/[MITgcm]/manual/s_algorithm/text/mom_fluxform.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/mom_fluxform.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by cnh, Thu Oct 25 18:36:53 2001 UTC revision 1.8 by edhill, Sat Oct 16 03:40:12 2004 UTC
# Line 3  Line 3 
3    
4  \section{Flux-form momentum equations}  \section{Flux-form momentum equations}
5  \label{sec:flux-form_momentum_eqautions}  \label{sec:flux-form_momentum_eqautions}
6    \begin{rawhtml}
7    <!-- CMIREDIR:flux-form_momentum_eqautions: -->
8    \end{rawhtml}
9    
10  The original finite volume model was based on the Eulerian flux form  The original finite volume model was based on the Eulerian flux form
11  momentum equations. This is the default though the vector invariant  momentum equations. This is the default though the vector invariant
# Line 291  handled using the lopped cells. Line 294  handled using the lopped cells.
294  The no-slip condition defines the normal gradient of a tangential flow  The no-slip condition defines the normal gradient of a tangential flow
295  such that the flow is zero on the boundary. Rather than modify the  such that the flow is zero on the boundary. Rather than modify the
296  stresses by using complicated functions of the masks and ``ghost''  stresses by using complicated functions of the masks and ``ghost''
297  points (see \cite{Adcroft+Marshall98}) we add the boundary stresses as  points (see \cite{adcroft:98}) we add the boundary stresses as
298  an additional source term in cells next to solid boundaries. This has  an additional source term in cells next to solid boundaries. This has
299  the advantage of being able to cope with ``thin walls'' and also makes  the advantage of being able to cope with ``thin walls'' and also makes
300  the interior stress calculation (code) independent of the boundary  the interior stress calculation (code) independent of the boundary
# Line 343  In the interior the vertical stresses ar Line 346  In the interior the vertical stresses ar
346  \tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w  \tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w
347  \end{eqnarray}  \end{eqnarray}
348  It should be noted that in the non-hydrostatic form, the stress tensor  It should be noted that in the non-hydrostatic form, the stress tensor
349  is even less consistent than for the hydrostatic (see Wazjowicz  is even less consistent than for the hydrostatic (see
350  \cite{Waojz}). It is well known how to do this properly (see Griffies  \cite{wajsowicz:93}). It is well known how to do this properly (see
351  \cite{Griffies}) and is on the list of to-do's.  \cite{griffies:00}) and is on the list of to-do's.
352    
353  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
354  {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})  {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.8

  ViewVC Help
Powered by ViewVC 1.1.22