RELVORT3} ({\em mom\_vi\_calc\_relvort3.F})
73
74 $\zeta_3$: {\bf vort3} (local to {\em calc\_mom\_rhs.F})
75 \end{minipage} }
76
77
78 \subsection{Kinetic energy}
79
80 The kinetic energy, denoted $KE$, is defined:
81 \begin{equation}
82 KE = \frac{1}{2} ( \overline{ u^2 }^i + \overline{ v^2 }^j
83 + \epsilon_{nh} \overline{ w^2 }^k )
84 \end{equation}
85
86 \fbox{ \begin{minipage}{4.75in}
87 {\em S/R MOM\_VI\_CALC\_KE} ({\em mom\_vi\_calc\_ke.F})
88
89 $KE$: {\bf KE} (local to {\em calc\_mom\_rhs.F})
90 \end{minipage} }
91
92
93 \subsection{Coriolis terms}
94
95 The potential enstrophy conserving form of the linear Coriolis terms
96 are written:
97 \begin{eqnarray}
98 G_u^{fv} & = &
99 \frac{1}{\Delta x_c}
100 \overline{ \frac{f}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
101 G_v^{fu} & = & -
102 \frac{1}{\Delta y_c}
103 \overline{ \frac{f}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
104 \end{eqnarray}
105 Here, the Coriolis parameter $f$ is defined at vorticity (corner)
106 points.
107 \marginpar{$f$: {\bf fCoriG}}
108 \marginpar{$h_\zeta$: {\bf hFacZ}}
109
110 The potential enstrophy conserving form of the non-linear Coriolis
111 terms are written:
112 \begin{eqnarray}
113 G_u^{\zeta_3 v} & = &
114 \frac{1}{\Delta x_c}
115 \overline{ \frac{\zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
116 G_v^{\zeta_3 u} & = & -
117 \frac{1}{\Delta y_c}
118 \overline{ \frac{\zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
119 \end{eqnarray}
120 \marginpar{$\zeta_3$: {\bf vort3}}
121
122 The Coriolis terms can also be evaluated together and expressed in
123 terms of absolute vorticity $f+\zeta_3$. The potential enstrophy
124 conserving form using the absolute vorticity is written:
125 \begin{eqnarray}
126 G_u^{fv} + G_u^{\zeta_3 v} & = &
127 \frac{1}{\Delta x_c}
128 \overline{ \frac{f + \zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
129 G_v^{fu} + G_v^{\zeta_3 u} & = & -
130 \frac{1}{\Delta y_c}
131 \overline{ \frac{f + \zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
132 \end{eqnarray}
133
134 \marginpar{Run-time control needs to be added for these options} The
135 distinction between using absolute vorticity or relative vorticity is
136 useful when constructing higher order advection schemes; monotone
137 advection of relative vorticity behaves differently to monotone
138 advection of absolute vorticity. Currently the choice of
139 relative/absolute vorticity, centered/upwind/high order advection is
140 available only through commented subroutine calls.
141
142 \fbox{ \begin{minipage}{4.75in}
143 {\em S/R MOM\_VI\_CORIOLIS} ({\em mom\_vi\_coriolis.F})
144
145 {\em S/R MOM\_VI\_U\_CORIOLIS} ({\em mom\_vi\_u\_coriolis.F})
146
147 {\em S/R MOM\_VI\_V\_CORIOLIS} ({\em mom\_vi\_v\_coriolis.F})
148
149 $G_u^{fv}$, $G_u^{\zeta_3 v}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
150
151 $G_v^{fu}$, $G_v^{\zeta_3 u}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
152 \end{minipage} }
153
154
155 \subsection{Shear terms}
156
157 The shear terms ($\zeta_2w$ and $\zeta_1w$) are are discretized to
158 guarantee that no spurious generation of kinetic energy is possible;
159 the horizontal gradient of Bernoulli function has to be consistent
160 with the vertical advection of shear:
161 \marginpar{N-H terms have not been tried!}
162 \begin{eqnarray}
163 G_u^{\zeta_2 w} & = &
164 \frac{1}{ {\cal A}_w \Delta r_f h_w } \overline{
165 \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
166 }^k \\
167 G_v^{\zeta_1 w} & = &
168 \frac{1}{ {\cal A}_s \Delta r_f h_s } \overline{
169 \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
170 }^k
171 \end{eqnarray}
172
173 \fbox{ \begin{minipage}{4.75in}
