/[MITgcm]/manual/s_algorithm/text/mom_fluxform.tex
ViewVC logotype

Contents of /manual/s_algorithm/text/mom_fluxform.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.14 - (show annotations) (download) (as text)
Mon Aug 30 23:09:18 2010 UTC (13 years, 8 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.13: +3 -3 lines
File MIME type: application/x-tex
clean-up latex built:
 (remove multiple definition of label; fix missing reference; replace
  non-standard latex stuff; ...)

1 % $Header: /u/gcmpack/manual/s_algorithm/text/mom_fluxform.tex,v 1.13 2010/02/18 21:26:26 jmc Exp $
2 % $Name: $
3
4 \section{Flux-form momentum equations}
5 \label{sec:flux-form_momentum_equations}
6 \begin{rawhtml}
7 <!-- CMIREDIR:flux-form_momentum_equations: -->
8 \end{rawhtml}
9
10 The original finite volume model was based on the Eulerian flux form
11 momentum equations. This is the default though the vector invariant
12 form is optionally available (and recommended in some cases).
13
14 The ``G's'' (our colloquial name for all terms on rhs!) are broken
15 into the various advective, Coriolis, horizontal dissipation, vertical
16 dissipation and metric forces:
17 \marginpar{$G_u$: {\bf Gu} }
18 \marginpar{$G_v$: {\bf Gv} }
19 \marginpar{$G_w$: {\bf Gw} }
20 \begin{eqnarray}
21 G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} +
22 G_u^{metric} + G_u^{nh-metric} \label{eq:gsplit_momu} \\
23 G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} +
24 G_v^{metric} + G_v^{nh-metric} \label{eq:gsplit_momv} \\
25 G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} +
26 G_w^{metric} + G_w^{nh-metric} \label{eq:gsplit_momw}
27 \end{eqnarray}
28 In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the
29 vertical momentum to hydrostatic balance.
30
31 These terms are calculated in routines called from subroutine {\em
32 MOM\_FLUXFORM} a collected into the global arrays {\bf Gu}, {\bf Gv},
33 and {\bf Gw}.
34
35 \fbox{ \begin{minipage}{4.75in}
36 {\em S/R MOM\_FLUXFORM} ({\em pkg/mom\_fluxform/mom\_fluxform.F})
37
38 $G_u$: {\bf Gu} ({\em DYNVARS.h})
39
40 $G_v$: {\bf Gv} ({\em DYNVARS.h})
41
42 $G_w$: {\bf Gw} ({\em DYNVARS.h})
43 \end{minipage} }
44
45
46 \subsection{Advection of momentum}
47
48 The advective operator is second order accurate in space:
49 \begin{eqnarray}
50 {\cal A}_w \Delta r_f h_w G_u^{adv} & = &
51 \delta_i \overline{ U }^i \overline{ u }^i
52 + \delta_j \overline{ V }^i \overline{ u }^j
53 + \delta_k \overline{ W }^i \overline{ u }^k \label{eq:discrete-momadvu} \\
54 {\cal A}_s \Delta r_f h_s G_v^{adv} & = &
55 \delta_i \overline{ U }^j \overline{ v }^i
56 + \delta_j \overline{ V }^j \overline{ v }^j
57 + \delta_k \overline{ W }^j \overline{ v }^k \label{eq:discrete-momadvv} \\
58 {\cal A}_c \Delta r_c G_w^{adv} & = &
59 \delta_i \overline{ U }^k \overline{ w }^i
60 + \delta_j \overline{ V }^k \overline{ w }^j
61 + \delta_k \overline{ W }^k \overline{ w }^k \label{eq:discrete-momadvw}
62 \end{eqnarray}
63 and because of the flux form does not contribute to the global budget
64 of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes
65 defined:
66 \marginpar{$U$: {\bf uTrans} }
67 \marginpar{$V$: {\bf vTrans} }
68 \marginpar{$W$: {\bf rTrans} }
69 \begin{eqnarray}
70 U & = & \Delta y_g \Delta r_f h_w u \label{eq:utrans} \\
71 V & = & \Delta x_g \Delta r_f h_s v \label{eq:vtrans} \\
72 W & = & {\cal A}_c w \label{eq:rtrans}
73 \end{eqnarray}
74 The advection of momentum takes the same form as the advection of
75 tracers but by a translated advective flow. Consequently, the
76 conservation of second moments, derived for tracers later, applies to
77 $u^2$ and $v^2$ and $w^2$ so that advection of momentum correctly
78 conserves kinetic energy.
