/[MITgcm]/manual/s_algorithm/text/mom_fluxform.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/mom_fluxform.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (hide annotations) (download) (as text)
Sat Oct 16 03:40:12 2004 UTC (20 years, 8 months ago) by edhill
Branch: MAIN
CVS Tags: checkpoint57l_post
Changes since 1.7: +4 -1 lines
File MIME type: application/x-tex
 o add HTML comments as a step towards "URL permanence" which will help
   solve:
   - stale links from the CMI web site
   - rotten indexing by bonniefy.pl
 o also cleanup a merge-mangle in diagnostics.tex

1 edhill 1.8 % $Header: /u/gcmpack/manual/part2/mom_fluxform.tex,v 1.7 2001/11/13 18:15:26 adcroft Exp $
2 adcroft 1.2 % $Name: $
3 adcroft 1.1
4     \section{Flux-form momentum equations}
5 cnh 1.5 \label{sec:flux-form_momentum_eqautions}
6 edhill 1.8 \begin{rawhtml}
7     <!-- CMIREDIR:flux-form_momentum_eqautions: -->
8     \end{rawhtml}
9 adcroft 1.1
10     The original finite volume model was based on the Eulerian flux form
11     momentum equations. This is the default though the vector invariant
12     form is optionally available (and recommended in some cases).
13    
14     The ``G's'' (our colloquial name for all terms on rhs!) are broken
15     into the various advective, Coriolis, horizontal dissipation, vertical
16     dissipation and metric forces:
17     \marginpar{$G_u$: {\bf Gu} }
18     \marginpar{$G_v$: {\bf Gv} }
19     \marginpar{$G_w$: {\bf Gw} }
20     \begin{eqnarray}
21     G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} +
22 adcroft 1.2 G_u^{metric} + G_u^{nh-metric} \label{eq:gsplit_momu} \\
23 adcroft 1.1 G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} +
24 adcroft 1.2 G_v^{metric} + G_v^{nh-metric} \label{eq:gsplit_momv} \\
25 adcroft 1.1 G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} +
26 adcroft 1.2 G_w^{metric} + G_w^{nh-metric} \label{eq:gsplit_momw}
27 adcroft 1.1 \end{eqnarray}
28     In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the
29     vertical momentum to hydrostatic balance.
30    
31     These terms are calculated in routines called from subroutine {\em
32     CALC\_MOM\_RHS} a collected into the global arrays {\bf Gu}, {\bf Gv},
33     and {\bf Gw}.
34    
35     \fbox{ \begin{minipage}{4.75in}
36     {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_fluxform/calc\_mom\_rhs.F})
37    
38     $G_u$: {\bf Gu} ({\em DYNVARS.h})
39    
40     $G_v$: {\bf Gv} ({\em DYNVARS.h})
41    
42     $G_w$: {\bf Gw} ({\em DYNVARS.h})
43     \end{minipage} }
44    
45    
46     \subsection{Advection of momentum}
47    
48     The advective operator is second order accurate in space:
49     \begin{eqnarray}
50     {\cal A}_w \Delta r_f h_w G_u^{adv} & = &
51     \delta_i \overline{ U }^i \overline{ u }^i
52     + \delta_j \overline{ V }^i \overline{ u }^j
53 adcroft 1.2 + \delta_k \overline{ W }^i \overline{ u }^k \label{eq:discrete-momadvu} \\
54 adcroft 1.1 {\cal A}_s \Delta r_f h_s G_v^{adv} & = &
55     \delta_i \overline{ U }^j \overline{ v }^i
56     + \delta_j \overline{ V }^j \overline{ v }^j
57 adcroft 1.2 + \delta_k \overline{ W }^j \overline{ v }^k \label{eq:discrete-momadvv} \\
58 adcroft 1.1 {\cal A}_c \Delta r_c G_w^{adv} & = &
59     \delta_i \overline{ U }^k \overline{ w }^i
60     + \delta_j \overline{ V }^k \overline{ w }^j
61 adcroft 1.2 + \delta_k \overline{ W }^k \overline{ w }^k \label{eq:discrete-momadvw}
62 adcroft 1.1 \end{eqnarray}
63     and because of the flux form does not contribute to the global budget
64     of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes
65     defined:
66     \marginpar{$U$: {\bf uTrans} }
67     \marginpar{$V$: {\bf vTrans} }
68     \marginpar{$W$: {\bf rTrans} }
69     \begin{eqnarray}
70 adcroft 1.2 U & = & \Delta y_g \Delta r_f h_w u \label{eq:utrans} \\
71     V & = & \Delta x_g \Delta r_f h_s v \label{eq:vtrans} \\
72     W & = & {\cal A}_c w \label{eq:rtrans}
73 adcroft 1.1 \end{eqnarray}
74     The advection of momentum takes the same form as the advection of
75     tracers but by a translated advective flow. Consequently, the
76     conservation of second moments, derived for tracers later, applies to
77     $u^2$ and $v^2$ and $w^2$ so that advection of momentum correctly
78     conserves kinetic energy.
