/[MITgcm]/manual/s_algorithm/text/mom_vecinv.tex
ViewVC logotype

Contents of /manual/s_algorithm/text/mom_vecinv.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download) (as text)
Thu Aug 9 19:48:39 2001 UTC (23 years, 11 months ago) by adcroft
Branch: MAIN
File MIME type: application/x-tex
Moved things around for more sections fewer subsections
Split spatial-discrete.tex into several smaller files.

1 % $Header: $
2 % $Name: $
3
4 \section{Vector invariant momentum equations}
5
6 The finite volume method lends itself to describing the continuity and
7 tracer equations in curvilinear coordinate systems but the appearance
8 of new metric terms in the flux-form momentum equations makes
9 generalizing them far from elegant. The vector invariant form of the
10 momentum equations are exactly that; invariant under coordinate
11 transformations.
12
13 The non-hydrostatic vector invariant equations read:
14 \begin{equation}
15 \partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
16 - b \hat{r}
17 + \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
18 \end{equation}
19 which describe motions in any orthogonal curvilinear coordinate
20 system. Here, $B$ is the Bernoulli function and $\vec{\zeta}=\nabla
21 \wedge \vec{v}$ is the vorticity vector. We can take advantage of the
22 elegance of these equations when discretizing them and use the
23 discrete definitions of the grad, curl and divergence operators to
24 satisfy constraints. We can also consider the analogy to forming
25 derived equations, such as the vorticity equation, and examine how the
26 discretization can be adjusted to give suitable vorticity advection
27 among other things.
28
29 The underlying algorithm is the same as for the flux form
30 equations. All that has changed is the contents of the ``G's''. For
31 the time-being, only the hydrostatic terms have been coded but we will
32 indicate the points where non-hydrostatic contributions will enter:
33 \begin{eqnarray}
34 G_u & = & G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B}
35 + G_u^{\partial_z \tau^x} + G_u^{h-dissip} + G_u^{v-dissip} \\
36 G_v & = & G_v^{fu} + G_v^{\zeta_3 u} + G_v^{\zeta_1 w} + G_v^{\partial_y B}
37 + G_v^{\partial_z \tau^y} + G_v^{h-dissip} + G_v^{v-dissip} \\
38 G_w & = & G_w^{fu} + G_w^{\zeta_1 v} + G_w^{\zeta_2 u} + G_w^{\partial_z B}
39 + G_w^{h-dissip} + G_w^{v-dissip}
40 \end{eqnarray}
41
42 \fbox{ \begin{minipage}{4.75in}
43 {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_vecinv/calc\_mom\_rhs.F})
44
45 $G_u$: {\bf Gu} ({\em DYNVARS.h})
46
47 $G_v$: {\bf Gv} ({\em DYNVARS.h})
48
49 $G_w$: {\bf Gw} ({\em DYNVARS.h})
50 \end{minipage} }
51
52 \subsection{Relative vorticity}
53
54 The vertical component of relative vorticity is explicitly calculated
55 and use in the discretization. The particular form is crucial for
56 numerical stablility; alternative definitions break the conservation
57 properties of the discrete equations.
58
59 Relative vorticity is defined:
60 \begin{equation}
61 \zeta_3 = \frac{\Gamma}{A_\zeta}
62 = \frac{1}{{\cal A}_\zeta} ( \delta_i \Delta y_c v - \delta_j \Delta x_c u )
63 \end{equation}
64 where ${\cal A}_\zeta$ is the area of the vorticity cell presented in
65 the vertical and $\Gamma$ is the circulation about that cell.