79
80 \fbox{ \begin{minipage}{4.75in}
81 {\em S/R MOM\_U\_ADV\_UU} ({\em mom\_u\_adv\_uu.F})
82
83 {\em S/R MOM\_U\_ADV\_VU} ({\em mom\_u\_adv\_vu.F})
84
85 {\em S/R MOM\_U\_ADV\_WU} ({\em mom\_u\_adv\_wu.F})
86
87 {\em S/R MOM\_U\_ADV\_UV} ({\em mom\_u\_adv\_uv.F})
88
89 {\em S/R MOM\_U\_ADV\_VV} ({\em mom\_u\_adv\_vv.F})
90
91 {\em S/R MOM\_U\_ADV\_WV} ({\em mom\_u\_adv\_wv.F})
92
93 $uu$, $uv$, $vu$, $vv$: {\bf aF} (local to {\em mom\_fluxform.F})
94 \end{minipage} }
95
96
97
98 \subsection{Coriolis terms}
99
100 The ``pure C grid'' Coriolis terms (i.e. in absence of C-D scheme) are
101 discretized:
102 \begin{eqnarray}
103 {\cal A}_w \Delta r_f h_w G_u^{Cor} & = &
104 \overline{ f {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i
105 - \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ w }^k }^i \\
106 {\cal A}_s \Delta r_f h_s G_v^{Cor} & = &
107 - \overline{ f {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
108 {\cal A}_c \Delta r_c G_w^{Cor} & = &
109 \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ u }^i }^k
110 \end{eqnarray}
111 where the Coriolis parameters $f$ and $f'$ are defined:
112 \begin{eqnarray}
113 f & = & 2 \Omega \sin{\varphi} \\
114 f' & = & 2 \Omega \cos{\varphi}
115 \end{eqnarray}
116 where $\varphi$ is geographic latitude when using spherical geometry,
117 otherwise the $\beta$-plane definition is used:
118 \begin{eqnarray}
119 f & = & f_o + \beta y \\
120 f' & = & 0
121 \end{eqnarray}
122
123 This discretization globally conserves kinetic energy. It should be
124 noted that despite the use of this discretization in former
125 publications, all calculations to date have used the following
126 different discretization:
127 \begin{eqnarray}
128 G_u^{Cor} & = &
129 f_u \overline{ v }^{ji}
130 - \epsilon_{nh} f_u' \overline{ w }^{ik} \\
131 G_v^{Cor} & = &
132 - f_v \overline{ u }^{ij} \\
133 G_w^{Cor} & = &
134 \epsilon_{nh} f_w' \overline{ u }^{ik}
135 \end{eqnarray}
136 \marginpar{Need to change the default in code to match this}
137 where the subscripts on $f$ and $f'$ indicate evaluation of the
138 Coriolis parameters at the appropriate points in space. The above
139 discretization does {\em not} conserve anything, especially energy and
140 for historical reasons is the default for the code. A
141 flag controls this discretization: set run-time logical {\bf
142 useEnergyConservingCoriolis} to {\em true} which otherwise defaults to
143 {\em false}.