79    
80     \fbox{ \begin{minipage}{4.75in}
81     {\em S/R MOM\_U\_ADV\_UU} ({\em mom\_u\_adv\_uu.F})
82    
83     {\em S/R MOM\_U\_ADV\_VU} ({\em mom\_u\_adv\_vu.F})
84    
85     {\em S/R MOM\_U\_ADV\_WU} ({\em mom\_u\_adv\_wu.F})
86    
87     {\em S/R MOM\_U\_ADV\_UV} ({\em mom\_u\_adv\_uv.F})
88    
89     {\em S/R MOM\_U\_ADV\_VV} ({\em mom\_u\_adv\_vv.F})
90    
91     {\em S/R MOM\_U\_ADV\_WV} ({\em mom\_u\_adv\_wv.F})
92    
93     $uu$, $uv$, $vu$, $vv$: {\bf aF} (local to {\em calc\_mom\_rhs.F})
94     \end{minipage} }
95    
96    
97    
98     \subsection{Coriolis terms}
99    
100     The ``pure C grid'' Coriolis terms (i.e. in absence of C-D scheme) are
101     discretized:
102     \begin{eqnarray}
103     {\cal A}_w \Delta r_f h_w G_u^{Cor} & = &
104     \overline{ f {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i
105     - \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ w }^k }^i \\
106     {\cal A}_s \Delta r_f h_s G_v^{Cor} & = &
107     - \overline{ f {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
108     {\cal A}_c \Delta r_c G_w^{Cor} & = &
109     \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ u }^i }^k
110     \end{eqnarray}
111     where the Coriolis parameters $f$ and $f'$ are defined:
112     \begin{eqnarray}
113 cnh 1.4 f & = & 2 \Omega \sin{\varphi} \\
114     f' & = & 2 \Omega \cos{\varphi}
115 adcroft 1.1 \end{eqnarray}
116 cnh 1.4 where $\varphi$ is geographic latitude when using spherical geometry,
117 adcroft 1.2 otherwise the $\beta$-plane definition is used:
118 adcroft 1.1 \begin{eqnarray}
119     f & = & f_o + \beta y \\
120     f' & = & 0
121     \end{eqnarray}
122    
123     This discretization globally conserves kinetic energy. It should be
124     noted that despite the use of this discretization in former
125     publications, all calculations to date have used the following
126     different discretization:
127     \begin{eqnarray}
128     G_u^{Cor} & = &
129     f_u \overline{ v }^{ji}
130     - \epsilon_{nh} f_u' \overline{ w }^{ik} \\
131     G_v^{Cor} & = &
132     - f_v \overline{ u }^{ij} \\
133     G_w^{Cor} & = &
134     \epsilon_{nh} f_w' \overline{ u }^{ik}
135     \end{eqnarray}
136     \marginpar{Need to change the default in code to match this}
137     where the subscripts on $f$ and $f'$ indicate evaluation of the
138     Coriolis parameters at the appropriate points in space. The above
139 adcroft 1.3 discretization does {\em not} conserve anything, especially energy and
140     for historical reasons is the default for the code. A
141     flag controls this discretization: set run-time logical {\bf
142     useEnergyConservingCoriolis} to {\em true} which otherwise defaults to
143     {\em false}.
