1 |
jmc |
1.7 |
% $Header: /u/gcmpack/manual/s_algorithm/text/mom_vecinv.tex,v 1.6 2006/06/26 01:03:47 jmc Exp $ |
2 |
cnh |
1.2 |
% $Name: $ |
3 |
adcroft |
1.1 |
|
4 |
|
|
\section{Vector invariant momentum equations} |
5 |
jmc |
1.7 |
\label{sec:vect-inv_momentum_equations} |
6 |
edhill |
1.4 |
\begin{rawhtml} |
7 |
|
|
<!-- CMIREDIR:vector_invariant_momentum_eqautions: --> |
8 |
|
|
\end{rawhtml} |
9 |
adcroft |
1.1 |
|
10 |
|
|
The finite volume method lends itself to describing the continuity and |
11 |
adcroft |
1.3 |
tracer equations in curvilinear coordinate systems. However, in |
12 |
|
|
curvilinear coordinates many new metric terms appear in the momentum |
13 |
|
|
equations (written in Lagrangian or flux-form) making generalization |
14 |
|
|
far from elegant. Fortunately, an alternative form of the equations, |
15 |
|
|
the vector invariant equations are exactly that; invariant under |
16 |
|
|
coordinate transformations so that they can be applied uniformly in |
17 |
|
|
any orthogonal curvilinear coordinate system such as spherical |
18 |
|
|
coordinates, boundary following or the conformal spherical cube |
19 |
|
|
system. |
20 |
adcroft |
1.1 |
|
21 |
|
|
The non-hydrostatic vector invariant equations read: |
22 |
|
|
\begin{equation} |
23 |
|
|
\partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v} |
24 |
|
|
- b \hat{r} |
25 |
|
|
+ \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau} |
26 |
|
|
\end{equation} |
27 |
|
|
which describe motions in any orthogonal curvilinear coordinate |
28 |
|
|
system. Here, $B$ is the Bernoulli function and $\vec{\zeta}=\nabla |
29 |
|
|
\wedge \vec{v}$ is the vorticity vector. We can take advantage of the |
30 |
|
|
elegance of these equations when discretizing them and use the |
31 |
|
|
discrete definitions of the grad, curl and divergence operators to |
32 |
|
|
satisfy constraints. We can also consider the analogy to forming |
33 |
|
|
derived equations, such as the vorticity equation, and examine how the |
34 |
|
|
discretization can be adjusted to give suitable vorticity advection |
35 |
|
|
among other things. |
36 |
|
|
|
37 |
|
|
The underlying algorithm is the same as for the flux form |
38 |
|
|
equations. All that has changed is the contents of the ``G's''. For |
39 |
|
|
the time-being, only the hydrostatic terms have been coded but we will |
40 |
|
|
indicate the points where non-hydrostatic contributions will enter: |
41 |
|
|
\begin{eqnarray} |
42 |
|
|
G_u & = & G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B} |
43 |
|
|
+ G_u^{\partial_z \tau^x} + G_u^{h-dissip} + G_u^{v-dissip} \\ |
44 |
|
|
G_v & = & G_v^{fu} + G_v^{\zeta_3 u} + G_v^{\zeta_1 w} + G_v^{\partial_y B} |
