/[MITgcm]/manual/s_algorithm/text/mom_fluxform.tex
ViewVC logotype

Contents of /manual/s_algorithm/text/mom_fluxform.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (show annotations) (download) (as text)
Fri Sep 28 03:28:32 2001 UTC (22 years, 8 months ago) by adcroft
Branch: MAIN
Changes since 1.2: +6 -6 lines
File MIME type: application/x-tex
Updated coriolis flag to match code.

1 % $Header: /u/gcmpack/mitgcmdoc/part2/mom_fluxform.tex,v 1.2 2001/09/25 20:13:42 adcroft Exp $
2 % $Name: $
3
4 \section{Flux-form momentum equations}
5
6 The original finite volume model was based on the Eulerian flux form
7 momentum equations. This is the default though the vector invariant
8 form is optionally available (and recommended in some cases).
9
10 The ``G's'' (our colloquial name for all terms on rhs!) are broken
11 into the various advective, Coriolis, horizontal dissipation, vertical
12 dissipation and metric forces:
13 \marginpar{$G_u$: {\bf Gu} }
14 \marginpar{$G_v$: {\bf Gv} }
15 \marginpar{$G_w$: {\bf Gw} }
16 \begin{eqnarray}
17 G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} +
18 G_u^{metric} + G_u^{nh-metric} \label{eq:gsplit_momu} \\
19 G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} +
20 G_v^{metric} + G_v^{nh-metric} \label{eq:gsplit_momv} \\
21 G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} +
22 G_w^{metric} + G_w^{nh-metric} \label{eq:gsplit_momw}
23 \end{eqnarray}
24 In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the
25 vertical momentum to hydrostatic balance.
26
27 These terms are calculated in routines called from subroutine {\em
28 CALC\_MOM\_RHS} a collected into the global arrays {\bf Gu}, {\bf Gv},
29 and {\bf Gw}.
30
31 \fbox{ \begin{minipage}{4.75in}
32 {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_fluxform/calc\_mom\_rhs.F})
33
34 $G_u$: {\bf Gu} ({\em DYNVARS.h})
35
36 $G_v$: {\bf Gv} ({\em DYNVARS.h})
37
38 $G_w$: {\bf Gw} ({\em DYNVARS.h})
39 \end{minipage} }
40
41
42 \subsection{Advection of momentum}
43
44 The advective operator is second order accurate in space:
45 \begin{eqnarray}
46 {\cal A}_w \Delta r_f h_w G_u^{adv} & = &
47 \delta_i \overline{ U }^i \overline{ u }^i
48 + \delta_j \overline{ V }^i \overline{ u }^j
49 + \delta_k \overline{ W }^i \overline{ u }^k \label{eq:discrete-momadvu} \\
50 {\cal A}_s \Delta r_f h_s G_v^{adv} & = &
51 \delta_i \overline{ U }^j \overline{ v }^i
52 + \delta_j \overline{ V }^j \overline{ v }^j
53 + \delta_k \overline{ W }^j \overline{ v }^k \label{eq:discrete-momadvv} \\
54 {\cal A}_c \Delta r_c G_w^{adv} & = &
55 \delta_i \overline{ U }^k \overline{ w }^i
56 + \delta_j \overline{ V }^k \overline{ w }^j
57 + \delta_k \overline{ W }^k \overline{ w }^k \label{eq:discrete-momadvw}
58 \end{eqnarray}
59 and because of the flux form does not contribute to the global budget
60 of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes
61 defined:
62 \marginpar{$U$: {\bf uTrans} }
63 \marginpar{$V$: {\bf vTrans} }
64 \marginpar{$W$: {\bf rTrans} }
65 \begin{eqnarray}
66 U & = & \Delta y_g \Delta r_f h_w u \label{eq:utrans} \\
67 V & = & \Delta x_g \Delta r_f h_s v \label{eq:vtrans} \\
68 W & = & {\cal A}_c w \label{eq:rtrans}
69 \end{eqnarray}
70 The advection of momentum takes the same form as the advection of
71 tracers but by a translated advective flow. Consequently, the
72 conservation of second moments, derived for tracers later, applies to
73 $u^2$ and $v^2$ and $w^2$ so that advection of momentum correctly
74 conserves kinetic energy.