144 adcroft 1.1
145     \fbox{ \begin{minipage}{4.75in}
146     {\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F})
147    
148     {\em S/R MOM\_U\_CORIOLIS} ({\em mom\_u\_coriolis.F})
149    
150     {\em S/R MOM\_V\_CORIOLIS} ({\em mom\_v\_coriolis.F})
151    
152     $G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (local to {\em calc\_mom\_rhs.F})
153     \end{minipage} }
154    
155    
156     \subsection{Curvature metric terms}
157    
158     The most commonly used coordinate system on the sphere is the
159 cnh 1.4 geographic system $(\lambda,\varphi)$. The curvilinear nature of these
160 adcroft 1.1 coordinates on the sphere lead to some ``metric'' terms in the
161     component momentum equations. Under the thin-atmosphere and
162     hydrostatic approximations these terms are discretized:
163     \begin{eqnarray}
164     {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
165 cnh 1.4 \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\
166 adcroft 1.1 {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
167 cnh 1.4 - \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
168 adcroft 1.1 G_w^{metric} & = & 0
169     \end{eqnarray}
170     where $a$ is the radius of the planet (sphericity is assumed) or the
171     radial distance of the particle (i.e. a function of height). It is
172     easy to see that this discretization satisfies all the properties of
173     the discrete Coriolis terms since the metric factor $\frac{u}{a}
174 cnh 1.4 \tan{\varphi}$ can be viewed as a modification of the vertical Coriolis
175     parameter: $f \rightarrow f+\frac{u}{a} \tan{\varphi}$.
176 adcroft 1.1
177     However, as for the Coriolis terms, a non-energy conserving form has
178     exclusively been used to date:
179     \begin{eqnarray}
180 cnh 1.4 G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\varphi} \\
181     G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\varphi}
182 adcroft 1.1 \end{eqnarray}
183 cnh 1.4 where $\tan{\varphi}$ is evaluated at the $u$ and $v$ points
184 adcroft 1.1 respectively.
185    
186     \fbox{ \begin{minipage}{4.75in}
187     {\em S/R MOM\_U\_METRIC\_SPHERE} ({\em mom\_u\_metric\_sphere.F})
188    
189     {\em S/R MOM\_V\_METRIC\_SPHERE} ({\em mom\_v\_metric\_sphere.F})
190    
191     $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F})
192     \end{minipage} }
193    
194    
195    
196     \subsection{Non-hydrostatic metric terms}
197    
198     For the non-hydrostatic equations, dropping the thin-atmosphere
199     approximation re-introduces metric terms involving $w$ and are
200 cnh 1.6 required to conserve angular momentum:
201 adcroft 1.1 \begin{eqnarray}
202     {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
203     - \overline{ \frac{ \overline{u}^i \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c }^i \\
204     {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
205     - \overline{ \frac{ \overline{v}^j \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c}^j \\
206     {\cal A}_c \Delta r_c G_w^{metric} & = &
207     \overline{ \frac{ {\overline{u}^i}^2 + {\overline{v}^j}^2}{a} {\cal A}_c \Delta r_f h_c }^k
208     \end{eqnarray}
209    
210     Because we are always consistent, even if consistently wrong, we have,
211     in the past, used a different discretization in the model which is:
212     \begin{eqnarray}
213     G_u^{metric} & = &
214     - \frac{u}{a} \overline{w}^{ik} \\
215     G_v^{metric} & = &
216     - \frac{v}{a} \overline{w}^{jk} \\
217     G_w^{metric} & = &
218     \frac{1}{a} ( {\overline{u}^{ik}}^2 + {\overline{v}^{jk}}^2 )
219     \end{eqnarray}
220    
221     \fbox{ \begin{minipage}{4.75in}
222     {\em S/R MOM\_U\_METRIC\_NH} ({\em mom\_u\_metric\_nh.F})
223    
224     {\em S/R MOM\_V\_METRIC\_NH} ({\em mom\_v\_metric\_nh.F})
225    
226     $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F})
227     \end{minipage} }
228    
229    
230     \subsection{Lateral dissipation}
231    
232     Historically, we have represented the SGS Reynolds stresses as simply
233     down gradient momentum fluxes, ignoring constraints on the stress
234     tensor such as symmetry.
