/[MITgcm]/manual/s_algorithm/text/mom_vecinv.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/mom_vecinv.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (hide annotations) (download) (as text)
Sat Oct 16 03:40:12 2004 UTC (20 years, 8 months ago) by edhill
Branch: MAIN
CVS Tags: checkpoint57l_post
Changes since 1.3: +4 -1 lines
File MIME type: application/x-tex
 o add HTML comments as a step towards "URL permanence" which will help
   solve:
   - stale links from the CMI web site
   - rotten indexing by bonniefy.pl
 o also cleanup a merge-mangle in diagnostics.tex

1 edhill 1.4 % $Header: /u/gcmpack/manual/part2/mom_vecinv.tex,v 1.3 2001/11/13 15:20:12 adcroft Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4     \section{Vector invariant momentum equations}
5 edhill 1.4 \begin{rawhtml}
6     <!-- CMIREDIR:vector_invariant_momentum_eqautions: -->
7     \end{rawhtml}
8 adcroft 1.1
9     The finite volume method lends itself to describing the continuity and
10 adcroft 1.3 tracer equations in curvilinear coordinate systems. However, in
11     curvilinear coordinates many new metric terms appear in the momentum
12     equations (written in Lagrangian or flux-form) making generalization
13     far from elegant. Fortunately, an alternative form of the equations,
14     the vector invariant equations are exactly that; invariant under
15     coordinate transformations so that they can be applied uniformly in
16     any orthogonal curvilinear coordinate system such as spherical
17     coordinates, boundary following or the conformal spherical cube
18     system.
19 adcroft 1.1
20     The non-hydrostatic vector invariant equations read:
21     \begin{equation}
22     \partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
23     - b \hat{r}
24     + \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
25     \end{equation}
26     which describe motions in any orthogonal curvilinear coordinate
27     system. Here, $B$ is the Bernoulli function and $\vec{\zeta}=\nabla
28     \wedge \vec{v}$ is the vorticity vector. We can take advantage of the
29     elegance of these equations when discretizing them and use the
30     discrete definitions of the grad, curl and divergence operators to
31     satisfy constraints. We can also consider the analogy to forming
32     derived equations, such as the vorticity equation, and examine how the
33     discretization can be adjusted to give suitable vorticity advection
34     among other things.
35    
36     The underlying algorithm is the same as for the flux form
37     equations. All that has changed is the contents of the ``G's''. For
38     the time-being, only the hydrostatic terms have been coded but we will
39     indicate the points where non-hydrostatic contributions will enter:
40     \begin{eqnarray}
41     G_u & = & G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B}
42     + G_u^{\partial_z \tau^x} + G_u^{h-dissip} + G_u^{v-dissip} \\
43     G_v & = & G_v^{fu} + G_v^{\zeta_3 u} + G_v^{\zeta_1 w} + G_v^{\partial_y B}
44     + G_v^{\partial_z \tau^y} + G_v^{h-dissip} + G_v^{v-dissip} \\
45     G_w & = & G_w^{fu} + G_w^{\zeta_1 v} + G_w^{\zeta_2 u} + G_w^{\partial_z B}
46     + G_w^{h-dissip} + G_w^{v-dissip}
47     \end{eqnarray}
48    
49     \fbox{ \begin{minipage}{4.75in}
50     {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_vecinv/calc\_mom\_rhs.F})
51    
52     $G_u$: {\bf Gu} ({\em DYNVARS.h})
53    
54     $G_v$: {\bf Gv} ({\em DYNVARS.h})
55    
56     $G_w$: {\bf Gw} ({\em DYNVARS.h})
57     \end{minipage} }
58    
59     \subsection{Relative vorticity}
60    
61     The vertical component of relative vorticity is explicitly calculated
62     and use in the discretization. The particular form is crucial for
63 cnh 1.2 numerical stability; alternative definitions break the conservation
64 adcroft 1.1 properties of the discrete equations.
65    
66     Relative vorticity is defined:
67     \begin{equation}
68     \zeta_3 = \frac{\Gamma}{A_\zeta}
69     = \frac{1}{{\cal A}_\zeta} ( \delta_i \Delta y_c v - \delta_j \Delta x_c u )
70     \end{equation}
71     where ${\cal A}_\zeta$ is the area of the vorticity cell presented in
72     the vertical and $\Gamma$ is the circulation about that cell.
