/[MITgcm]/manual/s_algorithm/text/mom_fluxform.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/mom_fluxform.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by adcroft, Tue Sep 25 20:13:42 2001 UTC revision 1.5 by cnh, Thu Oct 25 12:06:56 2001 UTC
# Line 2  Line 2 
2  % $Name$  % $Name$
3    
4  \section{Flux-form momentum equations}  \section{Flux-form momentum equations}
5    \label{sec:flux-form_momentum_eqautions}
6    
7  The original finite volume model was based on the Eulerian flux form  The original finite volume model was based on the Eulerian flux form
8  momentum equations. This is the default though the vector invariant  momentum equations. This is the default though the vector invariant
# Line 106  discretized: Line 107  discretized:
107  \end{eqnarray}  \end{eqnarray}
108  where the Coriolis parameters $f$ and $f'$ are defined:  where the Coriolis parameters $f$ and $f'$ are defined:
109  \begin{eqnarray}  \begin{eqnarray}
110  f & = & 2 \Omega \sin{\phi} \\  f & = & 2 \Omega \sin{\varphi} \\
111  f' & = & 2 \Omega \cos{\phi}  f' & = & 2 \Omega \cos{\varphi}
112  \end{eqnarray}  \end{eqnarray}
113  where $\phi$ is geographic latitude when using spherical geometry,  where $\varphi$ is geographic latitude when using spherical geometry,
114  otherwise the $\beta$-plane definition is used:  otherwise the $\beta$-plane definition is used:
115  \begin{eqnarray}  \begin{eqnarray}
116  f & = & f_o + \beta y \\  f & = & f_o + \beta y \\
# Line 132  G_w^{Cor} & = & Line 133  G_w^{Cor} & = &
133  \marginpar{Need to change the default in code to match this}  \marginpar{Need to change the default in code to match this}
134  where the subscripts on $f$ and $f'$ indicate evaluation of the  where the subscripts on $f$ and $f'$ indicate evaluation of the
135  Coriolis parameters at the appropriate points in space. The above  Coriolis parameters at the appropriate points in space. The above
136  discretization does {\em not} conserve anything, especially energy. An  discretization does {\em not} conserve anything, especially energy and
137  option to recover this discretization has been retained for backward  for historical reasons is the default for the code. A
138  compatibility testing (set run-time logical {\bf  flag controls this discretization: set run-time logical {\bf
139  useNonconservingCoriolis} to {\em true} which otherwise defaults to  useEnergyConservingCoriolis} to {\em true} which otherwise defaults to
140  {\em false}).  {\em false}.
141    
142  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
143  {\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F})  {\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F})
# Line 152  $G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (loca Line 153  $G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (loca
153  \subsection{Curvature metric terms}  \subsection{Curvature metric terms}
154    
155  The most commonly used coordinate system on the sphere is the  The most commonly used coordinate system on the sphere is the
156  geographic system $(\lambda,\phi)$. The curvilinear nature of these  geographic system $(\lambda,\varphi)$. The curvilinear nature of these
157  coordinates on the sphere lead to some ``metric'' terms in the  coordinates on the sphere lead to some ``metric'' terms in the
158  component momentum equations. Under the thin-atmosphere and  component momentum equations. Under the thin-atmosphere and
159  hydrostatic approximations these terms are discretized:  hydrostatic approximations these terms are discretized:
160  \begin{eqnarray}  \begin{eqnarray}
161  {\cal A}_w \Delta r_f h_w G_u^{metric} & = &  {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
162    \overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\    \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\
163  {\cal A}_s \Delta r_f h_s G_v^{metric} & = &  {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
164  - \overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\  - \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
165  G_w^{metric} & = & 0  G_w^{metric} & = & 0
166  \end{eqnarray}  \end{eqnarray}
167  where $a$ is the radius of the planet (sphericity is assumed) or the  where $a$ is the radius of the planet (sphericity is assumed) or the
168  radial distance of the particle (i.e. a function of height).  It is  radial distance of the particle (i.e. a function of height).  It is
169  easy to see that this discretization satisfies all the properties of  easy to see that this discretization satisfies all the properties of
170  the discrete Coriolis terms since the metric factor $\frac{u}{a}  the discrete Coriolis terms since the metric factor $\frac{u}{a}
171  \tan{\phi}$ can be viewed as a modification of the vertical Coriolis  \tan{\varphi}$ can be viewed as a modification of the vertical Coriolis
172  parameter: $f \rightarrow f+\frac{u}{a} \tan{\phi}$.  parameter: $f \rightarrow f+\frac{u}{a} \tan{\varphi}$.