235     \begin{eqnarray}
236     {\cal A}_w \Delta r_f h_w G_u^{h-diss} & = &
237     \delta_i \Delta y_f \Delta r_f h_c \tau_{11}
238     + \delta_j \Delta x_v \Delta r_f h_\zeta \tau_{12} \\
239     {\cal A}_s \Delta r_f h_s G_v^{h-diss} & = &
240     \delta_i \Delta y_u \Delta r_f h_\zeta \tau_{21}
241     + \delta_j \Delta x_f \Delta r_f h_c \tau_{22}
242     \end{eqnarray}
243     \marginpar{Check signs of stress definitions}
244    
245     The lateral viscous stresses are discretized:
246     \begin{eqnarray}
247 cnh 1.4 \tau_{11} & = & A_h c_{11\Delta}(\varphi) \frac{1}{\Delta x_f} \delta_i u
248     -A_4 c_{11\Delta^2}(\varphi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\
249     \tau_{12} & = & A_h c_{12\Delta}(\varphi) \frac{1}{\Delta y_u} \delta_j u
250     -A_4 c_{12\Delta^2}(\varphi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\
251     \tau_{21} & = & A_h c_{21\Delta}(\varphi) \frac{1}{\Delta x_v} \delta_i v
252     -A_4 c_{21\Delta^2}(\varphi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\
253     \tau_{22} & = & A_h c_{22\Delta}(\varphi) \frac{1}{\Delta y_f} \delta_j v
254     -A_4 c_{22\Delta^2}(\varphi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v
255 adcroft 1.1 \end{eqnarray}
256 cnh 1.4 where the non-dimensional factors $c_{lm\Delta^n}(\varphi), \{l,m,n\} \in
257 adcroft 1.1 \{1,2\}$ define the ``cosine'' scaling with latitude which can be
258     applied in various ad-hoc ways. For instance, $c_{11\Delta} =
259 cnh 1.4 c_{21\Delta} = (\cos{\varphi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would
260 adcroft 1.1 represent the an-isotropic cosine scaling typically used on the
261     ``lat-lon'' grid for Laplacian viscosity.
262     \marginpar{Need to tidy up method for controlling this in code}
263    
264 cnh 1.6 It should be noted that despite the ad-hoc nature of the scaling, some
265 adcroft 1.1 scaling must be done since on a lat-lon grid the converging meridians
266     make it very unlikely that a stable viscosity parameter exists across
267     the entire model domain.
268    
269     The Laplacian viscosity coefficient, $A_h$ ({\bf viscAh}), has units
270     of $m^2 s^{-1}$. The bi-harmonic viscosity coefficient, $A_4$ ({\bf
271     viscA4}), has units of $m^4 s^{-1}$.
272    
273     \fbox{ \begin{minipage}{4.75in}
274     {\em S/R MOM\_U\_XVISCFLUX} ({\em mom\_u\_xviscflux.F})
275    
276     {\em S/R MOM\_U\_YVISCFLUX} ({\em mom\_u\_yviscflux.F})
277    
278     {\em S/R MOM\_V\_XVISCFLUX} ({\em mom\_v\_xviscflux.F})
279    
280     {\em S/R MOM\_V\_YVISCFLUX} ({\em mom\_v\_yviscflux.F})
281    
282     $\tau_{11}$, $\tau_{12}$, $\tau_{22}$, $\tau_{22}$: {\bf vF}, {\bf
283     v4F} (local to {\em calc\_mom\_rhs.F})
284     \end{minipage} }
285    
286     Two types of lateral boundary condition exist for the lateral viscous
287     terms, no-slip and free-slip.
288    
289     The free-slip condition is most convenient to code since it is
290     equivalent to zero-stress on boundaries. Simple masking of the stress
291     components sets them to zero. The fractional open stress is properly
292     handled using the lopped cells.
293    
294     The no-slip condition defines the normal gradient of a tangential flow
295     such that the flow is zero on the boundary. Rather than modify the
296     stresses by using complicated functions of the masks and ``ghost''
297 adcroft 1.7 points (see \cite{adcroft:98}) we add the boundary stresses as
298 adcroft 1.1 an additional source term in cells next to solid boundaries. This has
299     the advantage of being able to cope with ``thin walls'' and also makes
300     the interior stress calculation (code) independent of the boundary
301     conditions. The ``body'' force takes the form:
302     \begin{eqnarray}
303     G_u^{side-drag} & = &
304     \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j
305 cnh 1.4 \left( A_h c_{12\Delta}(\varphi) u - A_4 c_{12\Delta^2}(\varphi) \nabla^2 u \right)
306 adcroft 1.1 \\
307     G_v^{side-drag} & = &
308     \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i
309 cnh 1.4 \left( A_h c_{21\Delta}(\varphi) v - A_4 c_{21\Delta^2}(\varphi) \nabla^2 v \right)
310 adcroft 1.1 \end{eqnarray}
311    
312     In fact, the above discretization is not quite complete because it
313     assumes that the bathymetry at velocity points is deeper than at
314 cnh 1.6 neighboring vorticity points, e.g. $1-h_w < 1-h_\zeta$
315 adcroft 1.1
316     \fbox{ \begin{minipage}{4.75in}
317     {\em S/R MOM\_U\_SIDEDRAG} ({\em mom\_u\_sidedrag.F})
318    
319     {\em S/R MOM\_V\_SIDEDRAG} ({\em mom\_v\_sidedrag.F})
320    
321     $G_u^{side-drag}$, $G_v^{side-drag}$: {\bf vF} (local to {\em calc\_mom\_rhs.F})
322     \end{minipage} }
323    
324    
325     \subsection{Vertical dissipation}
326    
327     Vertical viscosity terms are discretized with only partial adherence
328     to the variable grid lengths introduced by the finite volume
329     formulation. This reduces the formal accuracy of these terms to just
330     first order but only next to boundaries; exactly where other terms
331 cnh 1.6 appear such as linear and quadratic bottom drag.