75
76 \fbox{ \begin{minipage}{4.75in}
77 {\em S/R MOM\_U\_ADV\_UU} ({\em mom\_u\_adv\_uu.F})
78
79 {\em S/R MOM\_U\_ADV\_VU} ({\em mom\_u\_adv\_vu.F})
80
81 {\em S/R MOM\_U\_ADV\_WU} ({\em mom\_u\_adv\_wu.F})
82
83 {\em S/R MOM\_U\_ADV\_UV} ({\em mom\_u\_adv\_uv.F})
84
85 {\em S/R MOM\_U\_ADV\_VV} ({\em mom\_u\_adv\_vv.F})
86
87 {\em S/R MOM\_U\_ADV\_WV} ({\em mom\_u\_adv\_wv.F})
88
89 $uu$, $uv$, $vu$, $vv$: {\bf aF} (local to {\em calc\_mom\_rhs.F})
90 \end{minipage} }
91
92
93
94 \subsection{Coriolis terms}
95
96 The ``pure C grid'' Coriolis terms (i.e. in absence of C-D scheme) are
97 discretized:
98 \begin{eqnarray}
99 {\cal A}_w \Delta r_f h_w G_u^{Cor} & = &
100 \overline{ f {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i
101 - \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ w }^k }^i \\
102 {\cal A}_s \Delta r_f h_s G_v^{Cor} & = &
103 - \overline{ f {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
104 {\cal A}_c \Delta r_c G_w^{Cor} & = &
105 \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ u }^i }^k
106 \end{eqnarray}
107 where the Coriolis parameters $f$ and $f'$ are defined:
108 \begin{eqnarray}
109 f & = & 2 \Omega \sin{\phi} \\
110 f' & = & 2 \Omega \cos{\phi}
111 \end{eqnarray}
112 where $\phi$ is geographic latitude when using spherical geometry,
113 otherwise the $\beta$-plane definition is used:
114 \begin{eqnarray}
115 f & = & f_o + \beta y \\
116 f' & = & 0
117 \end{eqnarray}
118
119 This discretization globally conserves kinetic energy. It should be
120 noted that despite the use of this discretization in former
121 publications, all calculations to date have used the following
122 different discretization:
123 \begin{eqnarray}
124 G_u^{Cor} & = &
125 f_u \overline{ v }^{ji}
126 - \epsilon_{nh} f_u' \overline{ w }^{ik} \\
127 G_v^{Cor} & = &
128 - f_v \overline{ u }^{ij} \\
129 G_w^{Cor} & = &
130 \epsilon_{nh} f_w' \overline{ u }^{ik}
131 \end{eqnarray}
132 \marginpar{Need to change the default in code to match this}
133 where the subscripts on $f$ and $f'$ indicate evaluation of the
134 Coriolis parameters at the appropriate points in space. The above
135 discretization does {\em not} conserve anything, especially energy and
136 for historical reasons is the default for the code. A
137 flag controls this discretization: set run-time logical {\bf
138 useEnergyConservingCoriolis} to {\em true} which otherwise defaults to
139 {\em false}.
140
141 \fbox{ \begin{minipage}{4.75in}
142 {\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F})
143
144 {\em S/R MOM\_U\_CORIOLIS} ({\em mom\_u\_coriolis.F})
145
146 {\em S/R MOM\_V\_CORIOLIS} ({\em mom\_v\_coriolis.F})
147
148 $G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (local to {\em calc\_mom\_rhs.F})
149 \end{minipage} }
150
151
152 \subsection{Curvature metric terms}
153
154 The most commonly used coordinate system on the sphere is the
155 geographic system $(\lambda,\phi)$. The curvilinear nature of these
156 coordinates on the sphere lead to some ``metric'' terms in the
157 component momentum equations. Under the thin-atmosphere and
158 hydrostatic approximations these terms are discretized:
159 \begin{eqnarray}
160 {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
161 \overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\
162 {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
163 - \overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
164 G_w^{metric} & = & 0
165 \end{eqnarray}
166 where $a$ is the radius of the planet (sphericity is assumed) or the
167 radial distance of the particle (i.e. a function of height). It is
168 easy to see that this discretization satisfies all the properties of
169 the discrete Coriolis terms since the metric factor $\frac{u}{a}
170 \tan{\phi}$ can be viewed as a modification of the vertical Coriolis
171 parameter: $f \rightarrow f+\frac{u}{a} \tan{\phi}$.