144
145 \fbox{ \begin{minipage}{4.75in}
146 {\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F})
147
148 {\em S/R MOM\_U\_CORIOLIS} ({\em mom\_u\_coriolis.F})
149
150 {\em S/R MOM\_V\_CORIOLIS} ({\em mom\_v\_coriolis.F})
151
152 $G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (local to {\em mom\_fluxform.F})
153 \end{minipage} }
154
155
156 \subsection{Curvature metric terms}
157
158 The most commonly used coordinate system on the sphere is the
159 geographic system $(\lambda,\varphi)$. The curvilinear nature of these
160 coordinates on the sphere lead to some ``metric'' terms in the
161 component momentum equations. Under the thin-atmosphere and
162 hydrostatic approximations these terms are discretized:
163 \begin{eqnarray}
164 {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
165 \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\
166 {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
167 - \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
168 G_w^{metric} & = & 0
169 \end{eqnarray}
170 where $a$ is the radius of the planet (sphericity is assumed) or the
171 radial distance of the particle (i.e. a function of height). It is
172 easy to see that this discretization satisfies all the properties of
173 the discrete Coriolis terms since the metric factor $\frac{u}{a}
174 \tan{\varphi}$ can be viewed as a modification of the vertical Coriolis
175 parameter: $f \rightarrow f+\frac{u}{a} \tan{\varphi}$.
176
177 However, as for the Coriolis terms, a non-energy conserving form has
178 exclusively been used to date:
179 \begin{eqnarray}
180 G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\varphi} \\
181 G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\varphi}
182 \end{eqnarray}
183 where $\tan{\varphi}$ is evaluated at the $u$ and $v$ points
184 respectively.
185
186 \fbox{ \begin{minipage}{4.75in}
187 {\em S/R MOM\_U\_METRIC\_SPHERE} ({\em mom\_u\_metric\_sphere.F})
188
189 {\em S/R MOM\_V\_METRIC\_SPHERE} ({\em mom\_v\_metric\_sphere.F})
190
191 $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em mom\_fluxform.F})
192 \end{minipage} }
193
194
195
196 \subsection{Non-hydrostatic metric terms}
197
198 For the non-hydrostatic equations, dropping the thin-atmosphere
199 approximation re-introduces metric terms involving $w$ and are
200 required to conserve angular momentum:
201 \begin{eqnarray}
202 {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
203 - \overline{ \frac{ \overline{u}^i \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c }^i \\
204 {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
205 - \overline{ \frac{ \overline{v}^j \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c}^j \\
206 {\cal A}_c \Delta r_c G_w^{metric} & = &
207 \overline{ \frac{ {\overline{u}^i}^2 + {\overline{v}^j}^2}{a} {\cal A}_c \Delta r_f h_c }^k
208 \end{eqnarray}
209
210 Because we are always consistent, even if consistently wrong, we have,
211 in the past, used a different discretization in the model which is:
212 \begin{eqnarray}
213 G_u^{metric} & = &
214 - \frac{u}{a} \overline{w}^{ik} \\
215 G_v^{metric} & = &
216 - \frac{v}{a} \overline{w}^{jk} \\
217 G_w^{metric} & = &
218 \frac{1}{a} ( {\overline{u}^{ik}}^2 + {\overline{v}^{jk}}^2 )
219 \end{eqnarray}
220
221 \fbox{ \begin{minipage}{4.75in}
222 {\em S/R MOM\_U\_METRIC\_NH} ({\em mom\_u\_metric\_nh.F})
223
224 {\em S/R MOM\_V\_METRIC\_NH} ({\em mom\_v\_metric\_nh.F})
225
226 $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em mom\_fluxform.F})
227 \end{minipage} }
228
229
230 \subsection{Lateral dissipation}
231
232 Historically, we have represented the SGS Reynolds stresses as simply
233 down gradient momentum fluxes, ignoring constraints on the stress
234 tensor such as symmetry.