66
67 \fbox{ \begin{minipage}{4.75in}
68 {\em S/R MOM\_VI\_CALC\_RELVORT3} ({\em mom\_vi\_calc\_relvort3.F})
69
70 $\zeta_3$: {\bf vort3} (local to {\em calc\_mom\_rhs.F})
71 \end{minipage} }
72
73
74 \subsection{Kinetic energy}
75
76 The kinetic energy, denoted $KE$, is defined:
77 \begin{equation}
78 KE = \frac{1}{2} ( \overline{ u^2 }^i + \overline{ v^2 }^j
79 + \epsilon_{nh} \overline{ w^2 }^k )
80 \end{equation}
81
82 \fbox{ \begin{minipage}{4.75in}
83 {\em S/R MOM\_VI\_CALC\_KE} ({\em mom\_vi\_calc\_ke.F})
84
85 $KE$: {\bf KE} (local to {\em calc\_mom\_rhs.F})
86 \end{minipage} }
87
88
89 \subsection{Coriolis terms}
90
91 The potential enstrophy conserving form of the linear Coriolis terms
92 are written:
93 \begin{eqnarray}
94 G_u^{fv} & = &
95 \frac{1}{\Delta x_c}
96 \overline{ \frac{f}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
97 G_v^{fu} & = & -
98 \frac{1}{\Delta y_c}
99 \overline{ \frac{f}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
100 \end{eqnarray}
101 Here, the Coriolis parameter $f$ is defined at vorticity (corner)
102 points.
103 \marginpar{$f$: {\bf fCoriG}}
104 \marginpar{$h_\zeta$: {\bf hFacZ}}
105
106 The potential enstrophy conserving form of the non-linear Coriolis
107 terms are written:
108 \begin{eqnarray}
109 G_u^{\zeta_3 v} & = &
110 \frac{1}{\Delta x_c}
111 \overline{ \frac{\zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
112 G_v^{\zeta_3 u} & = & -
113 \frac{1}{\Delta y_c}
114 \overline{ \frac{\zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
115 \end{eqnarray}
116 \marginpar{$\zeta_3$: {\bf vort3}}
117
118 The Coriolis terms can also be evaluated together and expressed in
119 terms of absolute vorticity $f+\zeta_3$. The potential enstrophy
120 conserving form using the absolute vorticity is written:
121 \begin{eqnarray}
122 G_u^{fv} + G_u^{\zeta_3 v} & = &
123 \frac{1}{\Delta x_c}
124 \overline{ \frac{f + \zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
125 G_v^{fu} + G_v^{\zeta_3 u} & = & -
126 \frac{1}{\Delta y_c}
127 \overline{ \frac{f + \zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
128 \end{eqnarray}
129
130 \marginpar{Run-time control needs to be added for these options} The
131 disctinction between using absolute vorticity or relative vorticity is
132 useful when constructing higher order advection schemes; monotone
133 advection of relative vorticity behaves differently to monotone
134 advection of absolute vorticity. Currently the choice of
135 relative/absolute vorticity, centered/upwind/high order advection is
136 available only through commented subroutine calls.
137
138 \fbox{ \begin{minipage}{4.75in}
139 {\em S/R MOM\_VI\_CORIOLIS} ({\em mom\_vi\_coriolis.F})
140
141 {\em S/R MOM\_VI\_U\_CORIOLIS} ({\em mom\_vi\_u\_coriolis.F})
142
143 {\em S/R MOM\_VI\_V\_CORIOLIS} ({\em mom\_vi\_v\_coriolis.F})
144
145 $G_u^{fv}$, $G_u^{\zeta_3 v}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
146
147 $G_v^{fu}$, $G_v^{\zeta_3 u}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
148 \end{minipage} }
149
150
151 \subsection{Shear terms}
152
153 The shear terms ($\zeta_2w$ and $\zeta_1w$) are are discretized to
154 guarantee that no spurious generation of kinetic energy is possible;
155 the horizontal gradient of Bernoulli function has to be consistent
156 with the vertical advection of shear:
157 \marginpar{N-H terms have not been tried!}
158 \begin{eqnarray}
159 G_u^{\zeta_2 w} & = &
160 \frac{1}{ {\cal A}_w \Delta r_f h_w } \overline{
161 \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
162 }^k \\
163 G_v^{\zeta_1 w} & = &
164 \frac{1}{ {\cal A}_s \Delta r_f h_s } \overline{
165 \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
166 }^k
167 \end{eqnarray}
168
