/[MITgcm]/manual/s_algorithm/text/mom_vecinv.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/mom_vecinv.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Thu Aug 9 19:48:39 2001 UTC (22 years, 9 months ago) by adcroft
Branch: MAIN
File MIME type: application/x-tex
Moved things around for more sections fewer subsections
Split spatial-discrete.tex into several smaller files.

1 adcroft 1.1 % $Header: $
2     % $Name: $
3    
4     \section{Vector invariant momentum equations}
5    
6     The finite volume method lends itself to describing the continuity and
7     tracer equations in curvilinear coordinate systems but the appearance
8     of new metric terms in the flux-form momentum equations makes
9     generalizing them far from elegant. The vector invariant form of the
10     momentum equations are exactly that; invariant under coordinate
11     transformations.
12    
13     The non-hydrostatic vector invariant equations read:
14     \begin{equation}
15     \partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
16     - b \hat{r}
17     + \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
18     \end{equation}
19     which describe motions in any orthogonal curvilinear coordinate
20     system. Here, $B$ is the Bernoulli function and $\vec{\zeta}=\nabla
21     \wedge \vec{v}$ is the vorticity vector. We can take advantage of the
22     elegance of these equations when discretizing them and use the
23     discrete definitions of the grad, curl and divergence operators to
24     satisfy constraints. We can also consider the analogy to forming
25     derived equations, such as the vorticity equation, and examine how the
26     discretization can be adjusted to give suitable vorticity advection
27     among other things.
28    
29     The underlying algorithm is the same as for the flux form
30     equations. All that has changed is the contents of the ``G's''. For
31     the time-being, only the hydrostatic terms have been coded but we will
32     indicate the points where non-hydrostatic contributions will enter:
33     \begin{eqnarray}
34     G_u & = & G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B}
35     + G_u^{\partial_z \tau^x} + G_u^{h-dissip} + G_u^{v-dissip} \\
36     G_v & = & G_v^{fu} + G_v^{\zeta_3 u} + G_v^{\zeta_1 w} + G_v^{\partial_y B}
37     + G_v^{\partial_z \tau^y} + G_v^{h-dissip} + G_v^{v-dissip} \\
38     G_w & = & G_w^{fu} + G_w^{\zeta_1 v} + G_w^{\zeta_2 u} + G_w^{\partial_z B}
39     + G_w^{h-dissip} + G_w^{v-dissip}
40     \end{eqnarray}
41    
42     \fbox{ \begin{minipage}{4.75in}
43     {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_vecinv/calc\_mom\_rhs.F})
44    
45     $G_u$: {\bf Gu} ({\em DYNVARS.h})
46    
47     $G_v$: {\bf Gv} ({\em DYNVARS.h})
48    
49     $G_w$: {\bf Gw} ({\em DYNVARS.h})
50     \end{minipage} }
51    
52     \subsection{Relative vorticity}
53    
54     The vertical component of relative vorticity is explicitly calculated
55     and use in the discretization. The particular form is crucial for
56     numerical stablility; alternative definitions break the conservation
57     properties of the discrete equations.
58    
59     Relative vorticity is defined:
60     \begin{equation}
61     \zeta_3 = \frac{\Gamma}{A_\zeta}
62     = \frac{1}{{\cal A}_\zeta} ( \delta_i \Delta y_c v - \delta_j \Delta x_c u )
63     \end{equation}
64     where ${\cal A}_\zeta$ is the area of the vorticity cell presented in
65     the vertical and $\Gamma$ is the circulation about that cell.
66    
67     \fbox{ \begin{minipage}{4.75in}
68     {\em S/R MOM\_VI\_CALC\_RELVORT3} ({\em mom\_vi\_calc\_relvort3.F})
69    
70     $\zeta_3$: {\bf vort3} (local to {\em calc\_mom\_rhs.F})
71     \end{minipage} }
72    
73    
74     \subsection{Kinetic energy}
75    
76     The kinetic energy, denoted $KE$, is defined:
77     \begin{equation}
78     KE = \frac{1}{2} ( \overline{ u^2 }^i + \overline{ v^2 }^j
79     + \epsilon_{nh} \overline{ w^2 }^k )
80     \end{equation}
81    
82     \fbox{ \begin{minipage}{4.75in}
83     {\em S/R MOM\_VI\_CALC\_KE} ({\em mom\_vi\_calc\_ke.F})
84    
85     $KE$: {\bf KE} (local to {\em calc\_mom\_rhs.F})
86     \end{minipage} }
87    
88    
89     \subsection{Coriolis terms}
90    
91     The potential enstrophy conserving form of the linear Coriolis terms
92     are written:
93     \begin{eqnarray}
94     G_u^{fv} & = &
95     \frac{1}{\Delta x_c}
96     \overline{ \frac{f}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
97     G_v^{fu} & = & -
98     \frac{1}{\Delta y_c}
99     \overline{ \frac{f}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
100     \end{eqnarray}
101     Here, the Coriolis parameter $f$ is defined at vorticity (corner)
102     points.
