2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Flux-form momentum equations} |
\section{Flux-form momentum equations} |
5 |
|
\label{sect:flux-form_momentum_equations} |
6 |
|
\begin{rawhtml} |
7 |
|
<!-- CMIREDIR:flux-form_momentum_eqautions: --> |
8 |
|
\end{rawhtml} |
9 |
|
|
10 |
The original finite volume model was based on the Eulerian flux form |
The original finite volume model was based on the Eulerian flux form |
11 |
momentum equations. This is the default though the vector invariant |
momentum equations. This is the default though the vector invariant |
19 |
\marginpar{$G_w$: {\bf Gw} } |
\marginpar{$G_w$: {\bf Gw} } |
20 |
\begin{eqnarray} |
\begin{eqnarray} |
21 |
G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} + |
G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} + |
22 |
G_u^{metric} + G_u^{nh-metric} \\ |
G_u^{metric} + G_u^{nh-metric} \label{eq:gsplit_momu} \\ |
23 |
G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} + |
G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} + |
24 |
G_v^{metric} + G_v^{nh-metric} \\ |
G_v^{metric} + G_v^{nh-metric} \label{eq:gsplit_momv} \\ |
25 |
G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} + |
G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} + |
26 |
G_w^{metric} + G_w^{nh-metric} |
G_w^{metric} + G_w^{nh-metric} \label{eq:gsplit_momw} |
27 |
\end{eqnarray} |
\end{eqnarray} |
28 |
In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the |
In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the |
29 |
vertical momentum to hydrostatic balance. |
vertical momentum to hydrostatic balance. |
50 |
{\cal A}_w \Delta r_f h_w G_u^{adv} & = & |
{\cal A}_w \Delta r_f h_w G_u^{adv} & = & |
51 |
\delta_i \overline{ U }^i \overline{ u }^i |
\delta_i \overline{ U }^i \overline{ u }^i |
52 |
+ \delta_j \overline{ V }^i \overline{ u }^j |
+ \delta_j \overline{ V }^i \overline{ u }^j |
53 |
+ \delta_k \overline{ W }^i \overline{ u }^k \\ |
+ \delta_k \overline{ W }^i \overline{ u }^k \label{eq:discrete-momadvu} \\ |
54 |
{\cal A}_s \Delta r_f h_s G_v^{adv} & = & |
{\cal A}_s \Delta r_f h_s G_v^{adv} & = & |
55 |
\delta_i \overline{ U }^j \overline{ v }^i |
\delta_i \overline{ U }^j \overline{ v }^i |
56 |
+ \delta_j \overline{ V }^j \overline{ v }^j |
+ \delta_j \overline{ V }^j \overline{ v }^j |
57 |
+ \delta_k \overline{ W }^j \overline{ v }^k \\ |
+ \delta_k \overline{ W }^j \overline{ v }^k \label{eq:discrete-momadvv} \\ |
58 |
{\cal A}_c \Delta r_c G_w^{adv} & = & |
{\cal A}_c \Delta r_c G_w^{adv} & = & |
59 |
\delta_i \overline{ U }^k \overline{ w }^i |
\delta_i \overline{ U }^k \overline{ w }^i |
60 |
+ \delta_j \overline{ V }^k \overline{ w }^j |
+ \delta_j \overline{ V }^k \overline{ w }^j |
61 |
+ \delta_k \overline{ W }^k \overline{ w }^k \\ |
+ \delta_k \overline{ W }^k \overline{ w }^k \label{eq:discrete-momadvw} |
62 |
\end{eqnarray} |
\end{eqnarray} |
63 |
and because of the flux form does not contribute to the global budget |
and because of the flux form does not contribute to the global budget |
64 |
of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes |
of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes |
67 |
\marginpar{$V$: {\bf vTrans} } |
\marginpar{$V$: {\bf vTrans} } |
68 |
\marginpar{$W$: {\bf rTrans} } |
\marginpar{$W$: {\bf rTrans} } |
69 |
\begin{eqnarray} |
\begin{eqnarray} |
70 |
U & = & \Delta y_g \Delta r_f h_w u \\ |
U & = & \Delta y_g \Delta r_f h_w u \label{eq:utrans} \\ |
71 |
V & = & \Delta x_g \Delta r_f h_s v \\ |
V & = & \Delta x_g \Delta r_f h_s v \label{eq:vtrans} \\ |
72 |
W & = & {\cal A}_c w |
W & = & {\cal A}_c w \label{eq:rtrans} |
73 |
\end{eqnarray} |
\end{eqnarray} |
74 |
The advection of momentum takes the same form as the advection of |
The advection of momentum takes the same form as the advection of |
75 |
tracers but by a translated advective flow. Consequently, the |
tracers but by a translated advective flow. Consequently, the |
110 |
\end{eqnarray} |
\end{eqnarray} |
111 |
where the Coriolis parameters $f$ and $f'$ are defined: |
where the Coriolis parameters $f$ and $f'$ are defined: |
112 |
\begin{eqnarray} |
\begin{eqnarray} |
113 |
f & = & 2 \Omega \sin{\phi} \\ |