172
173 However, as for the Coriolis terms, a non-energy conserving form has
174 exclusively been used to date:
175 \begin{eqnarray}
176 G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\phi} \\
177 G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\phi}
178 \end{eqnarray}
179 where $\tan{\phi}$ is evaluated at the $u$ and $v$ points
180 respectively.
181
182 \fbox{ \begin{minipage}{4.75in}
183 {\em S/R MOM\_U\_METRIC\_SPHERE} ({\em mom\_u\_metric\_sphere.F})
184
185 {\em S/R MOM\_V\_METRIC\_SPHERE} ({\em mom\_v\_metric\_sphere.F})
186
187 $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F})
188 \end{minipage} }
189
190
191
192 \subsection{Non-hydrostatic metric terms}
193
194 For the non-hydrostatic equations, dropping the thin-atmosphere
195 approximation re-introduces metric terms involving $w$ and are
196 required to conserve anglular momentum:
197 \begin{eqnarray}
198 {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
199 - \overline{ \frac{ \overline{u}^i \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c }^i \\
200 {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
201 - \overline{ \frac{ \overline{v}^j \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c}^j \\
202 {\cal A}_c \Delta r_c G_w^{metric} & = &
203 \overline{ \frac{ {\overline{u}^i}^2 + {\overline{v}^j}^2}{a} {\cal A}_c \Delta r_f h_c }^k
204 \end{eqnarray}
205
206 Because we are always consistent, even if consistently wrong, we have,
207 in the past, used a different discretization in the model which is:
208 \begin{eqnarray}
209 G_u^{metric} & = &
210 - \frac{u}{a} \overline{w}^{ik} \\
211 G_v^{metric} & = &
212 - \frac{v}{a} \overline{w}^{jk} \\
213 G_w^{metric} & = &
214 \frac{1}{a} ( {\overline{u}^{ik}}^2 + {\overline{v}^{jk}}^2 )
215 \end{eqnarray}
216
217 \fbox{ \begin{minipage}{4.75in}
218 {\em S/R MOM\_U\_METRIC\_NH} ({\em mom\_u\_metric\_nh.F})
219
220 {\em S/R MOM\_V\_METRIC\_NH} ({\em mom\_v\_metric\_nh.F})
221
222 $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F})
223 \end{minipage} }
224
225
226 \subsection{Lateral dissipation}
227
228 Historically, we have represented the SGS Reynolds stresses as simply
229 down gradient momentum fluxes, ignoring constraints on the stress
230 tensor such as symmetry.
