2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Flux-form momentum equations} |
\section{Flux-form momentum equations} |
5 |
\label{sect:flux-form_momentum_equations} |
\label{sec:flux-form_momentum_equations} |
6 |
\begin{rawhtml} |
\begin{rawhtml} |
7 |
<!-- CMIREDIR:flux-form_momentum_eqautions: --> |
<!-- CMIREDIR:flux-form_momentum_equations: --> |
8 |
\end{rawhtml} |
\end{rawhtml} |
9 |
|
|
10 |
The original finite volume model was based on the Eulerian flux form |
The original finite volume model was based on the Eulerian flux form |
29 |
vertical momentum to hydrostatic balance. |
vertical momentum to hydrostatic balance. |
30 |
|
|
31 |
These terms are calculated in routines called from subroutine {\em |
These terms are calculated in routines called from subroutine {\em |
32 |
CALC\_MOM\_RHS} a collected into the global arrays {\bf Gu}, {\bf Gv}, |
MOM\_FLUXFORM} a collected into the global arrays {\bf Gu}, {\bf Gv}, |
33 |
and {\bf Gw}. |
and {\bf Gw}. |
34 |
|
|
35 |
\fbox{ \begin{minipage}{4.75in} |
\fbox{ \begin{minipage}{4.75in} |
36 |
{\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_fluxform/calc\_mom\_rhs.F}) |
{\em S/R MOM\_FLUXFORM} ({\em pkg/mom\_fluxform/mom\_fluxform.F}) |
37 |
|
|
38 |
$G_u$: {\bf Gu} ({\em DYNVARS.h}) |
$G_u$: {\bf Gu} ({\em DYNVARS.h}) |
39 |
|
|
90 |
|
|
91 |
{\em S/R MOM\_U\_ADV\_WV} ({\em mom\_u\_adv\_wv.F}) |
{\em S/R MOM\_U\_ADV\_WV} ({\em mom\_u\_adv\_wv.F}) |
92 |
|
|
93 |
$uu$, $uv$, $vu$, $vv$: {\bf aF} (local to {\em calc\_mom\_rhs.F}) |
$uu$, $uv$, $vu$, $vv$: {\bf aF} (local to {\em mom\_fluxform.F}) |
94 |
\end{minipage} } |
\end{minipage} } |
95 |
|
|
96 |
|
|
149 |
|
|
150 |
{\em S/R MOM\_V\_CORIOLIS} ({\em mom\_v\_coriolis.F}) |
{\em S/R MOM\_V\_CORIOLIS} ({\em mom\_v\_coriolis.F}) |
151 |
|
|
152 |
$G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (local to {\em calc\_mom\_rhs.F}) |
$G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (local to {\em mom\_fluxform.F}) |
153 |
\end{minipage} } |
\end{minipage} } |
154 |
|
|
155 |
|
|
188 |
|
|
189 |
{\em S/R MOM\_V\_METRIC\_SPHERE} ({\em mom\_v\_metric\_sphere.F}) |
{\em S/R MOM\_V\_METRIC\_SPHERE} ({\em mom\_v\_metric\_sphere.F}) |
190 |
|
|
191 |
$G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F}) |
$G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em mom\_fluxform.F}) |
192 |
\end{minipage} } |
\end{minipage} } |
193 |
|
|
194 |
|
|
223 |
|
|
224 |
{\em S/R MOM\_V\_METRIC\_NH} ({\em mom\_v\_metric\_nh.F}) |
{\em S/R MOM\_V\_METRIC\_NH} ({\em mom\_v\_metric\_nh.F}) |
225 |
|
|
226 |
$G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F}) |
$G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em mom\_fluxform.F}) |
227 |
\end{minipage} } |
\end{minipage} } |
228 |
|
|
229 |
|
|
256 |
where the non-dimensional factors $c_{lm\Delta^n}(\varphi), \{l,m,n\} \in |