45 |
|
|
+ G_v^{\partial_z \tau^y} + G_v^{h-dissip} + G_v^{v-dissip} \\ |
46 |
|
|
G_w & = & G_w^{fu} + G_w^{\zeta_1 v} + G_w^{\zeta_2 u} + G_w^{\partial_z B} |
47 |
|
|
+ G_w^{h-dissip} + G_w^{v-dissip} |
48 |
|
|
\end{eqnarray} |
49 |
|
|
|
50 |
|
|
\fbox{ \begin{minipage}{4.75in} |
51 |
jmc |
1.6 |
{\em S/R MOM\_VECINV} ({\em pkg/mom\_vecinv/mom\_vecinv.F}) |
52 |
adcroft |
1.1 |
|
53 |
|
|
$G_u$: {\bf Gu} ({\em DYNVARS.h}) |
54 |
|
|
|
55 |
|
|
$G_v$: {\bf Gv} ({\em DYNVARS.h}) |
56 |
|
|
|
57 |
|
|
$G_w$: {\bf Gw} ({\em DYNVARS.h}) |
58 |
|
|
\end{minipage} } |
59 |
|
|
|
60 |
|
|
\subsection{Relative vorticity} |
61 |
|
|
|
62 |
|
|
The vertical component of relative vorticity is explicitly calculated |
63 |
|
|
and use in the discretization. The particular form is crucial for |
64 |
cnh |
1.2 |
numerical stability; alternative definitions break the conservation |
65 |
adcroft |
1.1 |
properties of the discrete equations. |
66 |
|
|
|
67 |
|
|
Relative vorticity is defined: |
68 |
|
|
\begin{equation} |
69 |
|
|
\zeta_3 = \frac{\Gamma}{A_\zeta} |
70 |
|
|
= \frac{1}{{\cal A}_\zeta} ( \delta_i \Delta y_c v - \delta_j \Delta x_c u ) |
71 |
|
|
\end{equation} |
72 |
|
|
where ${\cal A}_\zeta$ is the area of the vorticity cell presented in |
73 |
|
|
the vertical and $\Gamma$ is the circulation about that cell. |
74 |
|
|
|
75 |
|
|
\fbox{ \begin{minipage}{4.75in} |
76 |
|
|
{\em S/R MOM\_VI\_CALC\_RELVORT3} ({\em mom\_vi\_calc\_relvort3.F}) |
77 |
|
|
|
78 |
jmc |
1.6 |
$\zeta_3$: {\bf vort3} (local to {\em mom\_vecinv.F}) |
79 |
adcroft |
1.1 |
\end{minipage} } |
80 |
|
|
|
81 |
|
|
|
82 |
|
|
\subsection{Kinetic energy} |
83 |
|
|
|
84 |
|
|
The kinetic energy, denoted $KE$, is defined: |
85 |
|
|
\begin{equation} |
86 |
|
|
KE = \frac{1}{2} ( \overline{ u^2 }^i + \overline{ v^2 }^j |
87 |
|
|
+ \epsilon_{nh} \overline{ w^2 }^k ) |
88 |
|
|
\end{equation} |
89 |
|
|
|
90 |
|
|
\fbox{ \begin{minipage}{4.75in} |
91 |
|
|
{\em S/R MOM\_VI\_CALC\_KE} ({\em mom\_vi\_calc\_ke.F}) |
92 |
|
|
|
93 |
jmc |
1.6 |
$KE$: {\bf KE} (local to {\em mom\_vecinv.F}) |
94 |
adcroft |
1.1 |
\end{minipage} } |
95 |
|
|
|
96 |
|
|
|
97 |
|
|
\subsection{Coriolis terms} |
98 |
|
|
|
99 |
|
|
The potential enstrophy conserving form of the linear Coriolis terms |
100 |
|
|
are written: |
101 |
|
|
\begin{eqnarray} |
102 |
|
|
G_u^{fv} & = & |
103 |
|
|
\frac{1}{\Delta x_c} |
104 |
|
|
\overline{ \frac{f}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\ |
105 |
|
|
G_v^{fu} & = & - |
106 |
|
|
\frac{1}{\Delta y_c} |
107 |
|
|
\overline{ \frac{f}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j |
108 |
|
|
\end{eqnarray} |
109 |
|
|