73    
74     \fbox{ \begin{minipage}{4.75in}
75     {\em S/R MOM\_VI\_CALC\_RELVORT3} ({\em mom\_vi\_calc\_relvort3.F})
76    
77     $\zeta_3$: {\bf vort3} (local to {\em calc\_mom\_rhs.F})
78     \end{minipage} }
79    
80    
81     \subsection{Kinetic energy}
82    
83     The kinetic energy, denoted $KE$, is defined:
84     \begin{equation}
85     KE = \frac{1}{2} ( \overline{ u^2 }^i + \overline{ v^2 }^j
86     + \epsilon_{nh} \overline{ w^2 }^k )
87     \end{equation}
88    
89     \fbox{ \begin{minipage}{4.75in}
90     {\em S/R MOM\_VI\_CALC\_KE} ({\em mom\_vi\_calc\_ke.F})
91    
92     $KE$: {\bf KE} (local to {\em calc\_mom\_rhs.F})
93     \end{minipage} }
94    
95    
96     \subsection{Coriolis terms}
97    
98     The potential enstrophy conserving form of the linear Coriolis terms
99     are written:
100     \begin{eqnarray}
101     G_u^{fv} & = &
102     \frac{1}{\Delta x_c}
103     \overline{ \frac{f}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
104     G_v^{fu} & = & -
105     \frac{1}{\Delta y_c}
106     \overline{ \frac{f}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
107     \end{eqnarray}
108     Here, the Coriolis parameter $f$ is defined at vorticity (corner)
109     points.
110     \marginpar{$f$: {\bf fCoriG}}
111     \marginpar{$h_\zeta$: {\bf hFacZ}}
112    
113     The potential enstrophy conserving form of the non-linear Coriolis
114     terms are written:
115     \begin{eqnarray}
116     G_u^{\zeta_3 v} & = &
117     \frac{1}{\Delta x_c}
118     \overline{ \frac{\zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
119     G_v^{\zeta_3 u} & = & -
120     \frac{1}{\Delta y_c}
121     \overline{ \frac{\zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
122     \end{eqnarray}
123     \marginpar{$\zeta_3$: {\bf vort3}}
124    
125     The Coriolis terms can also be evaluated together and expressed in
126     terms of absolute vorticity $f+\zeta_3$. The potential enstrophy
127     conserving form using the absolute vorticity is written:
128     \begin{eqnarray}
129     G_u^{fv} + G_u^{\zeta_3 v} & = &
130     \frac{1}{\Delta x_c}
131     \overline{ \frac{f + \zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
132     G_v^{fu} + G_v^{\zeta_3 u} & = & -
133     \frac{1}{\Delta y_c}
134     \overline{ \frac{f + \zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
135     \end{eqnarray}
136    
137     \marginpar{Run-time control needs to be added for these options} The
138 cnh 1.2 distinction between using absolute vorticity or relative vorticity is
139 adcroft 1.1 useful when constructing higher order advection schemes; monotone
140     advection of relative vorticity behaves differently to monotone
141     advection of absolute vorticity. Currently the choice of
142     relative/absolute vorticity, centered/upwind/high order advection is
143     available only through commented subroutine calls.
144    
145     \fbox{ \begin{minipage}{4.75in}
146     {\em S/R MOM\_VI\_CORIOLIS} ({\em mom\_vi\_coriolis.F})
147    
148     {\em S/R MOM\_VI\_U\_CORIOLIS} ({\em mom\_vi\_u\_coriolis.F})
149    
150     {\em S/R MOM\_VI\_V\_CORIOLIS} ({\em mom\_vi\_v\_coriolis.F})
151    
152     $G_u^{fv}$, $G_u^{\zeta_3 v}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
153    
154     $G_v^{fu}$, $G_v^{\zeta_3 u}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
155     \end{minipage} }
156    
157    
158     \subsection{Shear terms}
159    
160     The shear terms ($\zeta_2w$ and $\zeta_1w$) are are discretized to
161     guarantee that no spurious generation of kinetic energy is possible;
162     the horizontal gradient of Bernoulli function has to be consistent
163     with the vertical advection of shear:
164     \marginpar{N-H terms have not been tried!}
165     \begin{eqnarray}
166     G_u^{\zeta_2 w} & = &
167     \frac{1}{ {\cal A}_w \Delta r_f h_w } \overline{
168     \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
169     }^k \\
170     G_v^{\zeta_1 w} & = &
171     \frac{1}{ {\cal A}_s \Delta r_f h_s } \overline{
172     \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
173     }^k
174     \end{eqnarray}
175    
176     \fbox{ \begin{minipage}{4.75in}