235 \begin{eqnarray}
236 {\cal A}_w \Delta r_f h_w G_u^{h-diss} & = &
237 \delta_i \Delta y_f \Delta r_f h_c \tau_{11}
238 + \delta_j \Delta x_v \Delta r_f h_\zeta \tau_{12} \\
239 {\cal A}_s \Delta r_f h_s G_v^{h-diss} & = &
240 \delta_i \Delta y_u \Delta r_f h_\zeta \tau_{21}
241 + \delta_j \Delta x_f \Delta r_f h_c \tau_{22}
242 \end{eqnarray}
243 \marginpar{Check signs of stress definitions}
244
245 The lateral viscous stresses are discretized:
246 \begin{eqnarray}
247 \tau_{11} & = & A_h c_{11\Delta}(\varphi) \frac{1}{\Delta x_f} \delta_i u
248 -A_4 c_{11\Delta^2}(\varphi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\
249 \tau_{12} & = & A_h c_{12\Delta}(\varphi) \frac{1}{\Delta y_u} \delta_j u
250 -A_4 c_{12\Delta^2}(\varphi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\
251 \tau_{21} & = & A_h c_{21\Delta}(\varphi) \frac{1}{\Delta x_v} \delta_i v
252 -A_4 c_{21\Delta^2}(\varphi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\
253 \tau_{22} & = & A_h c_{22\Delta}(\varphi) \frac{1}{\Delta y_f} \delta_j v
254 -A_4 c_{22\Delta^2}(\varphi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v
255 \end{eqnarray}
256 where the non-dimensional factors $c_{lm\Delta^n}(\varphi), \{l,m,n\} \in
257 \{1,2\}$ define the ``cosine'' scaling with latitude which can be
258 applied in various ad-hoc ways. For instance, $c_{11\Delta} =
259 c_{21\Delta} = (\cos{\varphi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=1$ would
260 represent the an-isotropic cosine scaling typically used on the
261 ``lat-lon'' grid for Laplacian viscosity.
262 \marginpar{Need to tidy up method for controlling this in code}
263
264 It should be noted that despite the ad-hoc nature of the scaling, some
265 scaling must be done since on a lat-lon grid the converging meridians
266 make it very unlikely that a stable viscosity parameter exists across
267 the entire model domain.
268
269 The Laplacian viscosity coefficient, $A_h$ ({\bf viscAh}), has units
270 of $m^2 s^{-1}$. The bi-harmonic viscosity coefficient, $A_4$ ({\bf
271 viscA4}), has units of $m^4 s^{-1}$.
272
273 \fbox{ \begin{minipage}{4.75in}
274 {\em S/R MOM\_U\_XVISCFLUX} ({\em mom\_u\_xviscflux.F})
275
276 {\em S/R MOM\_U\_YVISCFLUX} ({\em mom\_u\_yviscflux.F})
277
278 {\em S/R MOM\_V\_XVISCFLUX} ({\em mom\_v\_xviscflux.F})
279
280 {\em S/R MOM\_V\_YVISCFLUX} ({\em mom\_v\_yviscflux.F})
281
282 $\tau_{11}$, $\tau_{12}$, $\tau_{21}$, $\tau_{22}$: {\bf vF}, {\bf
283 v4F} (local to {\em mom\_fluxform.F})
284 \end{minipage} }
285
286 Two types of lateral boundary condition exist for the lateral viscous
287 terms, no-slip and free-slip.
288
289 The free-slip condition is most convenient to code since it is
290 equivalent to zero-stress on boundaries. Simple masking of the stress
291 components sets them to zero. The fractional open stress is properly
292 handled using the lopped cells.