231 \begin{eqnarray}
232 {\cal A}_w \Delta r_f h_w G_u^{h-diss} & = &
233 \delta_i \Delta y_f \Delta r_f h_c \tau_{11}
234 + \delta_j \Delta x_v \Delta r_f h_\zeta \tau_{12} \\
235 {\cal A}_s \Delta r_f h_s G_v^{h-diss} & = &
236 \delta_i \Delta y_u \Delta r_f h_\zeta \tau_{21}
237 + \delta_j \Delta x_f \Delta r_f h_c \tau_{22}
238 \end{eqnarray}
239 \marginpar{Check signs of stress definitions}
240
241 The lateral viscous stresses are discretized:
242 \begin{eqnarray}
243 \tau_{11} & = & A_h c_{11\Delta}(\phi) \frac{1}{\Delta x_f} \delta_i u
244 -A_4 c_{11\Delta^2}(\phi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\
245 \tau_{12} & = & A_h c_{12\Delta}(\phi) \frac{1}{\Delta y_u} \delta_j u
246 -A_4 c_{12\Delta^2}(\phi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\
247 \tau_{21} & = & A_h c_{21\Delta}(\phi) \frac{1}{\Delta x_v} \delta_i v
248 -A_4 c_{21\Delta^2}(\phi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\
249 \tau_{22} & = & A_h c_{22\Delta}(\phi) \frac{1}{\Delta y_f} \delta_j v
250 -A_4 c_{22\Delta^2}(\phi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v
251 \end{eqnarray}
252 where the non-dimensional factors $c_{lm\Delta^n}(\phi), \{l,m,n\} \in
253 \{1,2\}$ define the ``cosine'' scaling with latitude which can be
254 applied in various ad-hoc ways. For instance, $c_{11\Delta} =
255 c_{21\Delta} = (\cos{\phi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would
256 represent the an-isotropic cosine scaling typically used on the
257 ``lat-lon'' grid for Laplacian viscosity.
258 \marginpar{Need to tidy up method for controlling this in code}
259
260 It should be noted that dispite the ad-hoc nature of the scaling, some
261 scaling must be done since on a lat-lon grid the converging meridians
262 make it very unlikely that a stable viscosity parameter exists across
263 the entire model domain.
264
265 The Laplacian viscosity coefficient, $A_h$ ({\bf viscAh}), has units
266 of $m^2 s^{-1}$. The bi-harmonic viscosity coefficient, $A_4$ ({\bf
267 viscA4}), has units of $m^4 s^{-1}$.
268
269 \fbox{ \begin{minipage}{4.75in}
270 {\em S/R MOM\_U\_XVISCFLUX} ({\em mom\_u\_xviscflux.F})
271
272 {\em S/R MOM\_U\_YVISCFLUX} ({\em mom\_u\_yviscflux.F})
273
274 {\em S/R MOM\_V\_XVISCFLUX} ({\em mom\_v\_xviscflux.F})
275
276 {\em S/R MOM\_V\_YVISCFLUX} ({\em mom\_v\_yviscflux.F})
277
278 $\tau_{11}$, $\tau_{12}$, $\tau_{22}$, $\tau_{22}$: {\bf vF}, {\bf
279 v4F} (local to {\em calc\_mom\_rhs.F})
280 \end{minipage} }
281
282 Two types of lateral boundary condition exist for the lateral viscous
283 terms, no-slip and free-slip.
284
285 The free-slip condition is most convenient to code since it is
286 equivalent to zero-stress on boundaries. Simple masking of the stress
287 components sets them to zero. The fractional open stress is properly
288 handled using the lopped cells.
289
290 The no-slip condition defines the normal gradient of a tangential flow
291 such that the flow is zero on the boundary. Rather than modify the
292 stresses by using complicated functions of the masks and ``ghost''
293 points (see \cite{Adcroft+Marshall98}) we add the boundary stresses as
294 an additional source term in cells next to solid boundaries. This has
295 the advantage of being able to cope with ``thin walls'' and also makes
296 the interior stress calculation (code) independent of the boundary
297 conditions. The ``body'' force takes the form:
298 \begin{eqnarray}
299 G_u^{side-drag} & = &
300 \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j
301 \left( A_h c_{12\Delta}(\phi) u - A_4 c_{12\Delta^2}(\phi) \nabla^2 u \right)
302 \\
303 G_v^{side-drag} & = &
304 \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i
305 \left( A_h c_{21\Delta}(\phi) v - A_4 c_{21\Delta^2}(\phi) \nabla^2 v \right)
306 \end{eqnarray}
307
308 In fact, the above discretization is not quite complete because it
309 assumes that the bathymetry at velocity points is deeper than at
310 neighbouring vorticity points, e.g. $1-h_w < 1-h_\zeta$
311
312 \fbox{ \begin{minipage}{4.75in}
313 {\em S/R MOM\_U\_SIDEDRAG} ({\em mom\_u\_sidedrag.F})
314
315 {\em S/R MOM\_V\_SIDEDRAG} ({\em mom\_v\_sidedrag.F})
316
317 $G_u^{side-drag}$, $G_v^{side-drag}$: {\bf vF} (local to {\em calc\_mom\_rhs.F})
318 \end{minipage} }
319
320
321 \subsection{Vertical dissipation}
322
323 Vertical viscosity terms are discretized with only partial adherence
324 to the variable grid lengths introduced by the finite volume
325 formulation. This reduces the formal accuracy of these terms to just
326 first order but only next to boundaries; exactly where other terms
327 appear such as linar and quadratic bottom drag.
