/[MITgcm]/manual/s_algorithm/text/mom_fluxform.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/mom_fluxform.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by adcroft, Thu Aug 9 19:48:39 2001 UTC revision 1.8 by edhill, Sat Oct 16 03:40:12 2004 UTC
# Line 2  Line 2 
2  % $Name$  % $Name$
3    
4  \section{Flux-form momentum equations}  \section{Flux-form momentum equations}
5    \label{sec:flux-form_momentum_eqautions}
6    \begin{rawhtml}
7    <!-- CMIREDIR:flux-form_momentum_eqautions: -->
8    \end{rawhtml}
9    
10  The original finite volume model was based on the Eulerian flux form  The original finite volume model was based on the Eulerian flux form
11  momentum equations. This is the default though the vector invariant  momentum equations. This is the default though the vector invariant
# Line 15  dissipation and metric forces: Line 19  dissipation and metric forces:
19  \marginpar{$G_w$: {\bf Gw} }  \marginpar{$G_w$: {\bf Gw} }
20  \begin{eqnarray}  \begin{eqnarray}
21  G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} +  G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} +
22  G_u^{metric} + G_u^{nh-metric} \\  G_u^{metric} + G_u^{nh-metric} \label{eq:gsplit_momu} \\
23  G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} +  G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} +
24  G_v^{metric} + G_v^{nh-metric} \\  G_v^{metric} + G_v^{nh-metric} \label{eq:gsplit_momv} \\
25  G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} +  G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} +
26  G_w^{metric} + G_w^{nh-metric}  G_w^{metric} + G_w^{nh-metric} \label{eq:gsplit_momw}
27  \end{eqnarray}  \end{eqnarray}
28  In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the  In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the
29  vertical momentum to hydrostatic balance.  vertical momentum to hydrostatic balance.
# Line 46  The advective operator is second order a Line 50  The advective operator is second order a
50  {\cal A}_w \Delta r_f h_w G_u^{adv} & = &  {\cal A}_w \Delta r_f h_w G_u^{adv} & = &
51    \delta_i \overline{ U }^i \overline{ u }^i    \delta_i \overline{ U }^i \overline{ u }^i
52  + \delta_j \overline{ V }^i \overline{ u }^j  + \delta_j \overline{ V }^i \overline{ u }^j
53  + \delta_k \overline{ W }^i \overline{ u }^k \\  + \delta_k \overline{ W }^i \overline{ u }^k \label{eq:discrete-momadvu} \\
54  {\cal A}_s \Delta r_f h_s G_v^{adv} & = &  {\cal A}_s \Delta r_f h_s G_v^{adv} & = &
55    \delta_i \overline{ U }^j \overline{ v }^i    \delta_i \overline{ U }^j \overline{ v }^i
56  + \delta_j \overline{ V }^j \overline{ v }^j  + \delta_j \overline{ V }^j \overline{ v }^j
57  + \delta_k \overline{ W }^j \overline{ v }^k \\  + \delta_k \overline{ W }^j \overline{ v }^k \label{eq:discrete-momadvv} \\
58  {\cal A}_c \Delta r_c G_w^{adv} & = &  {\cal A}_c \Delta r_c G_w^{adv} & = &
59    \delta_i \overline{ U }^k \overline{ w }^i    \delta_i \overline{ U }^k \overline{ w }^i
60  + \delta_j \overline{ V }^k \overline{ w }^j  + \delta_j \overline{ V }^k \overline{ w }^j
61  + \delta_k \overline{ W }^k \overline{ w }^k \\  + \delta_k \overline{ W }^k \overline{ w }^k \label{eq:discrete-momadvw}
62  \end{eqnarray}  \end{eqnarray}
63  and because of the flux form does not contribute to the global budget  and because of the flux form does not contribute to the global budget
64  of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes  of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes
# Line 63  defined: Line 67  defined:
67  \marginpar{$V$: {\bf vTrans} }  \marginpar{$V$: {\bf vTrans} }
68  \marginpar{$W$: {\bf rTrans} }  \marginpar{$W$: {\bf rTrans} }
69  \begin{eqnarray}  \begin{eqnarray}
70  U & = & \Delta y_g \Delta r_f h_w u \\  U & = & \Delta y_g \Delta r_f h_w u \label{eq:utrans} \\
71  V & = & \Delta x_g \Delta r_f h_s v \\  V & = & \Delta x_g \Delta r_f h_s v \label{eq:vtrans} \\
72  W & = & {\cal A}_c w  W & = & {\cal A}_c w \label{eq:rtrans}
73  \end{eqnarray}  \end{eqnarray}
74  The advection of momentum takes the same form as the advection of  The advection of momentum takes the same form as the advection of
75  tracers but by a translated advective flow. Consequently, the  tracers but by a translated advective flow. Consequently, the
