/[MITgcm]/manual/s_algorithm/text/mom_vecinv.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/mom_vecinv.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download) (as text)
Tue Nov 13 15:20:12 2001 UTC (23 years, 7 months ago) by adcroft
Branch: MAIN
Changes since 1.2: +10 -6 lines
File MIME type: application/x-tex
Curvilinear.

1 adcroft 1.3 % $Header: /u/gcmpack/mitgcmdoc/part2/mom_vecinv.tex,v 1.2 2001/10/25 18:36:53 cnh Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4     \section{Vector invariant momentum equations}
5    
6     The finite volume method lends itself to describing the continuity and
7 adcroft 1.3 tracer equations in curvilinear coordinate systems. However, in
8     curvilinear coordinates many new metric terms appear in the momentum
9     equations (written in Lagrangian or flux-form) making generalization
10     far from elegant. Fortunately, an alternative form of the equations,
11     the vector invariant equations are exactly that; invariant under
12     coordinate transformations so that they can be applied uniformly in
13     any orthogonal curvilinear coordinate system such as spherical
14     coordinates, boundary following or the conformal spherical cube
15     system.
16 adcroft 1.1
17     The non-hydrostatic vector invariant equations read:
18     \begin{equation}
19     \partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
20     - b \hat{r}
21     + \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
22     \end{equation}
23     which describe motions in any orthogonal curvilinear coordinate
24     system. Here, $B$ is the Bernoulli function and $\vec{\zeta}=\nabla
25     \wedge \vec{v}$ is the vorticity vector. We can take advantage of the
26     elegance of these equations when discretizing them and use the
27     discrete definitions of the grad, curl and divergence operators to
28     satisfy constraints. We can also consider the analogy to forming
29     derived equations, such as the vorticity equation, and examine how the
30     discretization can be adjusted to give suitable vorticity advection
31     among other things.
32    
33     The underlying algorithm is the same as for the flux form
34     equations. All that has changed is the contents of the ``G's''. For
35     the time-being, only the hydrostatic terms have been coded but we will
36     indicate the points where non-hydrostatic contributions will enter:
37     \begin{eqnarray}
38     G_u & = & G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B}
39     + G_u^{\partial_z \tau^x} + G_u^{h-dissip} + G_u^{v-dissip} \\
40     G_v & = & G_v^{fu} + G_v^{\zeta_3 u} + G_v^{\zeta_1 w} + G_v^{\partial_y B}
41     + G_v^{\partial_z \tau^y} + G_v^{h-dissip} + G_v^{v-dissip} \\
42     G_w & = & G_w^{fu} + G_w^{\zeta_1 v} + G_w^{\zeta_2 u} + G_w^{\partial_z B}
43     + G_w^{h-dissip} + G_w^{v-dissip}
44     \end{eqnarray}
45    
46     \fbox{ \begin{minipage}{4.75in}
47     {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_vecinv/calc\_mom\_rhs.F})
48    
49     $G_u$: {\bf Gu} ({\em DYNVARS.h})
50    
51     $G_v$: {\bf Gv} ({\em DYNVARS.h})
52    
53     $G_w$: {\bf Gw} ({\em DYNVARS.h})
54     \end{minipage} }
55    
56     \subsection{Relative vorticity}
57    
58     The vertical component of relative vorticity is explicitly calculated
59     and use in the discretization. The particular form is crucial for
60 cnh 1.2 numerical stability; alternative definitions break the conservation
61 adcroft 1.1 properties of the discrete equations.
62    
63     Relative vorticity is defined:
64     \begin{equation}
65     \zeta_3 = \frac{\Gamma}{A_\zeta}
66     = \frac{1}{{\cal A}_\zeta} ( \delta_i \Delta y_c v - \delta_j \Delta x_c u )
67     \end{equation}
68     where ${\cal A}_\zeta$ is the area of the vorticity cell presented in
69     the vertical and $\Gamma$ is the circulation about that cell.