169 \fbox{ \begin{minipage}{4.75in}
170 {\em S/R MOM\_VI\_U\_VERTSHEAR} ({\em mom\_vi\_u\_vertshear.F})
171
172 {\em S/R MOM\_VI\_V\_VERTSHEAR} ({\em mom\_vi\_v\_vertshear.F})
173
174 $G_u^{\zeta_2 w}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
175
176 $G_v^{\zeta_1 w}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
177 \end{minipage} }
178
179
180
181 \subsection{Gradient of Bernoulli function}
182
183 \begin{eqnarray}
184 G_u^{\partial_x B} & = &
185 \frac{1}{\Delta x_c} \delta_i ( \phi' + KE ) \\
186 G_v^{\partial_y B} & = &
187 \frac{1}{\Delta x_y} \delta_j ( \phi' + KE )
188 %G_w^{\partial_z B} & = &
189 %\frac{1}{\Delta r_c} h_c \delta_k ( \phi' + KE )
190 \end{eqnarray}
191
192 \fbox{ \begin{minipage}{4.75in}
193 {\em S/R MOM\_VI\_U\_GRAD\_KE} ({\em mom\_vi\_u\_grad\_ke.F})
194
195 {\em S/R MOM\_VI\_V\_GRAD\_KE} ({\em mom\_vi\_v\_grad\_ke.F})
196
197 $G_u^{\partial_x KE}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
198
199 $G_v^{\partial_y KE}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
200 \end{minipage} }
201
202
203
204 \subsection{Horizontal dissipation}
205
206 The horizontal divergence, a complimentary quantity to relative
207 vorticity, is used in parameterizing the Reynolds stresses and is
208 discretized:
209 \begin{equation}
210 D = \frac{1}{{\cal A}_c h_c} (
211 \delta_i \Delta y_g h_w u
212 + \delta_j \Delta x_g h_s v )
213 \end{equation}
214
215 \fbox{ \begin{minipage}{4.75in}
216 {\em S/R MOM\_VI\_CALC\_HDIV} ({\em mom\_vi\_calc\_hdiv.F})
217
218 $D$: {\bf hDiv} (local to {\em calc\_mom\_rhs.F})
219 \end{minipage} }
220
221
222 \subsection{Horizontal dissipation}
223
224 The following discretization of horizontal dissipation conserves
225 potential vorticity (thickness weighted relative vorticity) and
226 divergence and dissipates energy, enstrophy and divergence squared:
227 \begin{eqnarray}
228 G_u^{h-dissip} & = &
229 \frac{1}{\Delta x_c} \delta_i ( A_D D - A_{D4} D^*)
230 - \frac{1}{\Delta y_u h_w} \delta_j h_\zeta ( A_\zeta \zeta - A_{\zeta4} \zeta^* )
231 \\
232 G_v^{h-dissip} & = &
233 \frac{1}{\Delta x_v h_s} \delta_i h_\zeta ( A_\zeta \zeta - A_\zeta \zeta^* )
234 + \frac{1}{\Delta y_c} \delta_j ( A_D D - A_{D4} D^* )
235 \end{eqnarray}
236 where
237 \begin{eqnarray}
238 D^* & = & \frac{1}{{\cal A}_c h_c} (
239 \delta_i \Delta y_g h_w \nabla^2 u
240 + \delta_j \Delta x_g h_s \nabla^2 v ) \\
241 \zeta^* & = & \frac{1}{{\cal A}_\zeta} (
242 \delta_i \Delta y_c \nabla^2 v
243 - \delta_j \Delta x_c \nabla^2 u )
244 \end{eqnarray}
245
246 \fbox{ \begin{minipage}{4.75in}
247 {\em S/R MOM\_VI\_HDISSIP} ({\em mom\_vi\_hdissip.F})
248
249 $G_u^{h-dissip}$: {\bf uDiss} (local to {\em calc\_mom\_rhs.F})
250
251 $G_v^{h-dissip}$: {\bf vDiss} (local to {\em calc\_mom\_rhs.F})
252 \end{minipage} }
253
254
255 \subsection{Vertical dissipation}
256
257 Currently, this is exactly the same code as the flux form equations.
258 \begin{eqnarray}
259 G_u^{v-diss} & = &
260 \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
261 G_v^{v-diss} & = &
262 \frac{1}{\Delta r_f h_s} \delta_k \tau_{23}
263 \end{eqnarray}
264 represents the general discrete form of the vertical dissipation terms.
265
266 In the interior the vertical stresses are discretized:
267 \begin{eqnarray}
268 \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
269 \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v
270 \end{eqnarray}
271
272 \fbox{ \begin{minipage}{4.75in}
273 {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
274
275 {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
276
277 $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})
278
279 $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})
280 \end{minipage} }

  ViewVC Help
Powered by ViewVC 1.1.22