173    
174  However, as for the Coriolis terms, a non-energy conserving form has  However, as for the Coriolis terms, a non-energy conserving form has
175  exclusively been used to date:  exclusively been used to date:
176  \begin{eqnarray}  \begin{eqnarray}
177  G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\phi} \\  G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\varphi} \\
178  G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\phi}  G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\varphi}
179  \end{eqnarray}  \end{eqnarray}
180  where $\tan{\phi}$ is evaluated at the $u$ and $v$ points  where $\tan{\varphi}$ is evaluated at the $u$ and $v$ points
181  respectively.  respectively.
182    
183  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
# Line 240  tensor such as symmetry. Line 241  tensor such as symmetry.
241    
242  The lateral viscous stresses are discretized:  The lateral viscous stresses are discretized:
243  \begin{eqnarray}  \begin{eqnarray}
244  \tau_{11} & = & A_h c_{11\Delta}(\phi) \frac{1}{\Delta x_f} \delta_i u  \tau_{11} & = & A_h c_{11\Delta}(\varphi) \frac{1}{\Delta x_f} \delta_i u
245                 -A_4 c_{11\Delta^2}(\phi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\                 -A_4 c_{11\Delta^2}(\varphi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\
246  \tau_{12} & = & A_h c_{12\Delta}(\phi) \frac{1}{\Delta y_u} \delta_j u  \tau_{12} & = & A_h c_{12\Delta}(\varphi) \frac{1}{\Delta y_u} \delta_j u
247                 -A_4 c_{12\Delta^2}(\phi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\                 -A_4 c_{12\Delta^2}(\varphi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\
248  \tau_{21} & = & A_h c_{21\Delta}(\phi) \frac{1}{\Delta x_v} \delta_i v  \tau_{21} & = & A_h c_{21\Delta}(\varphi) \frac{1}{\Delta x_v} \delta_i v
249                 -A_4 c_{21\Delta^2}(\phi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\                 -A_4 c_{21\Delta^2}(\varphi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\
250  \tau_{22} & = & A_h c_{22\Delta}(\phi) \frac{1}{\Delta y_f} \delta_j v  \tau_{22} & = & A_h c_{22\Delta}(\varphi) \frac{1}{\Delta y_f} \delta_j v
251                 -A_4 c_{22\Delta^2}(\phi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v                 -A_4 c_{22\Delta^2}(\varphi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v
252  \end{eqnarray}  \end{eqnarray}
253  where the non-dimensional factors $c_{lm\Delta^n}(\phi), \{l,m,n\} \in  where the non-dimensional factors $c_{lm\Delta^n}(\varphi), \{l,m,n\} \in
254  \{1,2\}$ define the ``cosine'' scaling with latitude which can be  \{1,2\}$ define the ``cosine'' scaling with latitude which can be
255  applied in various ad-hoc ways. For instance, $c_{11\Delta} =  applied in various ad-hoc ways. For instance, $c_{11\Delta} =
256  c_{21\Delta} = (\cos{\phi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would  c_{21\Delta} = (\cos{\varphi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would
257  represent the an-isotropic cosine scaling typically used on the  represent the an-isotropic cosine scaling typically used on the
258  ``lat-lon'' grid for Laplacian viscosity.  ``lat-lon'' grid for Laplacian viscosity.
259  \marginpar{Need to tidy up method for controlling this in code}  \marginpar{Need to tidy up method for controlling this in code}
# Line 298  conditions. The ``body'' force takes the Line 299  conditions. The ``body'' force takes the
299  \begin{eqnarray}  \begin{eqnarray}
300  G_u^{side-drag} & = &  G_u^{side-drag} & = &
301  \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j  \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j
302  \left( A_h c_{12\Delta}(\phi) u - A_4 c_{12\Delta^2}(\phi) \nabla^2 u \right)  \left( A_h c_{12\Delta}(\varphi) u - A_4 c_{12\Delta^2}(\varphi) \nabla^2 u \right)
303  \\  \\
304  G_v^{side-drag} & = &  G_v^{side-drag} & = &
305  \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i  \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i
306  \left( A_h c_{21\Delta}(\phi) v - A_4 c_{21\Delta^2}(\phi) \nabla^2 v \right)  \left( A_h c_{21\Delta}(\varphi) v - A_4 c_{21\Delta^2}(\varphi) \nabla^2 v \right)
307  \end{eqnarray}  \end{eqnarray}
308    
309  In fact, the above discretization is not quite complete because it  In fact, the above discretization is not quite complete because it

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.5

  ViewVC Help
Powered by ViewVC 1.1.22