/[MITgcm]/manual/s_algorithm/text/mom_vecinv.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/mom_vecinv.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download) (as text)
Mon Aug 30 23:09:18 2010 UTC (14 years, 10 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.6: +2 -2 lines
File MIME type: application/x-tex
clean-up latex built:
 (remove multiple definition of label; fix missing reference; replace
  non-standard latex stuff; ...)

1 jmc 1.7 % $Header: /u/gcmpack/manual/s_algorithm/text/mom_vecinv.tex,v 1.6 2006/06/26 01:03:47 jmc Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4     \section{Vector invariant momentum equations}
5 jmc 1.7 \label{sec:vect-inv_momentum_equations}
6 edhill 1.4 \begin{rawhtml}
7     <!-- CMIREDIR:vector_invariant_momentum_eqautions: -->
8     \end{rawhtml}
9 adcroft 1.1
10     The finite volume method lends itself to describing the continuity and
11 adcroft 1.3 tracer equations in curvilinear coordinate systems. However, in
12     curvilinear coordinates many new metric terms appear in the momentum
13     equations (written in Lagrangian or flux-form) making generalization
14     far from elegant. Fortunately, an alternative form of the equations,
15     the vector invariant equations are exactly that; invariant under
16     coordinate transformations so that they can be applied uniformly in
17     any orthogonal curvilinear coordinate system such as spherical
18     coordinates, boundary following or the conformal spherical cube
19     system.
20 adcroft 1.1
21     The non-hydrostatic vector invariant equations read:
22     \begin{equation}
23     \partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
24     - b \hat{r}
25     + \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
26     \end{equation}
27     which describe motions in any orthogonal curvilinear coordinate
28     system. Here, $B$ is the Bernoulli function and $\vec{\zeta}=\nabla
29     \wedge \vec{v}$ is the vorticity vector. We can take advantage of the
30     elegance of these equations when discretizing them and use the
31     discrete definitions of the grad, curl and divergence operators to
32     satisfy constraints. We can also consider the analogy to forming
33     derived equations, such as the vorticity equation, and examine how the
34     discretization can be adjusted to give suitable vorticity advection
35     among other things.
36    
37     The underlying algorithm is the same as for the flux form
38     equations. All that has changed is the contents of the ``G's''. For
39     the time-being, only the hydrostatic terms have been coded but we will
40     indicate the points where non-hydrostatic contributions will enter:
41     \begin{eqnarray}
42     G_u & = & G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B}
43     + G_u^{\partial_z \tau^x} + G_u^{h-dissip} + G_u^{v-dissip} \\
44     G_v & = & G_v^{fu} + G_v^{\zeta_3 u} + G_v^{\zeta_1 w} + G_v^{\partial_y B}
45     + G_v^{\partial_z \tau^y} + G_v^{h-dissip} + G_v^{v-dissip} \\
46     G_w & = & G_w^{fu} + G_w^{\zeta_1 v} + G_w^{\zeta_2 u} + G_w^{\partial_z B}
47     + G_w^{h-dissip} + G_w^{v-dissip}
48     \end{eqnarray}
49    
50     \fbox{ \begin{minipage}{4.75in}
51 jmc 1.6 {\em S/R MOM\_VECINV} ({\em pkg/mom\_vecinv/mom\_vecinv.F})
52 adcroft 1.1
53     $G_u$: {\bf Gu} ({\em DYNVARS.h})
54    
55     $G_v$: {\bf Gv} ({\em DYNVARS.h})
56    
57     $G_w$: {\bf Gw} ({\em DYNVARS.h})
58     \end{minipage} }
59    
60     \subsection{Relative vorticity}
61    
62     The vertical component of relative vorticity is explicitly calculated
63     and use in the discretization. The particular form is crucial for
64 cnh 1.2 numerical stability; alternative definitions break the conservation
65 adcroft 1.1 properties of the discrete equations.
66    
67     Relative vorticity is defined:
68     \begin{equation}
69     \zeta_3 = \frac{\Gamma}{A_\zeta}
70     = \frac{1}{{\cal A}_\zeta} ( \delta_i \Delta y_c v - \delta_j \Delta x_c u )
71     \end{equation}
72     where ${\cal A}_\zeta$ is the area of the vorticity cell presented in
73     the vertical and $\Gamma$ is the circulation about that cell.