293
294 The no-slip condition defines the normal gradient of a tangential flow
295 such that the flow is zero on the boundary. Rather than modify the
296 stresses by using complicated functions of the masks and ``ghost''
297 points (see \cite{adcroft:98}) we add the boundary stresses as
298 an additional source term in cells next to solid boundaries. This has
299 the advantage of being able to cope with ``thin walls'' and also makes
300 the interior stress calculation (code) independent of the boundary
301 conditions. The ``body'' force takes the form:
302 \begin{eqnarray}
303 G_u^{side-drag} & = &
304 \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j
305 \left( A_h c_{12\Delta}(\varphi) u - A_4 c_{12\Delta^2}(\varphi) \nabla^2 u \right)
306 \\
307 G_v^{side-drag} & = &
308 \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i
309 \left( A_h c_{21\Delta}(\varphi) v - A_4 c_{21\Delta^2}(\varphi) \nabla^2 v \right)
310 \end{eqnarray}
311
312 In fact, the above discretization is not quite complete because it
313 assumes that the bathymetry at velocity points is deeper than at
314 neighboring vorticity points, e.g. $1-h_w < 1-h_\zeta$
315
316 \fbox{ \begin{minipage}{4.75in}
317 {\em S/R MOM\_U\_SIDEDRAG} ({\em mom\_u\_sidedrag.F})
318
319 {\em S/R MOM\_V\_SIDEDRAG} ({\em mom\_v\_sidedrag.F})
320
321 $G_u^{side-drag}$, $G_v^{side-drag}$: {\bf vF} (local to {\em mom\_fluxform.F})
322 \end{minipage} }
323
324
325 \subsection{Vertical dissipation}
326
327 Vertical viscosity terms are discretized with only partial adherence
328 to the variable grid lengths introduced by the finite volume
329 formulation. This reduces the formal accuracy of these terms to just
330 first order but only next to boundaries; exactly where other terms
331 appear such as linear and quadratic bottom drag.
332 \begin{eqnarray}
333 G_u^{v-diss} & = &
334 \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
335 G_v^{v-diss} & = &
336 \frac{1}{\Delta r_f h_s} \delta_k \tau_{23} \\
337 G_w^{v-diss} & = & \epsilon_{nh}
338 \frac{1}{\Delta r_f h_d} \delta_k \tau_{33}
339 \end{eqnarray}
340 represents the general discrete form of the vertical dissipation terms.
341
342 In the interior the vertical stresses are discretized:
343 \begin{eqnarray}
344 \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
345 \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v \\
346 \tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w
347 \end{eqnarray}
348 It should be noted that in the non-hydrostatic form, the stress tensor
349 is even less consistent than for the hydrostatic (see
350 \cite{wajsowicz:93}). It is well known how to do this properly (see
351 \cite{griffies:00}) and is on the list of to-do's.
352
353 \fbox{ \begin{minipage}{4.75in}
354 {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
355
356 {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
357
358 $\tau_{13}$: {\bf urf} (local to {\em mom\_fluxform.F})
359
360 $\tau_{23}$: {\bf vrf} (local to {\em mom\_fluxform.F})
361 \end{minipage} }
362
363
364 As for the lateral viscous terms, the free-slip condition is
365 equivalent to simply setting the stress to zero on boundaries. The
366 no-slip condition is implemented as an additional term acting on top
367 of the interior and free-slip stresses. Bottom drag represents
368 additional friction, in addition to that imposed by the no-slip
369 condition at the bottom. The drag is cast as a stress expressed as a
370 linear or quadratic function of the mean flow in the layer above the
371 topography:
372 \begin{eqnarray}
373 \tau_{13}^{bottom-drag} & = &
374 \left(
375 2 A_v \frac{1}{\Delta r_c}
376 + r_b
377 + C_d \sqrt{ \overline{2 KE}^i }
378 \right) u \\
379 \tau_{23}^{bottom-drag} & = &
380 \left(
381 2 A_v \frac{1}{\Delta r_c}
382 + r_b
383 + C_d \sqrt{ \overline{2 KE}^j }
384 \right) v
385 \end{eqnarray}
386 where these terms are only evaluated immediately above topography.
387 $r_b$ ({\bf bottomDragLinear}) has units of $m s^{-1}$ and a typical value
388 of the order 0.0002 $m s^{-1}$. $C_d$ ({\bf bottomDragQuadratic}) is
389 dimensionless with typical values in the range 0.001--0.003.