# Line 106  discretized: Line 110  discretized:
110  \end{eqnarray}  \end{eqnarray}
111  where the Coriolis parameters $f$ and $f'$ are defined:  where the Coriolis parameters $f$ and $f'$ are defined:
112  \begin{eqnarray}  \begin{eqnarray}
113  f & = & 2 \Omega \sin{\phi} \\  f & = & 2 \Omega \sin{\varphi} \\
114  f' & = & 2 \Omega \cos{\phi}  f' & = & 2 \Omega \cos{\varphi}
115  \end{eqnarray}  \end{eqnarray}
116  when using spherical geometry, otherwise the $\beta$-plane definition is used:  where $\varphi$ is geographic latitude when using spherical geometry,
117    otherwise the $\beta$-plane definition is used:
118  \begin{eqnarray}  \begin{eqnarray}
119  f & = & f_o + \beta y \\  f & = & f_o + \beta y \\
120  f' & = & 0  f' & = & 0
# Line 131  G_w^{Cor} & = & Line 136  G_w^{Cor} & = &
136  \marginpar{Need to change the default in code to match this}  \marginpar{Need to change the default in code to match this}
137  where the subscripts on $f$ and $f'$ indicate evaluation of the  where the subscripts on $f$ and $f'$ indicate evaluation of the
138  Coriolis parameters at the appropriate points in space. The above  Coriolis parameters at the appropriate points in space. The above
139  discretization does {\em not} conserve anything, especially energy. An  discretization does {\em not} conserve anything, especially energy and
140  option to recover this discretization has been retained for backward  for historical reasons is the default for the code. A
141  compatibility testing (set run-time logical {\bf  flag controls this discretization: set run-time logical {\bf
142  useNonconservingCoriolis} to {\em true} which otherwise defaults to  useEnergyConservingCoriolis} to {\em true} which otherwise defaults to
143  {\em false}).  {\em false}.
144    
145  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
146  {\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F})  {\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F})
# Line 151  $G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (loca Line 156  $G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (loca
156  \subsection{Curvature metric terms}  \subsection{Curvature metric terms}
157    
158  The most commonly used coordinate system on the sphere is the  The most commonly used coordinate system on the sphere is the
159  geographic system $(\lambda,\phi)$. The curvilinear nature of these  geographic system $(\lambda,\varphi)$. The curvilinear nature of these
160  coordinates on the sphere lead to some ``metric'' terms in the  coordinates on the sphere lead to some ``metric'' terms in the
161  component momentum equations. Under the thin-atmosphere and  component momentum equations. Under the thin-atmosphere and
162  hydrostatic approximations these terms are discretized:  hydrostatic approximations these terms are discretized:
163  \begin{eqnarray}  \begin{eqnarray}
164  {\cal A}_w \Delta r_f h_w G_u^{metric} & = &  {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
165    \overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\    \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\
166  {\cal A}_s \Delta r_f h_s G_v^{metric} & = &  {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
167  - \overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\  - \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
168  G_w^{metric} & = & 0  G_w^{metric} & = & 0
169  \end{eqnarray}  \end{eqnarray}
170  where $a$ is the radius of the planet (sphericity is assumed) or the  where $a$ is the radius of the planet (sphericity is assumed) or the
171  radial distance of the particle (i.e. a function of height).  It is  radial distance of the particle (i.e. a function of height).  It is
172  easy to see that this discretization satisfies all the properties of  easy to see that this discretization satisfies all the properties of
173  the discrete Coriolis terms since the metric factor $\frac{u}{a}  the discrete Coriolis terms since the metric factor $\frac{u}{a}
174  \tan{\phi}$ can be viewed as a modification of the vertical Coriolis  \tan{\varphi}$ can be viewed as a modification of the vertical Coriolis
175  parameter: $f \rightarrow f+\frac{u}{a} \tan{\phi}$.  parameter: $f \rightarrow f+\frac{u}{a} \tan{\varphi}$.
