/[MITgcm]/manual/s_algorithm/text/mom_vecinv.tex
ViewVC logotype

Contents of /manual/s_algorithm/text/mom_vecinv.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (show annotations) (download) (as text)
Mon Aug 30 23:09:18 2010 UTC (14 years, 10 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.6: +2 -2 lines
File MIME type: application/x-tex
clean-up latex built:
 (remove multiple definition of label; fix missing reference; replace
  non-standard latex stuff; ...)

1 % $Header: /u/gcmpack/manual/s_algorithm/text/mom_vecinv.tex,v 1.6 2006/06/26 01:03:47 jmc Exp $
2 % $Name: $
3
4 \section{Vector invariant momentum equations}
5 \label{sec:vect-inv_momentum_equations}
6 \begin{rawhtml}
7 <!-- CMIREDIR:vector_invariant_momentum_eqautions: -->
8 \end{rawhtml}
9
10 The finite volume method lends itself to describing the continuity and
11 tracer equations in curvilinear coordinate systems. However, in
12 curvilinear coordinates many new metric terms appear in the momentum
13 equations (written in Lagrangian or flux-form) making generalization
14 far from elegant. Fortunately, an alternative form of the equations,
15 the vector invariant equations are exactly that; invariant under
16 coordinate transformations so that they can be applied uniformly in
17 any orthogonal curvilinear coordinate system such as spherical
18 coordinates, boundary following or the conformal spherical cube
19 system.
20
21 The non-hydrostatic vector invariant equations read:
22 \begin{equation}
23 \partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
24 - b \hat{r}
25 + \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
26 \end{equation}
27 which describe motions in any orthogonal curvilinear coordinate
28 system. Here, $B$ is the Bernoulli function and $\vec{\zeta}=\nabla
29 \wedge \vec{v}$ is the vorticity vector. We can take advantage of the
30 elegance of these equations when discretizing them and use the
31 discrete definitions of the grad, curl and divergence operators to
32 satisfy constraints. We can also consider the analogy to forming
33 derived equations, such as the vorticity equation, and examine how the
34 discretization can be adjusted to give suitable vorticity advection
35 among other things.
36
37 The underlying algorithm is the same as for the flux form
38 equations. All that has changed is the contents of the ``G's''. For
39 the time-being, only the hydrostatic terms have been coded but we will
40 indicate the points where non-hydrostatic contributions will enter:
41 \begin{eqnarray}
42 G_u & = & G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B}
43 + G_u^{\partial_z \tau^x} + G_u^{h-dissip} + G_u^{v-dissip} \\
44 G_v & = & G_v^{fu} + G_v^{\zeta_3 u} + G_v^{\zeta_1 w} + G_v^{\partial_y B}
45 + G_v^{\partial_z \tau^y} + G_v^{h-dissip} + G_v^{v-dissip} \\
46 G_w & = & G_w^{fu} + G_w^{\zeta_1 v} + G_w^{\zeta_2 u} + G_w^{\partial_z B}
47 + G_w^{h-dissip} + G_w^{v-dissip}
48 \end{eqnarray}
49
50 \fbox{ \begin{minipage}{4.75in}
51 {\em S/R MOM\_VECINV} ({\em pkg/mom\_vecinv/mom\_vecinv.F})
52
53 $G_u$: {\bf Gu} ({\em DYNVARS.h})
54
55 $G_v$: {\bf Gv} ({\em DYNVARS.h})
56
57 $G_w$: {\bf Gw} ({\em DYNVARS.h})
58 \end{minipage} }
59
60 \subsection{Relative vorticity}
61
62 The vertical component of relative vorticity is explicitly calculated
63 and use in the discretization. The particular form is crucial for
64 numerical stability; alternative definitions break the conservation
65 properties of the discrete equations.
66
67 Relative vorticity is defined:
68 \begin{equation}
69 \zeta_3 = \frac{\Gamma}{A_\zeta}
70 = \frac{1}{{\cal A}_\zeta} ( \delta_i \Delta y_c v - \delta_j \Delta x_c u )
71 \end{equation}
72 where ${\cal A}_\zeta$ is the area of the vorticity cell presented in
73 the vertical and $\Gamma$ is the circulation about that cell.