177     {\em S/R MOM\_VI\_U\_VERTSHEAR} ({\em mom\_vi\_u\_vertshear.F})
178    
179     {\em S/R MOM\_VI\_V\_VERTSHEAR} ({\em mom\_vi\_v\_vertshear.F})
180    
181     $G_u^{\zeta_2 w}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
182    
183     $G_v^{\zeta_1 w}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
184     \end{minipage} }
185    
186    
187    
188     \subsection{Gradient of Bernoulli function}
189    
190     \begin{eqnarray}
191     G_u^{\partial_x B} & = &
192     \frac{1}{\Delta x_c} \delta_i ( \phi' + KE ) \\
193     G_v^{\partial_y B} & = &
194     \frac{1}{\Delta x_y} \delta_j ( \phi' + KE )
195     %G_w^{\partial_z B} & = &
196     %\frac{1}{\Delta r_c} h_c \delta_k ( \phi' + KE )
197     \end{eqnarray}
198    
199     \fbox{ \begin{minipage}{4.75in}
200     {\em S/R MOM\_VI\_U\_GRAD\_KE} ({\em mom\_vi\_u\_grad\_ke.F})
201    
202     {\em S/R MOM\_VI\_V\_GRAD\_KE} ({\em mom\_vi\_v\_grad\_ke.F})
203    
204     $G_u^{\partial_x KE}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
205    
206     $G_v^{\partial_y KE}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
207     \end{minipage} }
208    
209    
210    
211     \subsection{Horizontal dissipation}
212    
213     The horizontal divergence, a complimentary quantity to relative
214     vorticity, is used in parameterizing the Reynolds stresses and is
215     discretized:
216     \begin{equation}
217     D = \frac{1}{{\cal A}_c h_c} (
218     \delta_i \Delta y_g h_w u
219     + \delta_j \Delta x_g h_s v )
220     \end{equation}
221    
222     \fbox{ \begin{minipage}{4.75in}
223     {\em S/R MOM\_VI\_CALC\_HDIV} ({\em mom\_vi\_calc\_hdiv.F})
224    
225     $D$: {\bf hDiv} (local to {\em calc\_mom\_rhs.F})
226     \end{minipage} }
227    
228    
229     \subsection{Horizontal dissipation}
230    
231     The following discretization of horizontal dissipation conserves
232     potential vorticity (thickness weighted relative vorticity) and
233     divergence and dissipates energy, enstrophy and divergence squared:
234     \begin{eqnarray}
235     G_u^{h-dissip} & = &
236     \frac{1}{\Delta x_c} \delta_i ( A_D D - A_{D4} D^*)
237     - \frac{1}{\Delta y_u h_w} \delta_j h_\zeta ( A_\zeta \zeta - A_{\zeta4} \zeta^* )
238     \\
239     G_v^{h-dissip} & = &
240     \frac{1}{\Delta x_v h_s} \delta_i h_\zeta ( A_\zeta \zeta - A_\zeta \zeta^* )
241     + \frac{1}{\Delta y_c} \delta_j ( A_D D - A_{D4} D^* )
242     \end{eqnarray}
243     where
244     \begin{eqnarray}
245     D^* & = & \frac{1}{{\cal A}_c h_c} (
246     \delta_i \Delta y_g h_w \nabla^2 u
247     + \delta_j \Delta x_g h_s \nabla^2 v ) \\
248     \zeta^* & = & \frac{1}{{\cal A}_\zeta} (
249     \delta_i \Delta y_c \nabla^2 v
250     - \delta_j \Delta x_c \nabla^2 u )
251     \end{eqnarray}
252    
253     \fbox{ \begin{minipage}{4.75in}
254     {\em S/R MOM\_VI\_HDISSIP} ({\em mom\_vi\_hdissip.F})
255    
256     $G_u^{h-dissip}$: {\bf uDiss} (local to {\em calc\_mom\_rhs.F})
257    
258     $G_v^{h-dissip}$: {\bf vDiss} (local to {\em calc\_mom\_rhs.F})
259     \end{minipage} }
260    
261    
262     \subsection{Vertical dissipation}
263    
264     Currently, this is exactly the same code as the flux form equations.
265     \begin{eqnarray}
266     G_u^{v-diss} & = &
267     \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
268     G_v^{v-diss} & = &
269     \frac{1}{\Delta r_f h_s} \delta_k \tau_{23}
270     \end{eqnarray}
271     represents the general discrete form of the vertical dissipation terms.
272    
273     In the interior the vertical stresses are discretized:
274     \begin{eqnarray}
275     \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
276     \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v
277     \end{eqnarray}
278    
279     \fbox{ \begin{minipage}{4.75in}
280     {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
281    
282     {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
283    
284     $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})
285    
286     $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})
287     \end{minipage} }

  ViewVC Help
Powered by ViewVC 1.1.22