Here, the Coriolis parameter $f$ is defined at vorticity (corner) |
110 |
|
|
points. |
111 |
|
|
\marginpar{$f$: {\bf fCoriG}} |
112 |
|
|
\marginpar{$h_\zeta$: {\bf hFacZ}} |
113 |
|
|
|
114 |
|
|
The potential enstrophy conserving form of the non-linear Coriolis |
115 |
|
|
terms are written: |
116 |
|
|
\begin{eqnarray} |
117 |
|
|
G_u^{\zeta_3 v} & = & |
118 |
|
|
\frac{1}{\Delta x_c} |
119 |
|
|
\overline{ \frac{\zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\ |
120 |
|
|
G_v^{\zeta_3 u} & = & - |
121 |
|
|
\frac{1}{\Delta y_c} |
122 |
|
|
\overline{ \frac{\zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j |
123 |
|
|
\end{eqnarray} |
124 |
|
|
\marginpar{$\zeta_3$: {\bf vort3}} |
125 |
|
|
|
126 |
|
|
The Coriolis terms can also be evaluated together and expressed in |
127 |
|
|
terms of absolute vorticity $f+\zeta_3$. The potential enstrophy |
128 |
|
|
conserving form using the absolute vorticity is written: |
129 |
|
|
\begin{eqnarray} |
130 |
|
|
G_u^{fv} + G_u^{\zeta_3 v} & = & |
131 |
|
|
\frac{1}{\Delta x_c} |
132 |
|
|
\overline{ \frac{f + \zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\ |
133 |
|
|
G_v^{fu} + G_v^{\zeta_3 u} & = & - |
134 |
|
|
\frac{1}{\Delta y_c} |
135 |
|
|
\overline{ \frac{f + \zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j |
136 |
|
|
\end{eqnarray} |
137 |
|
|
|
138 |
|
|
\marginpar{Run-time control needs to be added for these options} The |
139 |
cnh |
1.2 |
distinction between using absolute vorticity or relative vorticity is |
140 |
adcroft |
1.1 |
useful when constructing higher order advection schemes; monotone |
141 |
|
|
advection of relative vorticity behaves differently to monotone |
142 |
|
|
advection of absolute vorticity. Currently the choice of |
143 |
|
|
relative/absolute vorticity, centered/upwind/high order advection is |
144 |
|
|
available only through commented subroutine calls. |
145 |
|
|
|
146 |
|
|
\fbox{ \begin{minipage}{4.75in} |
147 |
|
|
{\em S/R MOM\_VI\_CORIOLIS} ({\em mom\_vi\_coriolis.F}) |
148 |
|
|
|
149 |
|
|
{\em S/R MOM\_VI\_U\_CORIOLIS} ({\em mom\_vi\_u\_coriolis.F}) |
150 |
|
|
|
151 |
|
|
{\em S/R MOM\_VI\_V\_CORIOLIS} ({\em mom\_vi\_v\_coriolis.F}) |
152 |
|
|
|
153 |
jmc |
1.6 |
$G_u^{fv}$, $G_u^{\zeta_3 v}$: {\bf uCf} (local to {\em mom\_vecinv.F}) |
154 |
adcroft |
1.1 |
|
155 |
jmc |
1.6 |
$G_v^{fu}$, $G_v^{\zeta_3 u}$: {\bf vCf} (local to {\em mom\_vecinv.F}) |
156 |
adcroft |
1.1 |
\end{minipage} } |
157 |
|
|
|
158 |
|
|
|
159 |
|
|
\subsection{Shear terms} |
160 |
|
|
|
161 |
|
|
The shear terms ($\zeta_2w$ and $\zeta_1w$) are are discretized to |
162 |
|
|
guarantee that no spurious generation of kinetic energy is possible; |
163 |
|
|