176    
177  However, as for the Coriolis terms, a non-energy conserving form has  However, as for the Coriolis terms, a non-energy conserving form has
178  exclusively been used to date:  exclusively been used to date:
179  \begin{eqnarray}  \begin{eqnarray}
180  G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\phi} \\  G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\varphi} \\
181  G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\phi}  G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\varphi}
182  \end{eqnarray}  \end{eqnarray}
183  where $\tan{\phi}$ is evaluated at the $u$ and $v$ points  where $\tan{\varphi}$ is evaluated at the $u$ and $v$ points
184  respectively.  respectively.
185    
186  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
# Line 192  $G_u^{metric}$, $G_v^{metric}$: {\bf mT} Line 197  $G_u^{metric}$, $G_v^{metric}$: {\bf mT}
197    
198  For the non-hydrostatic equations, dropping the thin-atmosphere  For the non-hydrostatic equations, dropping the thin-atmosphere
199  approximation re-introduces metric terms involving $w$ and are  approximation re-introduces metric terms involving $w$ and are
200  required to conserve anglular momentum:  required to conserve angular momentum:
201  \begin{eqnarray}  \begin{eqnarray}
202  {\cal A}_w \Delta r_f h_w G_u^{metric} & = &  {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
203  - \overline{ \frac{ \overline{u}^i \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c }^i \\  - \overline{ \frac{ \overline{u}^i \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c }^i \\
# Line 239  tensor such as symmetry. Line 244  tensor such as symmetry.
244    
245  The lateral viscous stresses are discretized:  The lateral viscous stresses are discretized:
246  \begin{eqnarray}  \begin{eqnarray}
247  \tau_{11} & = & A_h c_{11\Delta}(\phi) \frac{1}{\Delta x_f} \delta_i u  \tau_{11} & = & A_h c_{11\Delta}(\varphi) \frac{1}{\Delta x_f} \delta_i u
248                 -A_4 c_{11\Delta^2}(\phi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\                 -A_4 c_{11\Delta^2}(\varphi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\
249  \tau_{12} & = & A_h c_{12\Delta}(\phi) \frac{1}{\Delta y_u} \delta_j u  \tau_{12} & = & A_h c_{12\Delta}(\varphi) \frac{1}{\Delta y_u} \delta_j u
250                 -A_4 c_{12\Delta^2}(\phi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\                 -A_4 c_{12\Delta^2}(\varphi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\
251  \tau_{21} & = & A_h c_{21\Delta}(\phi) \frac{1}{\Delta x_v} \delta_i v  \tau_{21} & = & A_h c_{21\Delta}(\varphi) \frac{1}{\Delta x_v} \delta_i v
252                 -A_4 c_{21\Delta^2}(\phi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\                 -A_4 c_{21\Delta^2}(\varphi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\
253  \tau_{22} & = & A_h c_{22\Delta}(\phi) \frac{1}{\Delta y_f} \delta_j v  \tau_{22} & = & A_h c_{22\Delta}(\varphi) \frac{1}{\Delta y_f} \delta_j v
254                 -A_4 c_{22\Delta^2}(\phi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v                 -A_4 c_{22\Delta^2}(\varphi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v
255  \end{eqnarray}  \end{eqnarray}
256  where the non-dimensional factors $c_{lm\Delta^n}(\phi), \{l,m,n\} \in  where the non-dimensional factors $c_{lm\Delta^n}(\varphi), \{l,m,n\} \in
257  \{1,2\}$ define the ``cosine'' scaling with latitude which can be  \{1,2\}$ define the ``cosine'' scaling with latitude which can be
258  applied in various ad-hoc ways. For instance, $c_{11\Delta} =  applied in various ad-hoc ways. For instance, $c_{11\Delta} =
259  c_{21\Delta} = (\cos{\phi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would  c_{21\Delta} = (\cos{\varphi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would
260  represent the an-isotropic cosine scaling typically used on the  represent the an-isotropic cosine scaling typically used on the
261  ``lat-lon'' grid for Laplacian viscosity.  ``lat-lon'' grid for Laplacian viscosity.