103     \marginpar{$f$: {\bf fCoriG}}
104     \marginpar{$h_\zeta$: {\bf hFacZ}}
105    
106     The potential enstrophy conserving form of the non-linear Coriolis
107     terms are written:
108     \begin{eqnarray}
109     G_u^{\zeta_3 v} & = &
110     \frac{1}{\Delta x_c}
111     \overline{ \frac{\zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
112     G_v^{\zeta_3 u} & = & -
113     \frac{1}{\Delta y_c}
114     \overline{ \frac{\zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
115     \end{eqnarray}
116     \marginpar{$\zeta_3$: {\bf vort3}}
117    
118     The Coriolis terms can also be evaluated together and expressed in
119     terms of absolute vorticity $f+\zeta_3$. The potential enstrophy
120     conserving form using the absolute vorticity is written:
121     \begin{eqnarray}
122     G_u^{fv} + G_u^{\zeta_3 v} & = &
123     \frac{1}{\Delta x_c}
124     \overline{ \frac{f + \zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\
125     G_v^{fu} + G_v^{\zeta_3 u} & = & -
126     \frac{1}{\Delta y_c}
127     \overline{ \frac{f + \zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j
128     \end{eqnarray}
129    
130     \marginpar{Run-time control needs to be added for these options} The
131     disctinction between using absolute vorticity or relative vorticity is
132     useful when constructing higher order advection schemes; monotone
133     advection of relative vorticity behaves differently to monotone
134     advection of absolute vorticity. Currently the choice of
135     relative/absolute vorticity, centered/upwind/high order advection is
136     available only through commented subroutine calls.
137    
138     \fbox{ \begin{minipage}{4.75in}
139     {\em S/R MOM\_VI\_CORIOLIS} ({\em mom\_vi\_coriolis.F})
140    
141     {\em S/R MOM\_VI\_U\_CORIOLIS} ({\em mom\_vi\_u\_coriolis.F})
142    
143     {\em S/R MOM\_VI\_V\_CORIOLIS} ({\em mom\_vi\_v\_coriolis.F})
144    
145     $G_u^{fv}$, $G_u^{\zeta_3 v}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
146    
147     $G_v^{fu}$, $G_v^{\zeta_3 u}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
148     \end{minipage} }
149    
150    
151     \subsection{Shear terms}
152    
153     The shear terms ($\zeta_2w$ and $\zeta_1w$) are are discretized to
154     guarantee that no spurious generation of kinetic energy is possible;
155     the horizontal gradient of Bernoulli function has to be consistent
156     with the vertical advection of shear:
157     \marginpar{N-H terms have not been tried!}
158     \begin{eqnarray}
159     G_u^{\zeta_2 w} & = &
160     \frac{1}{ {\cal A}_w \Delta r_f h_w } \overline{
161     \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
162     }^k \\
163     G_v^{\zeta_1 w} & = &
164     \frac{1}{ {\cal A}_s \Delta r_f h_s } \overline{
165     \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )
166     }^k
167     \end{eqnarray}
168    
169     \fbox{ \begin{minipage}{4.75in}
170     {\em S/R MOM\_VI\_U\_VERTSHEAR} ({\em mom\_vi\_u\_vertshear.F})
171    
172     {\em S/R MOM\_VI\_V\_VERTSHEAR} ({\em mom\_vi\_v\_vertshear.F})
173    
174     $G_u^{\zeta_2 w}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
175    
176     $G_v^{\zeta_1 w}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
177     \end{minipage} }
178    
179    
180    
181     \subsection{Gradient of Bernoulli function}
182    
183     \begin{eqnarray}
184     G_u^{\partial_x B} & = &
185     \frac{1}{\Delta x_c} \delta_i ( \phi' + KE ) \\
186     G_v^{\partial_y B} & = &
187     \frac{1}{\Delta x_y} \delta_j ( \phi' + KE )