174 {\em S/R MOM\_VI\_U\_VERTSHEAR} ({\em mom\_vi\_u\_vertshear.F})
175
176 {\em S/R MOM\_VI\_V\_VERTSHEAR} ({\em mom\_vi\_v\_vertshear.F})
177
178 $G_u^{\zeta_2 w}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
179
180 $G_v^{\zeta_1 w}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
181 \end{minipage} }
182
183
184
185 \subsection{Gradient of Bernoulli function}
186
187 \begin{eqnarray}
188 G_u^{\partial_x B} & = &
189 \frac{1}{\Delta x_c} \delta_i ( \phi' + KE ) \\
190 G_v^{\partial_y B} & = &
191 \frac{1}{\Delta x_y} \delta_j ( \phi' + KE )
192 %G_w^{\partial_z B} & = &
193 %\frac{1}{\Delta r_c} h_c \delta_k ( \phi' + KE )
194 \end{eqnarray}
195
196 \fbox{ \begin{minipage}{4.75in}
197 {\em S/R MOM\_VI\_U\_GRAD\_KE} ({\em mom\_vi\_u\_grad\_ke.F})
198
199 {\em S/R MOM\_VI\_V\_GRAD\_KE} ({\em mom\_vi\_v\_grad\_ke.F})
200
201 $G_u^{\partial_x KE}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
202
203 $G_v^{\partial_y KE}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
204 \end{minipage} }
205
206
207
208 \subsection{Horizontal dissipation}
209
210 The horizontal divergence, a complimentary quantity to relative
211 vorticity, is used in parameterizing the Reynolds stresses and is
212 discretized:
213 \begin{equation}
214 D = \frac{1}{{\cal A}_c h_c} (
215 \delta_i \Delta y_g h_w u
216 + \delta_j \Delta x_g h_s v )
217 \end{equation}
218
219 \fbox{ \begin{minipage}{4.75in}
220 {\em S/R MOM\_VI\_CALC\_HDIV} ({\em mom\_vi\_calc\_hdiv.F})
221
222 $D$: {\bf hDiv} (local to {\em calc\_mom\_rhs.F})
223 \end{minipage} }
224
225
226 \subsection{Horizontal dissipation}
227
228 The following discretization of horizontal dissipation conserves
229 potential vorticity (thickness weighted relative vorticity) and
230 divergence and dissipates energy, enstrophy and divergence squared:
231 \begin{eqnarray}
232 G_u^{h-dissip} & = &
233 \frac{1}{\Delta x_c} \delta_i ( A_D D - A_{D4} D^*)
234 - \frac{1}{\Delta y_u h_w} \delta_j h_\zeta ( A_\zeta \zeta - A_{\zeta4} \zeta^* )
235 \\
236 G_v^{h-dissip} & = &
237 \frac{1}{\Delta x_v h_s} \delta_i h_\zeta ( A_\zeta \zeta - A_\zeta \zeta^* )
238 + \frac{1}{\Delta y_c} \delta_j ( A_D D - A_{D4} D^* )
239 \end{eqnarray}
240 where
241 \begin{eqnarray}
242 D^* & = & \frac{1}{{\cal A}_c h_c} (
243 \delta_i \Delta y_g h_w \nabla^2 u
244 + \delta_j \Delta x_g h_s \nabla^2 v ) \\
245 \zeta^* & = & \frac{1}{{\cal A}_\zeta} (
246 \delta_i \Delta y_c \nabla^2 v
247 - \delta_j \Delta x_c \nabla^2 u )
248 \end{eqnarray}
249
250 \fbox{ \begin{minipage}{4.75in}
251 {\em S/R MOM\_VI\_HDISSIP} ({\em mom\_vi\_hdissip.F})
252
253 $G_u^{h-dissip}$: {\bf uDiss} (local to {\em calc\_mom\_rhs.F})
254
255 $G_v^{h-dissip}$: {\bf vDiss} (local to {\em calc\_mom\_rhs.F})
256 \end{minipage} }
257
258
259 \subsection{Vertical dissipation}
260
261 Currently, this is exactly the same code as the flux form equations.
262 \begin{eqnarray}
263 G_u^{v-diss} & = &
264 \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
265 G_v^{v-diss} & = &
266 \frac{1}{\Delta r_f h_s} \delta_k \tau_{23}
267 \end{eqnarray}
268 represents the general discrete form of the vertical dissipation terms.
269
270 In the interior the vertical stresses are discretized:
271 \begin{eqnarray}
272 \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
273 \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v
274 \end{eqnarray}
275
276 \fbox{ \begin{minipage}{4.75in}
277 {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
278
279 {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
280
281 $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})
282
283 $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})
284 \end{minipage} }

  ViewVC Help
Powered by ViewVC 1.1.22