70    
71     \fbox{ \begin{minipage}{4.75in}
72     {\em S/R MOM\_VI\_CALC\_RELVORT3} ({\em mom\_vi\_calc\_relvort3.F})
73    
74     $\zeta_3$: {\bf vort3} (local to {\em calc\_mom\_rhs.F})
75     \end{minipage} }
76    
77    
78     \subsection{Kinetic energy}
79    
80     The kinetic energy, denoted $KE$, is defined:
81     \begin{equation}
82     KE = \frac{1}{2} ( \overline{ u^2 }^i + \overline{ v^2 }^j
83     + \epsilon_{nh} \overline{ w^2 }^k )
84     \end{equation}
85    
86     \fbox{ \begin{minipage}{4.75in}
87     {\em S/R MOM\_VI\_CALC\_KE} ({\em mom\_vi\_calc\_ke.F})
88    
89     $KE$: {\bf KE} (local to {\em calc\_mom\_rhs.F})
90     \end{minipage} }
91    
92    
93     \subsection{Coriolis terms}
94    
95     The potential enstrophy conserving form of the linear Coriolis terms
96     are written:
97     \begin{eqnarray}
98     G_u^{fv} & = &
99     \frac{1}{\Delta x_c}
100     \overline{ \frac{f}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
101     G_v^{fu} & = & -
102     \frac{1}{\Delta y_c}
103     \overline{ \frac{f}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
104     \end{eqnarray}
105     Here, the Coriolis parameter $f$ is defined at vorticity (corner)
106     points.
107     \marginpar{$f$: {\bf fCoriG}}
108     \marginpar{$h_\zeta$: {\bf hFacZ}}
109    
110     The potential enstrophy conserving form of the non-linear Coriolis
111     terms are written:
112     \begin{eqnarray}
113     G_u^{\zeta_3 v} & = &
114     \frac{1}{\Delta x_c}
115     \overline{ \frac{\zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
116     G_v^{\zeta_3 u} & = & -
117     \frac{1}{\Delta y_c}
118     \overline{ \frac{\zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
119     \end{eqnarray}
120     \marginpar{$\zeta_3$: {\bf vort3}}
121    
122     The Coriolis terms can also be evaluated together and expressed in
123     terms of absolute vorticity $f+\zeta_3$. The potential enstrophy
124     conserving form using the absolute vorticity is written:
125     \begin{eqnarray}
126     G_u^{fv} + G_u^{\zeta_3 v} & = &
127     \frac{1}{\Delta x_c}
128     \overline{ \frac{f + \zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
129     G_v^{fu} + G_v^{\zeta_3 u} & = & -
130     \frac{1}{\Delta y_c}
131     \overline{ \frac{f + \zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
132     \end{eqnarray}
133    
134     \marginpar{Run-time control needs to be added for these options} The
135 cnh 1.2 distinction between using absolute vorticity or relative vorticity is
136 adcroft 1.1 useful when constructing higher order advection schemes; monotone
137     advection of relative vorticity behaves differently to monotone
138     advection of absolute vorticity. Currently the choice of
139     relative/absolute vorticity, centered/upwind/high order advection is
140     available only through commented subroutine calls.
141    
142     \fbox{ \begin{minipage}{4.75in}
143     {\em S/R MOM\_VI\_CORIOLIS} ({\em mom\_vi\_coriolis.F})
144    
145     {\em S/R MOM\_VI\_U\_CORIOLIS} ({\em mom\_vi\_u\_coriolis.F})
146    
147     {\em S/R MOM\_VI\_V\_CORIOLIS} ({\em mom\_vi\_v\_coriolis.F})
148    
149     $G_u^{fv}$, $G_u^{\zeta_3 v}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
150    
151     $G_v^{fu}$, $G_v^{\zeta_3 u}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
152     \end{minipage} }
153    
154    
155     \subsection{Shear terms}
156    
157     The shear terms ($\zeta_2w$ and $\zeta_1w$) are are discretized to
158     guarantee that no spurious generation of kinetic energy is possible;
159     the horizontal gradient of Bernoulli function has to be consistent
160     with the vertical advection of shear:
161     \marginpar{N-H terms have not been tried!}
162     \begin{eqnarray}
163     G_u^{\zeta_2 w} & = &
164     \frac{1}{ {\cal A}_w \Delta r_f h_w } \overline{
165     \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
166     }^k \\
167     G_v^{\zeta_1 w} & = &
168     \frac{1}{ {\cal A}_s \Delta r_f h_s } \overline{
169     \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
170     }^k
171     \end{eqnarray}
172    
173     \fbox{ \begin{minipage}{4.75in}