the horizontal gradient of Bernoulli function has to be consistent |
164 |
|
|
with the vertical advection of shear: |
165 |
|
|
\marginpar{N-H terms have not been tried!} |
166 |
|
|
\begin{eqnarray} |
167 |
|
|
G_u^{\zeta_2 w} & = & |
168 |
|
|
\frac{1}{ {\cal A}_w \Delta r_f h_w } \overline{ |
169 |
|
|
\overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w ) |
170 |
|
|
}^k \\ |
171 |
|
|
G_v^{\zeta_1 w} & = & |
172 |
|
|
\frac{1}{ {\cal A}_s \Delta r_f h_s } \overline{ |
173 |
|
|
\overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w ) |
174 |
|
|
}^k |
175 |
|
|
\end{eqnarray} |
176 |
|
|
|
177 |
|
|
\fbox{ \begin{minipage}{4.75in} |
178 |
|
|
{\em S/R MOM\_VI\_U\_VERTSHEAR} ({\em mom\_vi\_u\_vertshear.F}) |
179 |
|
|
|
180 |
|
|
{\em S/R MOM\_VI\_V\_VERTSHEAR} ({\em mom\_vi\_v\_vertshear.F}) |
181 |
|
|
|
182 |
jmc |
1.6 |
$G_u^{\zeta_2 w}$: {\bf uCf} (local to {\em mom\_vecinv.F}) |
183 |
adcroft |
1.1 |
|
184 |
jmc |
1.6 |
$G_v^{\zeta_1 w}$: {\bf vCf} (local to {\em mom\_vecinv.F}) |
185 |
adcroft |
1.1 |
\end{minipage} } |
186 |
|
|
|
187 |
|
|
|
188 |
|
|
|
189 |
|
|
\subsection{Gradient of Bernoulli function} |
190 |
|
|
|
191 |
|
|
\begin{eqnarray} |
192 |
|
|
G_u^{\partial_x B} & = & |
193 |
|
|
\frac{1}{\Delta x_c} \delta_i ( \phi' + KE ) \\ |
194 |
|
|
G_v^{\partial_y B} & = & |
195 |
|
|
\frac{1}{\Delta x_y} \delta_j ( \phi' + KE ) |
196 |
|
|
%G_w^{\partial_z B} & = & |
197 |
|
|
%\frac{1}{\Delta r_c} h_c \delta_k ( \phi' + KE ) |
198 |
|
|
\end{eqnarray} |
199 |
|
|
|
200 |
|
|
\fbox{ \begin{minipage}{4.75in} |
201 |
|
|
{\em S/R MOM\_VI\_U\_GRAD\_KE} ({\em mom\_vi\_u\_grad\_ke.F}) |
202 |
|
|
|
203 |
|
|
{\em S/R MOM\_VI\_V\_GRAD\_KE} ({\em mom\_vi\_v\_grad\_ke.F}) |
204 |
|
|
|
205 |
jmc |
1.6 |
$G_u^{\partial_x KE}$: {\bf uCf} (local to {\em mom\_vecinv.F}) |
206 |
adcroft |
1.1 |
|
207 |
jmc |
1.6 |
$G_v^{\partial_y KE}$: {\bf vCf} (local to {\em mom\_vecinv.F}) |
208 |
adcroft |
1.1 |
\end{minipage} } |
209 |
|
|
|
210 |
|
|
|
211 |
|
|
|
212 |
jmc |
1.6 |
\subsection{Horizontal divergence} |
213 |
adcroft |
1.1 |
|
214 |
|
|
The horizontal divergence, a complimentary quantity to relative |
215 |
|
|
vorticity, is used in parameterizing the Reynolds stresses and is |
216 |
|
|
discretized: |
217 |
|
|
\begin{equation} |
218 |
|
|
D = \frac{1}{{\cal A}_c h_c} ( |
219 |
|
|
\delta_i \Delta y_g h_w u |
220 |
|
|
+ \delta_j \Delta x_g h_s v ) |
221 |
|
|
\end{equation} |
222 |
|
|
|
223 |
|
|
\fbox{ \begin{minipage}{4.75in} |
224 |
|
|
{\em S/R MOM\_VI\_CALC\_HDIV} ({\em mom\_vi\_calc\_hdiv.F}) |
225 |
|
|
|
226 |
jmc |
1.6 |
$D$: {\bf hDiv} (local to {\em mom\_vecinv.F}) |
227 |
adcroft |
1.1 |
\end{minipage} } |