188     %G_w^{\partial_z B} & = &
189     %\frac{1}{\Delta r_c} h_c \delta_k ( \phi' + KE )
190     \end{eqnarray}
191    
192     \fbox{ \begin{minipage}{4.75in}
193     {\em S/R MOM\_VI\_U\_GRAD\_KE} ({\em mom\_vi\_u\_grad\_ke.F})
194    
195     {\em S/R MOM\_VI\_V\_GRAD\_KE} ({\em mom\_vi\_v\_grad\_ke.F})
196    
197     $G_u^{\partial_x KE}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})
198    
199     $G_v^{\partial_y KE}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})
200     \end{minipage} }
201    
202    
203    
204     \subsection{Horizontal dissipation}
205    
206     The horizontal divergence, a complimentary quantity to relative
207     vorticity, is used in parameterizing the Reynolds stresses and is
208     discretized:
209     \begin{equation}
210     D = \frac{1}{{\cal A}_c h_c} (
211     \delta_i \Delta y_g h_w u
212     + \delta_j \Delta x_g h_s v )
213     \end{equation}
214    
215     \fbox{ \begin{minipage}{4.75in}
216     {\em S/R MOM\_VI\_CALC\_HDIV} ({\em mom\_vi\_calc\_hdiv.F})
217    
218     $D$: {\bf hDiv} (local to {\em calc\_mom\_rhs.F})
219     \end{minipage} }
220    
221    
222     \subsection{Horizontal dissipation}
223    
224     The following discretization of horizontal dissipation conserves
225     potential vorticity (thickness weighted relative vorticity) and
226     divergence and dissipates energy, enstrophy and divergence squared:
227     \begin{eqnarray}
228     G_u^{h-dissip} & = &
229     \frac{1}{\Delta x_c} \delta_i ( A_D D - A_{D4} D^*)
230     - \frac{1}{\Delta y_u h_w} \delta_j h_\zeta ( A_\zeta \zeta - A_{\zeta4} \zeta^* )
231     \\
232     G_v^{h-dissip} & = &
233     \frac{1}{\Delta x_v h_s} \delta_i h_\zeta ( A_\zeta \zeta - A_\zeta \zeta^* )
234     + \frac{1}{\Delta y_c} \delta_j ( A_D D - A_{D4} D^* )
235     \end{eqnarray}
236     where
237     \begin{eqnarray}
238     D^* & = & \frac{1}{{\cal A}_c h_c} (
239     \delta_i \Delta y_g h_w \nabla^2 u
240     + \delta_j \Delta x_g h_s \nabla^2 v ) \\
241     \zeta^* & = & \frac{1}{{\cal A}_\zeta} (
242     \delta_i \Delta y_c \nabla^2 v
243     - \delta_j \Delta x_c \nabla^2 u )
244     \end{eqnarray}
245    
246     \fbox{ \begin{minipage}{4.75in}
247     {\em S/R MOM\_VI\_HDISSIP} ({\em mom\_vi\_hdissip.F})
248    
249     $G_u^{h-dissip}$: {\bf uDiss} (local to {\em calc\_mom\_rhs.F})
250    
251     $G_v^{h-dissip}$: {\bf vDiss} (local to {\em calc\_mom\_rhs.F})
252     \end{minipage} }
253    
254    
255     \subsection{Vertical dissipation}
256    
257     Currently, this is exactly the same code as the flux form equations.
258     \begin{eqnarray}
259     G_u^{v-diss} & = &
260     \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
261     G_v^{v-diss} & = &
262     \frac{1}{\Delta r_f h_s} \delta_k \tau_{23}
263     \end{eqnarray}
264     represents the general discrete form of the vertical dissipation terms.
265    
266     In the interior the vertical stresses are discretized:
267     \begin{eqnarray}
268     \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
269     \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v
270     \end{eqnarray}
271    
272     \fbox{ \begin{minipage}{4.75in}
273     {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
274    
275     {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
276    
277     $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})
278    
279     $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})
280     \end{minipage} }

  ViewVC Help
Powered by ViewVC 1.1.22