f & = & 2 \Omega \sin{\varphi} \\ |
114 |
f' & = & 2 \Omega \cos{\phi} |
f' & = & 2 \Omega \cos{\varphi} |
115 |
\end{eqnarray} |
\end{eqnarray} |
116 |
when using spherical geometry, otherwise the $\beta$-plane definition is used: |
where $\varphi$ is geographic latitude when using spherical geometry, |
117 |
|
otherwise the $\beta$-plane definition is used: |
118 |
\begin{eqnarray} |
\begin{eqnarray} |
119 |
f & = & f_o + \beta y \\ |
f & = & f_o + \beta y \\ |
120 |
f' & = & 0 |
f' & = & 0 |
136 |
\marginpar{Need to change the default in code to match this} |
\marginpar{Need to change the default in code to match this} |
137 |
where the subscripts on $f$ and $f'$ indicate evaluation of the |
where the subscripts on $f$ and $f'$ indicate evaluation of the |
138 |
Coriolis parameters at the appropriate points in space. The above |
Coriolis parameters at the appropriate points in space. The above |
139 |
discretization does {\em not} conserve anything, especially energy. An |
discretization does {\em not} conserve anything, especially energy and |
140 |
option to recover this discretization has been retained for backward |
for historical reasons is the default for the code. A |
141 |
compatibility testing (set run-time logical {\bf |
flag controls this discretization: set run-time logical {\bf |
142 |
useNonconservingCoriolis} to {\em true} which otherwise defaults to |
useEnergyConservingCoriolis} to {\em true} which otherwise defaults to |
143 |
{\em false}). |
{\em false}. |
144 |
|
|
145 |
\fbox{ \begin{minipage}{4.75in} |
\fbox{ \begin{minipage}{4.75in} |
146 |
{\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F}) |
{\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F}) |
156 |
\subsection{Curvature metric terms} |
\subsection{Curvature metric terms} |
157 |
|
|
158 |
The most commonly used coordinate system on the sphere is the |
The most commonly used coordinate system on the sphere is the |
159 |
geographic system $(\lambda,\phi)$. The curvilinear nature of these |
geographic system $(\lambda,\varphi)$. The curvilinear nature of these |
160 |
coordinates on the sphere lead to some ``metric'' terms in the |
coordinates on the sphere lead to some ``metric'' terms in the |
161 |
component momentum equations. Under the thin-atmosphere and |
component momentum equations. Under the thin-atmosphere and |
162 |
hydrostatic approximations these terms are discretized: |
hydrostatic approximations these terms are discretized: |
163 |
\begin{eqnarray} |
\begin{eqnarray} |
164 |
{\cal A}_w \Delta r_f h_w G_u^{metric} & = & |
{\cal A}_w \Delta r_f h_w G_u^{metric} & = & |
165 |
\overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\ |
\overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\ |
166 |
{\cal A}_s \Delta r_f h_s G_v^{metric} & = & |
{\cal A}_s \Delta r_f h_s G_v^{metric} & = & |
167 |
- \overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\ |
- \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\ |
168 |
G_w^{metric} & = & 0 |
G_w^{metric} & = & 0 |
169 |
\end{eqnarray} |
\end{eqnarray} |
170 |
where $a$ is the radius of the planet (sphericity is assumed) or the |
where $a$ is the radius of the planet (sphericity is assumed) or the |
171 |
radial distance of the particle (i.e. a function of height). It is |
radial distance of the particle (i.e. a function of height). It is |
172 |
easy to see that this discretization satisfies all the properties of |
easy to see that this discretization satisfies all the properties of |
173 |
the discrete Coriolis terms since the metric factor $\frac{u}{a} |
the discrete Coriolis terms since the metric factor $\frac{u}{a} |
174 |
\tan{\phi}$ can be viewed as a modification of the vertical Coriolis |
\tan{\varphi}$ can be viewed as a modification of the vertical Coriolis |
175 |
parameter: $f \rightarrow f+\frac{u}{a} \tan{\phi}$. |
parameter: $f \rightarrow f+\frac{u}{a} \tan{\varphi}$. |
176 |
|
|
177 |
However, as for the Coriolis terms, a non-energy conserving form has |
However, as for the Coriolis terms, a non-energy conserving form has |
178 |
exclusively been used to date: |
exclusively been used to date: |
179 |
\begin{eqnarray} |
\begin{eqnarray} |
