15 |
\marginpar{$G_w$: {\bf Gw} } |
\marginpar{$G_w$: {\bf Gw} } |
16 |
\begin{eqnarray} |
\begin{eqnarray} |
17 |
G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} + |
G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} + |
18 |
G_u^{metric} + G_u^{nh-metric} \\ |
G_u^{metric} + G_u^{nh-metric} \label{eq:gsplit_momu} \\ |
19 |
G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} + |
G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} + |
20 |
G_v^{metric} + G_v^{nh-metric} \\ |
G_v^{metric} + G_v^{nh-metric} \label{eq:gsplit_momv} \\ |
21 |
G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} + |
G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} + |
22 |
G_w^{metric} + G_w^{nh-metric} |
G_w^{metric} + G_w^{nh-metric} \label{eq:gsplit_momw} |
23 |
\end{eqnarray} |
\end{eqnarray} |
24 |
In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the |
In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the |
25 |
vertical momentum to hydrostatic balance. |
vertical momentum to hydrostatic balance. |
46 |
{\cal A}_w \Delta r_f h_w G_u^{adv} & = & |
{\cal A}_w \Delta r_f h_w G_u^{adv} & = & |
47 |
\delta_i \overline{ U }^i \overline{ u }^i |
\delta_i \overline{ U }^i \overline{ u }^i |
48 |
+ \delta_j \overline{ V }^i \overline{ u }^j |
+ \delta_j \overline{ V }^i \overline{ u }^j |
49 |
+ \delta_k \overline{ W }^i \overline{ u }^k \\ |
+ \delta_k \overline{ W }^i \overline{ u }^k \label{eq:discrete-momadvu} \\ |
50 |
{\cal A}_s \Delta r_f h_s G_v^{adv} & = & |
{\cal A}_s \Delta r_f h_s G_v^{adv} & = & |
51 |
\delta_i \overline{ U }^j \overline{ v }^i |
\delta_i \overline{ U }^j \overline{ v }^i |
52 |
+ \delta_j \overline{ V }^j \overline{ v }^j |
+ \delta_j \overline{ V }^j \overline{ v }^j |
53 |
+ \delta_k \overline{ W }^j \overline{ v }^k \\ |
+ \delta_k \overline{ W }^j \overline{ v }^k \label{eq:discrete-momadvv} \\ |
54 |
{\cal A}_c \Delta r_c G_w^{adv} & = & |
{\cal A}_c \Delta r_c G_w^{adv} & = & |
55 |
\delta_i \overline{ U }^k \overline{ w }^i |
\delta_i \overline{ U }^k \overline{ w }^i |
56 |
+ \delta_j \overline{ V }^k \overline{ w }^j |
+ \delta_j \overline{ V }^k \overline{ w }^j |
57 |
+ \delta_k \overline{ W }^k \overline{ w }^k \\ |
+ \delta_k \overline{ W }^k \overline{ w }^k \label{eq:discrete-momadvw} |
58 |
\end{eqnarray} |
\end{eqnarray} |
59 |
and because of the flux form does not contribute to the global budget |
and because of the flux form does not contribute to the global budget |
60 |
of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes |
of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes |
63 |
\marginpar{$V$: {\bf vTrans} } |
\marginpar{$V$: {\bf vTrans} } |
64 |
\marginpar{$W$: {\bf rTrans} } |
\marginpar{$W$: {\bf rTrans} } |
65 |
\begin{eqnarray} |
\begin{eqnarray} |
66 |
U & = & \Delta y_g \Delta r_f h_w u \\ |
U & = & \Delta y_g \Delta r_f h_w u \label{eq:utrans} \\ |
67 |
V & = & \Delta x_g \Delta r_f h_s v \\ |
V & = & \Delta x_g \Delta r_f h_s v \label{eq:vtrans} \\ |
68 |
W & = & {\cal A}_c w |
W & = & {\cal A}_c w \label{eq:rtrans} |
69 |
\end{eqnarray} |
\end{eqnarray} |
70 |
The advection of momentum takes the same form as the advection of |
The advection of momentum takes the same form as the advection of |
71 |
tracers but by a translated advective flow. Consequently, the |
tracers but by a translated advective flow. Consequently, the |
109 |
f & = & 2 \Omega \sin{\phi} \\ |
f & = & 2 \Omega \sin{\phi} \\ |
110 |
f' & = & 2 \Omega \cos{\phi} |
f' & = & 2 \Omega \cos{\phi} |
111 |
\end{eqnarray} |
\end{eqnarray} |
112 |
when using spherical geometry, otherwise the $\beta$-plane definition is used: |
where $\phi$ is geographic latitude when using spherical geometry, |
113 |
|
otherwise the $\beta$-plane definition is used: |
114 |
\begin{eqnarray} |
\begin{eqnarray} |
115 |
f & = & f_o + \beta y \\ |
f & = & f_o + \beta y \\ |
116 |
f' & = & 0 |
f' & = & 0 |
132 |
\marginpar{Need to change the default in code to match this} |
\marginpar{Need to change the default in code to match this} |
133 |
where the subscripts on $f$ and $f'$ indicate evaluation of the |
where the subscripts on $f$ and $f'$ indicate evaluation of the |
134 |
Coriolis parameters at the appropriate points in space. The above |
Coriolis parameters at the appropriate points in space. The above |
135 |
discretization does {\em not} conserve anything, especially energy. An |
discretization does {\em not} conserve anything, especially energy and |
136 |
option to recover this discretization has been retained for backward |
for historical reasons is the default for the code. A |
137 |
compatibility testing (set run-time logical {\bf |
flag controls this discretization: set run-time logical {\bf |
138 |
useNonconservingCoriolis} to {\em true} which otherwise defaults to |
useEnergyConservingCoriolis} to {\em true} which otherwise defaults to |
139 |
{\em false}). |
{\em false}. |
140 |
|
|
141 |
\fbox{ \begin{minipage}{4.75in} |
\fbox{ \begin{minipage}{4.75in} |
142 |
{\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F}) |
{\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F}) |