74
75 \fbox{ \begin{minipage}{4.75in}
76 {\em S/R MOM\_VI\_CALC\_RELVORT3} ({\em mom\_vi\_calc\_relvort3.F})
77
78 $\zeta_3$: {\bf vort3} (local to {\em mom\_vecinv.F})
79 \end{minipage} }
80
81
82 \subsection{Kinetic energy}
83
84 The kinetic energy, denoted $KE$, is defined:
85 \begin{equation}
86 KE = \frac{1}{2} ( \overline{ u^2 }^i + \overline{ v^2 }^j
87 + \epsilon_{nh} \overline{ w^2 }^k )
88 \end{equation}
89
90 \fbox{ \begin{minipage}{4.75in}
91 {\em S/R MOM\_VI\_CALC\_KE} ({\em mom\_vi\_calc\_ke.F})
92
93 $KE$: {\bf KE} (local to {\em mom\_vecinv.F})
94 \end{minipage} }
95
96
97 \subsection{Coriolis terms}
98
99 The potential enstrophy conserving form of the linear Coriolis terms
100 are written:
101 \begin{eqnarray}
102 G_u^{fv} & = &
103 \frac{1}{\Delta x_c}
104 \overline{ \frac{f}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
105 G_v^{fu} & = & -
106 \frac{1}{\Delta y_c}
107 \overline{ \frac{f}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
108 \end{eqnarray}
109 Here, the Coriolis parameter $f$ is defined at vorticity (corner)
110 points.
111 \marginpar{$f$: {\bf fCoriG}}
112 \marginpar{$h_\zeta$: {\bf hFacZ}}
113
114 The potential enstrophy conserving form of the non-linear Coriolis
115 terms are written:
116 \begin{eqnarray}
117 G_u^{\zeta_3 v} & = &
118 \frac{1}{\Delta x_c}
119 \overline{ \frac{\zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
120 G_v^{\zeta_3 u} & = & -
121 \frac{1}{\Delta y_c}
122 \overline{ \frac{\zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
123 \end{eqnarray}
124 \marginpar{$\zeta_3$: {\bf vort3}}
125
126 The Coriolis terms can also be evaluated together and expressed in
127 terms of absolute vorticity $f+\zeta_3$. The potential enstrophy
128 conserving form using the absolute vorticity is written:
129 \begin{eqnarray}
130 G_u^{fv} + G_u^{\zeta_3 v} & = &
131 \frac{1}{\Delta x_c}
132 \overline{ \frac{f + \zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
133 G_v^{fu} + G_v^{\zeta_3 u} & = & -
134 \frac{1}{\Delta y_c}
135 \overline{ \frac{f + \zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
136 \end{eqnarray}
137
138 \marginpar{Run-time control needs to be added for these options} The
139 distinction between using absolute vorticity or relative vorticity is
140 useful when constructing higher order advection schemes; monotone
141 advection of relative vorticity behaves differently to monotone
142 advection of absolute vorticity. Currently the choice of
143 relative/absolute vorticity, centered/upwind/high order advection is
144 available only through commented subroutine calls.
145
146 \fbox{ \begin{minipage}{4.75in}
147 {\em S/R MOM\_VI\_CORIOLIS} ({\em mom\_vi\_coriolis.F})
148
149 {\em S/R MOM\_VI\_U\_CORIOLIS} ({\em mom\_vi\_u\_coriolis.F})
150
151 {\em S/R MOM\_VI\_V\_CORIOLIS} ({\em mom\_vi\_v\_coriolis.F})
152
153 $G_u^{fv}$, $G_u^{\zeta_3 v}$: {\bf uCf} (local to {\em mom\_vecinv.F})
154
155 $G_v^{fu}$, $G_v^{\zeta_3 u}$: {\bf vCf} (local to {\em mom\_vecinv.F})
156 \end{minipage} }
157
158
159 \subsection{Shear terms}
160
161 The shear terms ($\zeta_2w$ and $\zeta_1w$) are are discretized to
162 guarantee that no spurious generation of kinetic energy is possible;
163 the horizontal gradient of Bernoulli function has to be consistent
164 with the vertical advection of shear:
165 \marginpar{N-H terms have not been tried!}
166 \begin{eqnarray}
167 G_u^{\zeta_2 w} & = &
168 \frac{1}{ {\cal A}_w \Delta r_f h_w } \overline{
169 \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
170 }^k \\
171 G_v^{\zeta_1 w} & = &
172 \frac{1}{ {\cal A}_s \Delta r_f h_s } \overline{
173 \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
174 }^k
175 \end{eqnarray}
176