390
391 \fbox{ \begin{minipage}{4.75in}
392 {\em S/R MOM\_U\_BOTTOMDRAG} ({\em mom\_u\_bottomdrag.F})
393
394 {\em S/R MOM\_V\_BOTTOMDRAG} ({\em mom\_v\_bottomdrag.F})
395
396 $\tau_{13}^{bottom-drag}/\Delta r_f$, $\tau_{23}^{bottom-drag}/\Delta r_f$:
397 {\bf vf} (local to {\em mom\_fluxform.F})
398 \end{minipage} }
399
400 \subsection{Derivation of discrete energy conservation}
401
402 These discrete equations conserve kinetic plus potential energy using the
403 following definitions:
404 \begin{equation}
405 KE = \frac{1}{2} \left( \overline{ u^2 }^i + \overline{ v^2 }^j +
406 \epsilon_{nh} \overline{ w^2 }^k \right)
407 \end{equation}
408
409 \subsection{Mom Diagnostics}
410 \label{sec:pkg:mom_common:diagnostics}
411
412 \begin{verbatim}
413
414 ------------------------------------------------------------------------
415 <-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
416 ------------------------------------------------------------------------
417 VISCAHZ | 15 |SZ MR |m^2/s |Harmonic Visc Coefficient (m2/s) (Zeta Pt)
418 VISCA4Z | 15 |SZ MR |m^4/s |Biharmonic Visc Coefficient (m4/s) (Zeta Pt)
419 VISCAHD | 15 |SM MR |m^2/s |Harmonic Viscosity Coefficient (m2/s) (Div Pt)
420 VISCA4D | 15 |SM MR |m^4/s |Biharmonic Viscosity Coefficient (m4/s) (Div Pt)
421 VAHZMAX | 15 |SZ MR |m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Zeta Pt)
422 VA4ZMAX | 15 |SZ MR |m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Zeta Pt)
423 VAHDMAX | 15 |SM MR |m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Div Pt)
424 VA4DMAX | 15 |SM MR |m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Div Pt)
425 VAHZMIN | 15 |SZ MR |m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Zeta Pt)
426 VA4ZMIN | 15 |SZ MR |m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Zeta Pt)
427 VAHDMIN | 15 |SM MR |m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Div Pt)
428 VA4DMIN | 15 |SM MR |m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Div Pt)
429 VAHZLTH | 15 |SZ MR |m^2/s |Leith Harm Visc Coefficient (m2/s) (Zeta Pt)
430 VA4ZLTH | 15 |SZ MR |m^4/s |Leith Biharm Visc Coefficient (m4/s) (Zeta Pt)
431 VAHDLTH | 15 |SM MR |m^2/s |Leith Harm Visc Coefficient (m2/s) (Div Pt)
432 VA4DLTH | 15 |SM MR |m^4/s |Leith Biharm Visc Coefficient (m4/s) (Div Pt)
433 VAHZLTHD| 15 |SZ MR |m^2/s |LeithD Harm Visc Coefficient (m2/s) (Zeta Pt)
434 VA4ZLTHD| 15 |SZ MR |m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Zeta Pt)
435 VAHDLTHD| 15 |SM MR |m^2/s |LeithD Harm Visc Coefficient (m2/s) (Div Pt)
436 VA4DLTHD| 15 |SM MR |m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Div Pt)
437 VAHZSMAG| 15 |SZ MR |m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Zeta Pt)
438 VA4ZSMAG| 15 |SZ MR |m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Zeta Pt)
439 VAHDSMAG| 15 |SM MR |m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Div Pt)
440 VA4DSMAG| 15 |SM MR |m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Div Pt)
441 momKE | 15 |SM MR |m^2/s^2 |Kinetic Energy (in momentum Eq.)
442 momHDiv | 15 |SM MR |s^-1 |Horizontal Divergence (in momentum Eq.)