74    
75     \fbox{ \begin{minipage}{4.75in}
76     {\em S/R MOM\_VI\_CALC\_RELVORT3} ({\em mom\_vi\_calc\_relvort3.F})
77    
78 jmc 1.6 $\zeta_3$: {\bf vort3} (local to {\em mom\_vecinv.F})
79 adcroft 1.1 \end{minipage} }
80    
81    
82     \subsection{Kinetic energy}
83    
84     The kinetic energy, denoted $KE$, is defined:
85     \begin{equation}
86     KE = \frac{1}{2} ( \overline{ u^2 }^i + \overline{ v^2 }^j
87     + \epsilon_{nh} \overline{ w^2 }^k )
88     \end{equation}
89    
90     \fbox{ \begin{minipage}{4.75in}
91     {\em S/R MOM\_VI\_CALC\_KE} ({\em mom\_vi\_calc\_ke.F})
92    
93 jmc 1.6 $KE$: {\bf KE} (local to {\em mom\_vecinv.F})
94 adcroft 1.1 \end{minipage} }
95    
96    
97     \subsection{Coriolis terms}
98    
99     The potential enstrophy conserving form of the linear Coriolis terms
100     are written:
101     \begin{eqnarray}
102     G_u^{fv} & = &
103     \frac{1}{\Delta x_c}
104     \overline{ \frac{f}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
105     G_v^{fu} & = & -
106     \frac{1}{\Delta y_c}
107     \overline{ \frac{f}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
108     \end{eqnarray}
109     Here, the Coriolis parameter $f$ is defined at vorticity (corner)
110     points.
111     \marginpar{$f$: {\bf fCoriG}}
112     \marginpar{$h_\zeta$: {\bf hFacZ}}
113    
114     The potential enstrophy conserving form of the non-linear Coriolis
115     terms are written:
116     \begin{eqnarray}
117     G_u^{\zeta_3 v} & = &
118     \frac{1}{\Delta x_c}
119     \overline{ \frac{\zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
120     G_v^{\zeta_3 u} & = & -
121     \frac{1}{\Delta y_c}
122     \overline{ \frac{\zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
123     \end{eqnarray}
124     \marginpar{$\zeta_3$: {\bf vort3}}
125    
126     The Coriolis terms can also be evaluated together and expressed in
127     terms of absolute vorticity $f+\zeta_3$. The potential enstrophy
128     conserving form using the absolute vorticity is written:
129     \begin{eqnarray}
130     G_u^{fv} + G_u^{\zeta_3 v} & = &
131     \frac{1}{\Delta x_c}
132     \overline{ \frac{f + \zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
133     G_v^{fu} + G_v^{\zeta_3 u} & = & -
134     \frac{1}{\Delta y_c}
135     \overline{ \frac{f + \zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
136     \end{eqnarray}
137    
138     \marginpar{Run-time control needs to be added for these options} The
139 cnh 1.2 distinction between using absolute vorticity or relative vorticity is
140 adcroft 1.1 useful when constructing higher order advection schemes; monotone
141     advection of relative vorticity behaves differently to monotone
142     advection of absolute vorticity. Currently the choice of
143     relative/absolute vorticity, centered/upwind/high order advection is
144     available only through commented subroutine calls.
145    
146     \fbox{ \begin{minipage}{4.75in}
147     {\em S/R MOM\_VI\_CORIOLIS} ({\em mom\_vi\_coriolis.F})
148    
149     {\em S/R MOM\_VI\_U\_CORIOLIS} ({\em mom\_vi\_u\_coriolis.F})
150    
151     {\em S/R MOM\_VI\_V\_CORIOLIS} ({\em mom\_vi\_v\_coriolis.F})
152    
153 jmc 1.6 $G_u^{fv}$, $G_u^{\zeta_3 v}$: {\bf uCf} (local to {\em mom\_vecinv.F})
154 adcroft 1.1
155 jmc 1.6 $G_v^{fu}$, $G_v^{\zeta_3 u}$: {\bf vCf} (local to {\em mom\_vecinv.F})
156 adcroft 1.1 \end{minipage} }
157    
158    
159     \subsection{Shear terms}
160    
161     The shear terms ($\zeta_2w$ and $\zeta_1w$) are are discretized to
162     guarantee that no spurious generation of kinetic energy is possible;
163     the horizontal gradient of Bernoulli function has to be consistent
164     with the vertical advection of shear:
165     \marginpar{N-H terms have not been tried!}
166     \begin{eqnarray}
167     G_u^{\zeta_2 w} & = &
168     \frac{1}{ {\cal A}_w \Delta r_f h_w } \overline{
169     \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
170     }^k \\
171     G_v^{\zeta_1 w} & = &
172     \frac{1}{ {\cal A}_s \Delta r_f h_s } \overline{
173     \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
174     }^k
175     \end{eqnarray}
176    
177     \fbox{ \begin{minipage}{4.75in}