177 \fbox{ \begin{minipage}{4.75in}
178 {\em S/R MOM\_VI\_U\_VERTSHEAR} ({\em mom\_vi\_u\_vertshear.F})
179
180 {\em S/R MOM\_VI\_V\_VERTSHEAR} ({\em mom\_vi\_v\_vertshear.F})
181
182 $G_u^{\zeta_2 w}$: {\bf uCf} (local to {\em mom\_vecinv.F})
183
184 $G_v^{\zeta_1 w}$: {\bf vCf} (local to {\em mom\_vecinv.F})
185 \end{minipage} }
186
187
188
189 \subsection{Gradient of Bernoulli function}
190
191 \begin{eqnarray}
192 G_u^{\partial_x B} & = &
193 \frac{1}{\Delta x_c} \delta_i ( \phi' + KE ) \\
194 G_v^{\partial_y B} & = &
195 \frac{1}{\Delta x_y} \delta_j ( \phi' + KE )
196 %G_w^{\partial_z B} & = &
197 %\frac{1}{\Delta r_c} h_c \delta_k ( \phi' + KE )
198 \end{eqnarray}
199
200 \fbox{ \begin{minipage}{4.75in}
201 {\em S/R MOM\_VI\_U\_GRAD\_KE} ({\em mom\_vi\_u\_grad\_ke.F})
202
203 {\em S/R MOM\_VI\_V\_GRAD\_KE} ({\em mom\_vi\_v\_grad\_ke.F})
204
205 $G_u^{\partial_x KE}$: {\bf uCf} (local to {\em mom\_vecinv.F})
206
207 $G_v^{\partial_y KE}$: {\bf vCf} (local to {\em mom\_vecinv.F})
208 \end{minipage} }
209
210
211
212 \subsection{Horizontal divergence}
213
214 The horizontal divergence, a complimentary quantity to relative
215 vorticity, is used in parameterizing the Reynolds stresses and is
216 discretized:
217 \begin{equation}
218 D = \frac{1}{{\cal A}_c h_c} (
219 \delta_i \Delta y_g h_w u
220 + \delta_j \Delta x_g h_s v )
221 \end{equation}
222
223 \fbox{ \begin{minipage}{4.75in}
224 {\em S/R MOM\_VI\_CALC\_HDIV} ({\em mom\_vi\_calc\_hdiv.F})
225
226 $D$: {\bf hDiv} (local to {\em mom\_vecinv.F})
227 \end{minipage} }
228
229
230 \subsection{Horizontal dissipation}
231
232 The following discretization of horizontal dissipation conserves
233 potential vorticity (thickness weighted relative vorticity) and
234 divergence and dissipates energy, enstrophy and divergence squared:
235 \begin{eqnarray}
236 G_u^{h-dissip} & = &
237 \frac{1}{\Delta x_c} \delta_i ( A_D D - A_{D4} D^*)
238 - \frac{1}{\Delta y_u h_w} \delta_j h_\zeta ( A_\zeta \zeta - A_{\zeta4} \zeta^* )
239 \\
240 G_v^{h-dissip} & = &
241 \frac{1}{\Delta x_v h_s} \delta_i h_\zeta ( A_\zeta \zeta - A_\zeta \zeta^* )
242 + \frac{1}{\Delta y_c} \delta_j ( A_D D - A_{D4} D^* )
243 \end{eqnarray}
244 where
245 \begin{eqnarray}
246 D^* & = & \frac{1}{{\cal A}_c h_c} (
247 \delta_i \Delta y_g h_w \nabla^2 u
248 + \delta_j \Delta x_g h_s \nabla^2 v ) \\
249 \zeta^* & = & \frac{1}{{\cal A}_\zeta} (
250 \delta_i \Delta y_c \nabla^2 v
251 - \delta_j \Delta x_c \nabla^2 u )
252 \end{eqnarray}
253
254 \fbox{ \begin{minipage}{4.75in}
255 {\em S/R MOM\_VI\_HDISSIP} ({\em mom\_vi\_hdissip.F})
256
257 $G_u^{h-dissip}$: {\bf uDiss} (local to {\em mom\_vecinv.F})
258
259 $G_v^{h-dissip}$: {\bf vDiss} (local to {\em mom\_vecinv.F})
260 \end{minipage} }
261
262
263 \subsection{Vertical dissipation}
264
265 Currently, this is exactly the same code as the flux form equations.
266 \begin{eqnarray}
267 G_u^{v-diss} & = &
268 \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
269 G_v^{v-diss} & = &
270 \frac{1}{\Delta r_f h_s} \delta_k \tau_{23}
271 \end{eqnarray}
272 represents the general discrete form of the vertical dissipation terms.
273
274 In the interior the vertical stresses are discretized:
275 \begin{eqnarray}
276 \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
277 \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v
278 \end{eqnarray}
279
280 \fbox{ \begin{minipage}{4.75in}
281 {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
282
283 {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
284
285 $\tau_{13}$: {\bf urf} (local to {\em mom\_vecinv.F})
286
287 $\tau_{23}$: {\bf vrf} (local to {\em mom\_vecinv.F})
288 \end{minipage} }

  ViewVC Help
Powered by ViewVC 1.1.22