174     {\em S/R MOM\_VI\_U\_VERTSHEAR} ({\em mom\_vi\_u\_vertshear.F})
175    
176     {\em S/R MOM\_VI\_V\_VERTSHEAR} ({\em mom\_vi\_v\_vertshear.F})
177    
178     $G_u^{\zeta_2 w}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
179    
180     $G_v^{\zeta_1 w}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
181     \end{minipage} }
182    
183    
184    
185     \subsection{Gradient of Bernoulli function}
186    
187     \begin{eqnarray}
188     G_u^{\partial_x B} & = &
189     \frac{1}{\Delta x_c} \delta_i ( \phi' + KE ) \\
190     G_v^{\partial_y B} & = &
191     \frac{1}{\Delta x_y} \delta_j ( \phi' + KE )
192     %G_w^{\partial_z B} & = &
193     %\frac{1}{\Delta r_c} h_c \delta_k ( \phi' + KE )
194     \end{eqnarray}
195    
196     \fbox{ \begin{minipage}{4.75in}
197     {\em S/R MOM\_VI\_U\_GRAD\_KE} ({\em mom\_vi\_u\_grad\_ke.F})
198    
199     {\em S/R MOM\_VI\_V\_GRAD\_KE} ({\em mom\_vi\_v\_grad\_ke.F})
200    
201     $G_u^{\partial_x KE}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
202    
203     $G_v^{\partial_y KE}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
204     \end{minipage} }
205    
206    
207    
208     \subsection{Horizontal dissipation}
209    
210     The horizontal divergence, a complimentary quantity to relative
211     vorticity, is used in parameterizing the Reynolds stresses and is
212     discretized:
213     \begin{equation}
214     D = \frac{1}{{\cal A}_c h_c} (
215     \delta_i \Delta y_g h_w u
216     + \delta_j \Delta x_g h_s v )
217     \end{equation}
218    
219     \fbox{ \begin{minipage}{4.75in}
220     {\em S/R MOM\_VI\_CALC\_HDIV} ({\em mom\_vi\_calc\_hdiv.F})
221    
222     $D$: {\bf hDiv} (local to {\em calc\_mom\_rhs.F})
223     \end{minipage} }
224    
225    
226     \subsection{Horizontal dissipation}
227    
228     The following discretization of horizontal dissipation conserves
229     potential vorticity (thickness weighted relative vorticity) and
230     divergence and dissipates energy, enstrophy and divergence squared:
231     \begin{eqnarray}
232     G_u^{h-dissip} & = &
233     \frac{1}{\Delta x_c} \delta_i ( A_D D - A_{D4} D^*)
234     - \frac{1}{\Delta y_u h_w} \delta_j h_\zeta ( A_\zeta \zeta - A_{\zeta4} \zeta^* )
235     \\
236     G_v^{h-dissip} & = &
237     \frac{1}{\Delta x_v h_s} \delta_i h_\zeta ( A_\zeta \zeta - A_\zeta \zeta^* )
238     + \frac{1}{\Delta y_c} \delta_j ( A_D D - A_{D4} D^* )
239     \end{eqnarray}
240     where
241     \begin{eqnarray}
242     D^* & = & \frac{1}{{\cal A}_c h_c} (
243     \delta_i \Delta y_g h_w \nabla^2 u
244     + \delta_j \Delta x_g h_s \nabla^2 v ) \\
245     \zeta^* & = & \frac{1}{{\cal A}_\zeta} (
246     \delta_i \Delta y_c \nabla^2 v
247     - \delta_j \Delta x_c \nabla^2 u )
248     \end{eqnarray}
249    
250     \fbox{ \begin{minipage}{4.75in}
251     {\em S/R MOM\_VI\_HDISSIP} ({\em mom\_vi\_hdissip.F})
252    
253     $G_u^{h-dissip}$: {\bf uDiss} (local to {\em calc\_mom\_rhs.F})
254    
255     $G_v^{h-dissip}$: {\bf vDiss} (local to {\em calc\_mom\_rhs.F})
256     \end{minipage} }
257    
258    
259     \subsection{Vertical dissipation}
260    
261     Currently, this is exactly the same code as the flux form equations.
262     \begin{eqnarray}
263     G_u^{v-diss} & = &
264     \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
265     G_v^{v-diss} & = &
266     \frac{1}{\Delta r_f h_s} \delta_k \tau_{23}
267     \end{eqnarray}
268     represents the general discrete form of the vertical dissipation terms.
269    
270     In the interior the vertical stresses are discretized:
271     \begin{eqnarray}
272     \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
273     \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v
274     \end{eqnarray}
275    
276     \fbox{ \begin{minipage}{4.75in}
277     {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
278    
279     {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
280    
281     $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})
282    
283     $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})
284     \end{minipage} }

  ViewVC Help
Powered by ViewVC 1.1.22