228 |
|
|
|
229 |
|
|
|
230 |
|
|
\subsection{Horizontal dissipation} |
231 |
|
|
|
232 |
|
|
The following discretization of horizontal dissipation conserves |
233 |
|
|
potential vorticity (thickness weighted relative vorticity) and |
234 |
|
|
divergence and dissipates energy, enstrophy and divergence squared: |
235 |
|
|
\begin{eqnarray} |
236 |
|
|
G_u^{h-dissip} & = & |
237 |
|
|
\frac{1}{\Delta x_c} \delta_i ( A_D D - A_{D4} D^*) |
238 |
|
|
- \frac{1}{\Delta y_u h_w} \delta_j h_\zeta ( A_\zeta \zeta - A_{\zeta4} \zeta^* ) |
239 |
|
|
\\ |
240 |
|
|
G_v^{h-dissip} & = & |
241 |
|
|
\frac{1}{\Delta x_v h_s} \delta_i h_\zeta ( A_\zeta \zeta - A_\zeta \zeta^* ) |
242 |
|
|
+ \frac{1}{\Delta y_c} \delta_j ( A_D D - A_{D4} D^* ) |
243 |
|
|
\end{eqnarray} |
244 |
|
|
where |
245 |
|
|
\begin{eqnarray} |
246 |
|
|
D^* & = & \frac{1}{{\cal A}_c h_c} ( |
247 |
|
|
\delta_i \Delta y_g h_w \nabla^2 u |
248 |
|
|
+ \delta_j \Delta x_g h_s \nabla^2 v ) \\ |
249 |
|
|
\zeta^* & = & \frac{1}{{\cal A}_\zeta} ( |
250 |
|
|
\delta_i \Delta y_c \nabla^2 v |
251 |
|
|
- \delta_j \Delta x_c \nabla^2 u ) |
252 |
|
|
\end{eqnarray} |
253 |
|
|
|
254 |
|
|
\fbox{ \begin{minipage}{4.75in} |
255 |
|
|
{\em S/R MOM\_VI\_HDISSIP} ({\em mom\_vi\_hdissip.F}) |
256 |
|
|
|
257 |
jmc |
1.6 |
$G_u^{h-dissip}$: {\bf uDiss} (local to {\em mom\_vecinv.F}) |
258 |
adcroft |
1.1 |
|
259 |
jmc |
1.6 |
$G_v^{h-dissip}$: {\bf vDiss} (local to {\em mom\_vecinv.F}) |
260 |
adcroft |
1.1 |
\end{minipage} } |
261 |
|
|
|
262 |
|
|
|
263 |
|
|
\subsection{Vertical dissipation} |
264 |
|
|
|
265 |
|
|
Currently, this is exactly the same code as the flux form equations. |
266 |
|
|
\begin{eqnarray} |
267 |
|
|
G_u^{v-diss} & = & |
268 |
|
|
\frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\ |
269 |
|
|
G_v^{v-diss} & = & |
270 |
|
|
\frac{1}{\Delta r_f h_s} \delta_k \tau_{23} |
271 |
|
|
\end{eqnarray} |
272 |
|
|
represents the general discrete form of the vertical dissipation terms. |
273 |
|
|
|
274 |
|
|
In the interior the vertical stresses are discretized: |
275 |
|
|
\begin{eqnarray} |
276 |
|
|
\tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\ |
277 |
|
|
\tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v |
278 |
|
|
\end{eqnarray} |
279 |
|
|
|
280 |
|
|
\fbox{ \begin{minipage}{4.75in} |
281 |
|
|
{\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F}) |
282 |
|
|
|
283 |
|
|
{\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F}) |
284 |
|
|
|
285 |
jmc |
1.6 |
$\tau_{13}$: {\bf urf} (local to {\em mom\_vecinv.F}) |
286 |
adcroft |
1.1 |
|
287 |
jmc |
1.6 |
$\tau_{23}$: {\bf vrf} (local to {\em mom\_vecinv.F}) |
288 |
adcroft |
1.1 |
\end{minipage} } |