where the non-dimensional factors $c_{lm\Delta^n}(\varphi), \{l,m,n\} \in |
257 |
\{1,2\}$ define the ``cosine'' scaling with latitude which can be |
\{1,2\}$ define the ``cosine'' scaling with latitude which can be |
258 |
applied in various ad-hoc ways. For instance, $c_{11\Delta} = |
applied in various ad-hoc ways. For instance, $c_{11\Delta} = |
259 |
c_{21\Delta} = (\cos{\varphi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would |
c_{21\Delta} = (\cos{\varphi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=1$ would |
260 |
represent the an-isotropic cosine scaling typically used on the |
represent the an-isotropic cosine scaling typically used on the |
261 |
``lat-lon'' grid for Laplacian viscosity. |
``lat-lon'' grid for Laplacian viscosity. |
262 |
\marginpar{Need to tidy up method for controlling this in code} |
\marginpar{Need to tidy up method for controlling this in code} |
279 |
|
|
280 |
{\em S/R MOM\_V\_YVISCFLUX} ({\em mom\_v\_yviscflux.F}) |
{\em S/R MOM\_V\_YVISCFLUX} ({\em mom\_v\_yviscflux.F}) |
281 |
|
|
282 |
$\tau_{11}$, $\tau_{12}$, $\tau_{22}$, $\tau_{22}$: {\bf vF}, {\bf |
$\tau_{11}$, $\tau_{12}$, $\tau_{21}$, $\tau_{22}$: {\bf vF}, {\bf |
283 |
v4F} (local to {\em calc\_mom\_rhs.F}) |
v4F} (local to {\em mom\_fluxform.F}) |
284 |
\end{minipage} } |
\end{minipage} } |
285 |
|
|
286 |
Two types of lateral boundary condition exist for the lateral viscous |
Two types of lateral boundary condition exist for the lateral viscous |
318 |
|
|
319 |
{\em S/R MOM\_V\_SIDEDRAG} ({\em mom\_v\_sidedrag.F}) |
{\em S/R MOM\_V\_SIDEDRAG} ({\em mom\_v\_sidedrag.F}) |
320 |
|
|
321 |
$G_u^{side-drag}$, $G_v^{side-drag}$: {\bf vF} (local to {\em calc\_mom\_rhs.F}) |
$G_u^{side-drag}$, $G_v^{side-drag}$: {\bf vF} (local to {\em mom\_fluxform.F}) |
322 |
\end{minipage} } |
\end{minipage} } |
323 |
|
|
324 |
|
|
355 |
|
|
356 |
{\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F}) |
{\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F}) |
357 |
|
|
358 |
$\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F}) |
$\tau_{13}$: {\bf urf} (local to {\em mom\_fluxform.F}) |
359 |
|
|
360 |
$\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F}) |
$\tau_{23}$: {\bf vrf} (local to {\em mom\_fluxform.F}) |
361 |
\end{minipage} } |
\end{minipage} } |
362 |
|
|
363 |
|
|
393 |
|
|
394 |
{\em S/R MOM\_V\_BOTTOMDRAG} ({\em mom\_v\_bottomdrag.F}) |
{\em S/R MOM\_V\_BOTTOMDRAG} ({\em mom\_v\_bottomdrag.F}) |
395 |
|
|
396 |
$\tau_{13}^{bottom-drag}$, $\tau_{23}^{bottom-drag}$: {\bf vf} (local to {\em calc\_mom\_rhs.F}) |
$\tau_{13}^{bottom-drag}/\Delta r_f$, $\tau_{23}^{bottom-drag}/\Delta r_f$: |
397 |
|
{\bf vf} (local to {\em mom\_fluxform.F}) |
398 |
\end{minipage} } |
\end{minipage} } |
399 |
|
|
400 |
\subsection{Derivation of discrete energy conservation} |
\subsection{Derivation of discrete energy conservation} |