328 \begin{eqnarray}
329 G_u^{v-diss} & = &
330 \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
331 G_v^{v-diss} & = &
332 \frac{1}{\Delta r_f h_s} \delta_k \tau_{23} \\
333 G_w^{v-diss} & = & \epsilon_{nh}
334 \frac{1}{\Delta r_f h_d} \delta_k \tau_{33}
335 \end{eqnarray}
336 represents the general discrete form of the vertical dissipation terms.
337
338 In the interior the vertical stresses are discretized:
339 \begin{eqnarray}
340 \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
341 \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v \\
342 \tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w
343 \end{eqnarray}
344 It should be noted that in the non-hydrostatic form, the stress tensor
345 is even less consistent than for the hydrostatic (see Wazjowicz
346 \cite{Waojz}). It is well known how to do this properly (see Griffies
347 \cite{Griffies}) and is on the list of to-do's.
348
349 \fbox{ \begin{minipage}{4.75in}
350 {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
351
352 {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
353
354 $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})
355
356 $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})
357 \end{minipage} }
358
359
360 As for the lateral viscous terms, the free-slip condition is
361 equivalent to simply setting the stress to zero on boundaries. The
362 no-slip condition is implemented as an additional term acting on top
363 of the interior and free-slip stresses. Bottom drag represents
364 additional friction, in addition to that imposed by the no-slip
365 condition at the bottom. The drag is cast as a stress expressed as a
366 linear or quadratic function of the mean flow in the layer above the
367 topography:
368 \begin{eqnarray}
369 \tau_{13}^{bottom-drag} & = &
370 \left(
371 2 A_v \frac{1}{\Delta r_c}
372 + r_b
373 + C_d \sqrt{ \overline{2 KE}^i }
374 \right) u \\
375 \tau_{23}^{bottom-drag} & = &
376 \left(
377 2 A_v \frac{1}{\Delta r_c}
378 + r_b
379 + C_d \sqrt{ \overline{2 KE}^j }
380 \right) v
381 \end{eqnarray}
382 where these terms are only evaluated immediately above topography.
383 $r_b$ ({\bf bottomDragLinear}) has units of $m s^{-1}$ and a typical value
384 of the order 0.0002 $m s^{-1}$. $C_d$ ({\bf bottomDragQuadratic}) is
385 dimensionless with typical values in the range 0.001--0.003.
386
387 \fbox{ \begin{minipage}{4.75in}
388 {\em S/R MOM\_U\_BOTTOMDRAG} ({\em mom\_u\_bottomdrag.F})
389
390 {\em S/R MOM\_V\_BOTTOMDRAG} ({\em mom\_v\_bottomdrag.F})
391
392 $\tau_{13}^{bottom-drag}$, $\tau_{23}^{bottom-drag}$: {\bf vf} (local to {\em calc\_mom\_rhs.F})
393 \end{minipage} }
394
395 \subsection{Derivation of discrete energy conservation}
396
397 These discrete equations conserve kinetic plus potential energy using the
398 following definitions:
399 \begin{equation}
400 KE = \frac{1}{2} \left( \overline{ u^2 }^i + \overline{ v^2 }^j +
401 \epsilon_{nh} \overline{ w^2 }^k \right)
402 \end{equation}
403

  ViewVC Help
Powered by ViewVC 1.1.22