180 |
G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\phi} \\ |
G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\varphi} \\ |
181 |
G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\phi} |
G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\varphi} |
182 |
\end{eqnarray} |
\end{eqnarray} |
183 |
where $\tan{\phi}$ is evaluated at the $u$ and $v$ points |
where $\tan{\varphi}$ is evaluated at the $u$ and $v$ points |
184 |
respectively. |
respectively. |
185 |
|
|
186 |
\fbox{ \begin{minipage}{4.75in} |
\fbox{ \begin{minipage}{4.75in} |
197 |
|
|
198 |
For the non-hydrostatic equations, dropping the thin-atmosphere |
For the non-hydrostatic equations, dropping the thin-atmosphere |
199 |
approximation re-introduces metric terms involving $w$ and are |
approximation re-introduces metric terms involving $w$ and are |
200 |
required to conserve anglular momentum: |
required to conserve angular momentum: |
201 |
\begin{eqnarray} |
\begin{eqnarray} |
202 |
{\cal A}_w \Delta r_f h_w G_u^{metric} & = & |
{\cal A}_w \Delta r_f h_w G_u^{metric} & = & |
203 |
- \overline{ \frac{ \overline{u}^i \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c }^i \\ |
- \overline{ \frac{ \overline{u}^i \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c }^i \\ |
244 |
|
|
245 |
The lateral viscous stresses are discretized: |
The lateral viscous stresses are discretized: |
246 |
\begin{eqnarray} |
\begin{eqnarray} |
247 |
\tau_{11} & = & A_h c_{11\Delta}(\phi) \frac{1}{\Delta x_f} \delta_i u |
\tau_{11} & = & A_h c_{11\Delta}(\varphi) \frac{1}{\Delta x_f} \delta_i u |
248 |
-A_4 c_{11\Delta^2}(\phi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\ |
-A_4 c_{11\Delta^2}(\varphi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\ |
249 |
\tau_{12} & = & A_h c_{12\Delta}(\phi) \frac{1}{\Delta y_u} \delta_j u |
\tau_{12} & = & A_h c_{12\Delta}(\varphi) \frac{1}{\Delta y_u} \delta_j u |
250 |
-A_4 c_{12\Delta^2}(\phi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\ |
-A_4 c_{12\Delta^2}(\varphi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\ |
251 |
\tau_{21} & = & A_h c_{21\Delta}(\phi) \frac{1}{\Delta x_v} \delta_i v |
\tau_{21} & = & A_h c_{21\Delta}(\varphi) \frac{1}{\Delta x_v} \delta_i v |
252 |
-A_4 c_{21\Delta^2}(\phi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\ |
-A_4 c_{21\Delta^2}(\varphi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\ |
253 |
\tau_{22} & = & A_h c_{22\Delta}(\phi) \frac{1}{\Delta y_f} \delta_j v |
\tau_{22} & = & A_h c_{22\Delta}(\varphi) \frac{1}{\Delta y_f} \delta_j v |
254 |
-A_4 c_{22\Delta^2}(\phi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v |
-A_4 c_{22\Delta^2}(\varphi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v |
255 |
\end{eqnarray} |
\end{eqnarray} |
256 |
where the non-dimensional factors $c_{lm\Delta^n}(\phi), \{l,m,n\} \in |
where the non-dimensional factors $c_{lm\Delta^n}(\varphi), \{l,m,n\} \in |
257 |
\{1,2\}$ define the ``cosine'' scaling with latitude which can be |
\{1,2\}$ define the ``cosine'' scaling with latitude which can be |
258 |
applied in various ad-hoc ways. For instance, $c_{11\Delta} = |
applied in various ad-hoc ways. For instance, $c_{11\Delta} = |
259 |
c_{21\Delta} = (\cos{\phi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would |
c_{21\Delta} = (\cos{\varphi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would |
260 |
represent the an-isotropic cosine scaling typically used on the |
represent the an-isotropic cosine scaling typically used on the |
261 |
``lat-lon'' grid for Laplacian viscosity. |
``lat-lon'' grid for Laplacian viscosity. |
262 |
\marginpar{Need to tidy up method for controlling this in code} |
\marginpar{Need to tidy up method for controlling this in code} |
263 |
|
|
264 |
It should be noted that dispite the ad-hoc nature of the scaling, some |
It should be noted that despite the ad-hoc nature of the scaling, some |
265 |
scaling must be done since on a lat-lon grid the converging meridians |
scaling must be done since on a lat-lon grid the converging meridians |
266 |
make it very unlikely that a stable viscosity parameter exists across |
make it very unlikely that a stable viscosity parameter exists across |