178     {\em S/R MOM\_VI\_U\_VERTSHEAR} ({\em mom\_vi\_u\_vertshear.F})
179    
180     {\em S/R MOM\_VI\_V\_VERTSHEAR} ({\em mom\_vi\_v\_vertshear.F})
181    
182 jmc 1.6 $G_u^{\zeta_2 w}$: {\bf uCf} (local to {\em mom\_vecinv.F})
183 adcroft 1.1
184 jmc 1.6 $G_v^{\zeta_1 w}$: {\bf vCf} (local to {\em mom\_vecinv.F})
185 adcroft 1.1 \end{minipage} }
186    
187    
188    
189     \subsection{Gradient of Bernoulli function}
190    
191     \begin{eqnarray}
192     G_u^{\partial_x B} & = &
193     \frac{1}{\Delta x_c} \delta_i ( \phi' + KE ) \\
194     G_v^{\partial_y B} & = &
195     \frac{1}{\Delta x_y} \delta_j ( \phi' + KE )
196     %G_w^{\partial_z B} & = &
197     %\frac{1}{\Delta r_c} h_c \delta_k ( \phi' + KE )
198     \end{eqnarray}
199    
200     \fbox{ \begin{minipage}{4.75in}
201     {\em S/R MOM\_VI\_U\_GRAD\_KE} ({\em mom\_vi\_u\_grad\_ke.F})
202    
203     {\em S/R MOM\_VI\_V\_GRAD\_KE} ({\em mom\_vi\_v\_grad\_ke.F})
204    
205 jmc 1.6 $G_u^{\partial_x KE}$: {\bf uCf} (local to {\em mom\_vecinv.F})
206 adcroft 1.1
207 jmc 1.6 $G_v^{\partial_y KE}$: {\bf vCf} (local to {\em mom\_vecinv.F})
208 adcroft 1.1 \end{minipage} }
209    
210    
211    
212 jmc 1.6 \subsection{Horizontal divergence}
213 adcroft 1.1
214     The horizontal divergence, a complimentary quantity to relative
215     vorticity, is used in parameterizing the Reynolds stresses and is
216     discretized:
217     \begin{equation}
218     D = \frac{1}{{\cal A}_c h_c} (
219     \delta_i \Delta y_g h_w u
220     + \delta_j \Delta x_g h_s v )
221     \end{equation}
222    
223     \fbox{ \begin{minipage}{4.75in}
224     {\em S/R MOM\_VI\_CALC\_HDIV} ({\em mom\_vi\_calc\_hdiv.F})
225    
226 jmc 1.6 $D$: {\bf hDiv} (local to {\em mom\_vecinv.F})
227 adcroft 1.1 \end{minipage} }
228    
229    
230     \subsection{Horizontal dissipation}
231    
232     The following discretization of horizontal dissipation conserves
233     potential vorticity (thickness weighted relative vorticity) and
234     divergence and dissipates energy, enstrophy and divergence squared:
235     \begin{eqnarray}
236     G_u^{h-dissip} & = &
237     \frac{1}{\Delta x_c} \delta_i ( A_D D - A_{D4} D^*)
238     - \frac{1}{\Delta y_u h_w} \delta_j h_\zeta ( A_\zeta \zeta - A_{\zeta4} \zeta^* )
239     \\
240     G_v^{h-dissip} & = &
241     \frac{1}{\Delta x_v h_s} \delta_i h_\zeta ( A_\zeta \zeta - A_\zeta \zeta^* )
242     + \frac{1}{\Delta y_c} \delta_j ( A_D D - A_{D4} D^* )
243     \end{eqnarray}
244     where
245     \begin{eqnarray}
246     D^* & = & \frac{1}{{\cal A}_c h_c} (
247     \delta_i \Delta y_g h_w \nabla^2 u
248     + \delta_j \Delta x_g h_s \nabla^2 v ) \\
249     \zeta^* & = & \frac{1}{{\cal A}_\zeta} (
250     \delta_i \Delta y_c \nabla^2 v
251     - \delta_j \Delta x_c \nabla^2 u )
252     \end{eqnarray}
253    
254     \fbox{ \begin{minipage}{4.75in}
255     {\em S/R MOM\_VI\_HDISSIP} ({\em mom\_vi\_hdissip.F})
256    
257 jmc 1.6 $G_u^{h-dissip}$: {\bf uDiss} (local to {\em mom\_vecinv.F})
258 adcroft 1.1
259 jmc 1.6 $G_v^{h-dissip}$: {\bf vDiss} (local to {\em mom\_vecinv.F})
260 adcroft 1.1 \end{minipage} }
261    
262    
263     \subsection{Vertical dissipation}
264    
265     Currently, this is exactly the same code as the flux form equations.
266     \begin{eqnarray}
267     G_u^{v-diss} & = &
268     \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
269     G_v^{v-diss} & = &
270     \frac{1}{\Delta r_f h_s} \delta_k \tau_{23}
271     \end{eqnarray}
272     represents the general discrete form of the vertical dissipation terms.
273    
274     In the interior the vertical stresses are discretized:
275     \begin{eqnarray}
276     \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
277     \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v
278     \end{eqnarray}
279    
280     \fbox{ \begin{minipage}{4.75in}
281     {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
282    
283     {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
284    
285 jmc 1.6 $\tau_{13}$: {\bf urf} (local to {\em mom\_vecinv.F})
286 adcroft 1.1
287 jmc 1.6 $\tau_{23}$: {\bf vrf} (local to {\em mom\_vecinv.F})
288 adcroft 1.1 \end{minipage} }

  ViewVC Help
Powered by ViewVC 1.1.22