332 adcroft 1.1 \begin{eqnarray}
333     G_u^{v-diss} & = &
334     \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
335     G_v^{v-diss} & = &
336     \frac{1}{\Delta r_f h_s} \delta_k \tau_{23} \\
337     G_w^{v-diss} & = & \epsilon_{nh}
338     \frac{1}{\Delta r_f h_d} \delta_k \tau_{33}
339     \end{eqnarray}
340     represents the general discrete form of the vertical dissipation terms.
341    
342     In the interior the vertical stresses are discretized:
343     \begin{eqnarray}
344     \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
345     \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v \\
346     \tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w
347     \end{eqnarray}
348     It should be noted that in the non-hydrostatic form, the stress tensor
349 adcroft 1.7 is even less consistent than for the hydrostatic (see
350     \cite{wajsowicz:93}). It is well known how to do this properly (see
351     \cite{griffies:00}) and is on the list of to-do's.
352 adcroft 1.1
353     \fbox{ \begin{minipage}{4.75in}
354     {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
355    
356     {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
357    
358     $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})
359    
360     $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})
361     \end{minipage} }
362    
363    
364     As for the lateral viscous terms, the free-slip condition is
365     equivalent to simply setting the stress to zero on boundaries. The
366     no-slip condition is implemented as an additional term acting on top
367     of the interior and free-slip stresses. Bottom drag represents
368     additional friction, in addition to that imposed by the no-slip
369     condition at the bottom. The drag is cast as a stress expressed as a
370     linear or quadratic function of the mean flow in the layer above the
371     topography:
372     \begin{eqnarray}
373     \tau_{13}^{bottom-drag} & = &
374     \left(
375     2 A_v \frac{1}{\Delta r_c}
376     + r_b
377     + C_d \sqrt{ \overline{2 KE}^i }
378     \right) u \\
379     \tau_{23}^{bottom-drag} & = &
380     \left(
381     2 A_v \frac{1}{\Delta r_c}
382     + r_b
383     + C_d \sqrt{ \overline{2 KE}^j }
384     \right) v
385     \end{eqnarray}
386     where these terms are only evaluated immediately above topography.
387     $r_b$ ({\bf bottomDragLinear}) has units of $m s^{-1}$ and a typical value
388     of the order 0.0002 $m s^{-1}$. $C_d$ ({\bf bottomDragQuadratic}) is
389     dimensionless with typical values in the range 0.001--0.003.
390    
391     \fbox{ \begin{minipage}{4.75in}
392     {\em S/R MOM\_U\_BOTTOMDRAG} ({\em mom\_u\_bottomdrag.F})
393    
394     {\em S/R MOM\_V\_BOTTOMDRAG} ({\em mom\_v\_bottomdrag.F})
395    
396     $\tau_{13}^{bottom-drag}$, $\tau_{23}^{bottom-drag}$: {\bf vf} (local to {\em calc\_mom\_rhs.F})
397     \end{minipage} }
398    
399     \subsection{Derivation of discrete energy conservation}
400    
401     These discrete equations conserve kinetic plus potential energy using the
402     following definitions:
403     \begin{equation}
404     KE = \frac{1}{2} \left( \overline{ u^2 }^i + \overline{ v^2 }^j +
405     \epsilon_{nh} \overline{ w^2 }^k \right)
406     \end{equation}
407    

  ViewVC Help
Powered by ViewVC 1.1.22