262  \marginpar{Need to tidy up method for controlling this in code}  \marginpar{Need to tidy up method for controlling this in code}
263    
264  It should be noted that dispite the ad-hoc nature of the scaling, some  It should be noted that despite the ad-hoc nature of the scaling, some
265  scaling must be done since on a lat-lon grid the converging meridians  scaling must be done since on a lat-lon grid the converging meridians
266  make it very unlikely that a stable viscosity parameter exists across  make it very unlikely that a stable viscosity parameter exists across
267  the entire model domain.  the entire model domain.
# Line 289  handled using the lopped cells. Line 294  handled using the lopped cells.
294  The no-slip condition defines the normal gradient of a tangential flow  The no-slip condition defines the normal gradient of a tangential flow
295  such that the flow is zero on the boundary. Rather than modify the  such that the flow is zero on the boundary. Rather than modify the
296  stresses by using complicated functions of the masks and ``ghost''  stresses by using complicated functions of the masks and ``ghost''
297  points (see \cite{Adcroft+Marshall98}) we add the boundary stresses as  points (see \cite{adcroft:98}) we add the boundary stresses as
298  an additional source term in cells next to solid boundaries. This has  an additional source term in cells next to solid boundaries. This has
299  the advantage of being able to cope with ``thin walls'' and also makes  the advantage of being able to cope with ``thin walls'' and also makes
300  the interior stress calculation (code) independent of the boundary  the interior stress calculation (code) independent of the boundary
# Line 297  conditions. The ``body'' force takes the Line 302  conditions. The ``body'' force takes the
302  \begin{eqnarray}  \begin{eqnarray}
303  G_u^{side-drag} & = &  G_u^{side-drag} & = &
304  \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j  \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j
305  \left( A_h c_{12\Delta}(\phi) u - A_4 c_{12\Delta^2}(\phi) \nabla^2 u \right)  \left( A_h c_{12\Delta}(\varphi) u - A_4 c_{12\Delta^2}(\varphi) \nabla^2 u \right)
306  \\  \\
307  G_v^{side-drag} & = &  G_v^{side-drag} & = &
308  \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i  \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i
309  \left( A_h c_{21\Delta}(\phi) v - A_4 c_{21\Delta^2}(\phi) \nabla^2 v \right)  \left( A_h c_{21\Delta}(\varphi) v - A_4 c_{21\Delta^2}(\varphi) \nabla^2 v \right)
310  \end{eqnarray}  \end{eqnarray}
311    
312  In fact, the above discretization is not quite complete because it  In fact, the above discretization is not quite complete because it
313  assumes that the bathymetry at velocity points is deeper than at  assumes that the bathymetry at velocity points is deeper than at
314  neighbouring vorticity points, e.g. $1-h_w < 1-h_\zeta$  neighboring vorticity points, e.g. $1-h_w < 1-h_\zeta$
315    
316  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
317  {\em S/R MOM\_U\_SIDEDRAG} ({\em mom\_u\_sidedrag.F})  {\em S/R MOM\_U\_SIDEDRAG} ({\em mom\_u\_sidedrag.F})
# Line 323  Vertical viscosity terms are discretized Line 328  Vertical viscosity terms are discretized
328  to the variable grid lengths introduced by the finite volume  to the variable grid lengths introduced by the finite volume
329  formulation. This reduces the formal accuracy of these terms to just  formulation. This reduces the formal accuracy of these terms to just
330  first order but only next to boundaries; exactly where other terms  first order but only next to boundaries; exactly where other terms
331  appear such as linar and quadratic bottom drag.  appear such as linear and quadratic bottom drag.
332  \begin{eqnarray}  \begin{eqnarray}
333  G_u^{v-diss} & = &  G_u^{v-diss} & = &
334  \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\  \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
# Line 341  In the interior the vertical stresses ar Line 346  In the interior the vertical stresses ar
346  \tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w  \tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w
347  \end{eqnarray}  \end{eqnarray}
348  It should be noted that in the non-hydrostatic form, the stress tensor  It should be noted that in the non-hydrostatic form, the stress tensor
349  is even less consistent than for the hydrostatic (see Wazjowicz  is even less consistent than for the hydrostatic (see
350  \cite{Waojz}). It is well known how to do this properly (see Griffies  \cite{wajsowicz:93}). It is well known how to do this properly (see
351  \cite{Griffies}) and is on the list of to-do's.  \cite{griffies:00}) and is on the list of to-do's.
352    
353  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
354  {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})  {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.8

  ViewVC Help
Powered by ViewVC 1.1.22