443 momVort3| 15 |SZ MR |s^-1 |3rd component (vertical) of Vorticity
444 Strain | 15 |SZ MR |s^-1 |Horizontal Strain of Horizontal Velocities
445 Tension | 15 |SM MR |s^-1 |Horizontal Tension of Horizontal Velocities
446 UBotDrag| 15 |UU 129MR |m/s^2 |U momentum tendency from Bottom Drag
447 VBotDrag| 15 |VV 128MR |m/s^2 |V momentum tendency from Bottom Drag
448 USidDrag| 15 |UU 131MR |m/s^2 |U momentum tendency from Side Drag
449 VSidDrag| 15 |VV 130MR |m/s^2 |V momentum tendency from Side Drag
450 Um_Diss | 15 |UU 133MR |m/s^2 |U momentum tendency from Dissipation
451 Vm_Diss | 15 |VV 132MR |m/s^2 |V momentum tendency from Dissipation
452 Um_Advec| 15 |UU 135MR |m/s^2 |U momentum tendency from Advection terms
453 Vm_Advec| 15 |VV 134MR |m/s^2 |V momentum tendency from Advection terms
454 Um_Cori | 15 |UU 137MR |m/s^2 |U momentum tendency from Coriolis term
455 Vm_Cori | 15 |VV 136MR |m/s^2 |V momentum tendency from Coriolis term
456 Um_Ext | 15 |UU 137MR |m/s^2 |U momentum tendency from external forcing
457 Vm_Ext | 15 |VV 138MR |m/s^2 |V momentum tendency from external forcing
458 Um_AdvZ3| 15 |UU 141MR |m/s^2 |U momentum tendency from Vorticity Advection
459 Vm_AdvZ3| 15 |VV 140MR |m/s^2 |V momentum tendency from Vorticity Advection
460 Um_AdvRe| 15 |UU 143MR |m/s^2 |U momentum tendency from vertical Advection (Explicit part)
461 Vm_AdvRe| 15 |VV 142MR |m/s^2 |V momentum tendency from vertical Advection (Explicit part)
462 ADVx_Um | 15 |UM 145MR |m^4/s^2 |Zonal Advective Flux of U momentum
463 ADVy_Um | 15 |VZ 144MR |m^4/s^2 |Meridional Advective Flux of U momentum
464 ADVrE_Um| 15 |WU LR |m^4/s^2 |Vertical Advective Flux of U momentum (Explicit part)
465 ADVx_Vm | 15 |UZ 148MR |m^4/s^2 |Zonal Advective Flux of V momentum
466 ADVy_Vm | 15 |VM 147MR |m^4/s^2 |Meridional Advective Flux of V momentum
467 ADVrE_Vm| 15 |WV LR |m^4/s^2 |Vertical Advective Flux of V momentum (Explicit part)
468 VISCx_Um| 15 |UM 151MR |m^4/s^2 |Zonal Viscous Flux of U momentum
469 VISCy_Um| 15 |VZ 150MR |m^4/s^2 |Meridional Viscous Flux of U momentum
470 VISrE_Um| 15 |WU LR |m^4/s^2 |Vertical Viscous Flux of U momentum (Explicit part)
471 VISrI_Um| 15 |WU LR |m^4/s^2 |Vertical Viscous Flux of U momentum (Implicit part)
472 VISCx_Vm| 15 |UZ 155MR |m^4/s^2 |Zonal Viscous Flux of V momentum
473 VISCy_Vm| 15 |VM 154MR |m^4/s^2 |Meridional Viscous Flux of V momentum
474 VISrE_Vm| 15 |WV LR |m^4/s^2 |Vertical Viscous Flux of V momentum (Explicit part)
475 VISrI_Vm| 15 |WV LR |m^4/s^2 |Vertical Viscous Flux of V momentum (Implicit part)
476 \end{verbatim}

  ViewVC Help
Powered by ViewVC 1.1.22