267 |
the entire model domain. |
the entire model domain. |
294 |
The no-slip condition defines the normal gradient of a tangential flow |
The no-slip condition defines the normal gradient of a tangential flow |
295 |
such that the flow is zero on the boundary. Rather than modify the |
such that the flow is zero on the boundary. Rather than modify the |
296 |
stresses by using complicated functions of the masks and ``ghost'' |
stresses by using complicated functions of the masks and ``ghost'' |
297 |
points (see \cite{Adcroft+Marshall98}) we add the boundary stresses as |
points (see \cite{adcroft:98}) we add the boundary stresses as |
298 |
an additional source term in cells next to solid boundaries. This has |
an additional source term in cells next to solid boundaries. This has |
299 |
the advantage of being able to cope with ``thin walls'' and also makes |
the advantage of being able to cope with ``thin walls'' and also makes |
300 |
the interior stress calculation (code) independent of the boundary |
the interior stress calculation (code) independent of the boundary |
302 |
\begin{eqnarray} |
\begin{eqnarray} |
303 |
G_u^{side-drag} & = & |
G_u^{side-drag} & = & |
304 |
\frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j |
\frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j |
305 |
\left( A_h c_{12\Delta}(\phi) u - A_4 c_{12\Delta^2}(\phi) \nabla^2 u \right) |
\left( A_h c_{12\Delta}(\varphi) u - A_4 c_{12\Delta^2}(\varphi) \nabla^2 u \right) |
306 |
\\ |
\\ |
307 |
G_v^{side-drag} & = & |
G_v^{side-drag} & = & |
308 |
\frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i |
\frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i |
309 |
\left( A_h c_{21\Delta}(\phi) v - A_4 c_{21\Delta^2}(\phi) \nabla^2 v \right) |
\left( A_h c_{21\Delta}(\varphi) v - A_4 c_{21\Delta^2}(\varphi) \nabla^2 v \right) |
310 |
\end{eqnarray} |
\end{eqnarray} |
311 |
|
|
312 |
In fact, the above discretization is not quite complete because it |
In fact, the above discretization is not quite complete because it |
313 |
assumes that the bathymetry at velocity points is deeper than at |
assumes that the bathymetry at velocity points is deeper than at |
314 |
neighbouring vorticity points, e.g. $1-h_w < 1-h_\zeta$ |
neighboring vorticity points, e.g. $1-h_w < 1-h_\zeta$ |
315 |
|
|
316 |
\fbox{ \begin{minipage}{4.75in} |
\fbox{ \begin{minipage}{4.75in} |
317 |
{\em S/R MOM\_U\_SIDEDRAG} ({\em mom\_u\_sidedrag.F}) |
{\em S/R MOM\_U\_SIDEDRAG} ({\em mom\_u\_sidedrag.F}) |
328 |
to the variable grid lengths introduced by the finite volume |
to the variable grid lengths introduced by the finite volume |
329 |
formulation. This reduces the formal accuracy of these terms to just |
formulation. This reduces the formal accuracy of these terms to just |
330 |
first order but only next to boundaries; exactly where other terms |
first order but only next to boundaries; exactly where other terms |
331 |
appear such as linar and quadratic bottom drag. |
appear such as linear and quadratic bottom drag. |
332 |
\begin{eqnarray} |
\begin{eqnarray} |
333 |
G_u^{v-diss} & = & |
G_u^{v-diss} & = & |
334 |
\frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\ |
\frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\ |
346 |
\tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w |
\tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w |
347 |
\end{eqnarray} |
\end{eqnarray} |
348 |
It should be noted that in the non-hydrostatic form, the stress tensor |
It should be noted that in the non-hydrostatic form, the stress tensor |
349 |
is even less consistent than for the hydrostatic (see Wazjowicz |
is even less consistent than for the hydrostatic (see |
350 |
\cite{Waojz}). It is well known how to do this properly (see Griffies |
\cite{wajsowicz:93}). It is well known how to do this properly (see |
351 |
\cite{Griffies}) and is on the list of to-do's. |
\cite{griffies:00}) and is on the list of to-do's. |
352 |
|
|
353 |
\fbox{ \begin{minipage}{4.75in} |
\fbox{ \begin{minipage}{4.75in} |
354 |
{\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F}) |
{\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F}) |