/[MITgcm]/manual/s_algorithm/text/mom_fluxform.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/mom_fluxform.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download) (as text)
Thu Oct 25 12:06:56 2001 UTC (22 years, 6 months ago) by cnh
Branch: MAIN
Changes since 1.4: +2 -1 lines
File MIME type: application/x-tex
More editing

1 cnh 1.5 % $Header: /u/u0/gcmpack/mitgcmdoc/part2/mom_fluxform.tex,v 1.4 2001/10/25 00:55:28 cnh Exp $
2 adcroft 1.2 % $Name: $
3 adcroft 1.1
4     \section{Flux-form momentum equations}
5 cnh 1.5 \label{sec:flux-form_momentum_eqautions}
6 adcroft 1.1
7     The original finite volume model was based on the Eulerian flux form
8     momentum equations. This is the default though the vector invariant
9     form is optionally available (and recommended in some cases).
10    
11     The ``G's'' (our colloquial name for all terms on rhs!) are broken
12     into the various advective, Coriolis, horizontal dissipation, vertical
13     dissipation and metric forces:
14     \marginpar{$G_u$: {\bf Gu} }
15     \marginpar{$G_v$: {\bf Gv} }
16     \marginpar{$G_w$: {\bf Gw} }
17     \begin{eqnarray}
18     G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} +
19 adcroft 1.2 G_u^{metric} + G_u^{nh-metric} \label{eq:gsplit_momu} \\
20 adcroft 1.1 G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} +
21 adcroft 1.2 G_v^{metric} + G_v^{nh-metric} \label{eq:gsplit_momv} \\
22 adcroft 1.1 G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} +
23 adcroft 1.2 G_w^{metric} + G_w^{nh-metric} \label{eq:gsplit_momw}
24 adcroft 1.1 \end{eqnarray}
25     In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the
26     vertical momentum to hydrostatic balance.
27    
28     These terms are calculated in routines called from subroutine {\em
29     CALC\_MOM\_RHS} a collected into the global arrays {\bf Gu}, {\bf Gv},
30     and {\bf Gw}.
31    
32     \fbox{ \begin{minipage}{4.75in}
33     {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_fluxform/calc\_mom\_rhs.F})
34    
35     $G_u$: {\bf Gu} ({\em DYNVARS.h})
36    
37     $G_v$: {\bf Gv} ({\em DYNVARS.h})
38    
39     $G_w$: {\bf Gw} ({\em DYNVARS.h})
40     \end{minipage} }
41    
42    
43     \subsection{Advection of momentum}
44    
45     The advective operator is second order accurate in space:
46     \begin{eqnarray}
47     {\cal A}_w \Delta r_f h_w G_u^{adv} & = &
48     \delta_i \overline{ U }^i \overline{ u }^i
49     + \delta_j \overline{ V }^i \overline{ u }^j
50 adcroft 1.2 + \delta_k \overline{ W }^i \overline{ u }^k \label{eq:discrete-momadvu} \\
51 adcroft 1.1 {\cal A}_s \Delta r_f h_s G_v^{adv} & = &
52     \delta_i \overline{ U }^j \overline{ v }^i
53     + \delta_j \overline{ V }^j \overline{ v }^j
54 adcroft 1.2 + \delta_k \overline{ W }^j \overline{ v }^k \label{eq:discrete-momadvv} \\
55 adcroft 1.1 {\cal A}_c \Delta r_c G_w^{adv} & = &
56     \delta_i \overline{ U }^k \overline{ w }^i
57     + \delta_j \overline{ V }^k \overline{ w }^j
58 adcroft 1.2 + \delta_k \overline{ W }^k \overline{ w }^k \label{eq:discrete-momadvw}
59 adcroft 1.1 \end{eqnarray}
60     and because of the flux form does not contribute to the global budget
61     of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes
62     defined:
63     \marginpar{$U$: {\bf uTrans} }
64     \marginpar{$V$: {\bf vTrans} }
65     \marginpar{$W$: {\bf rTrans} }
66     \begin{eqnarray}
67 adcroft 1.2 U & = & \Delta y_g \Delta r_f h_w u \label{eq:utrans} \\
68     V & = & \Delta x_g \Delta r_f h_s v \label{eq:vtrans} \\
69     W & = & {\cal A}_c w \label{eq:rtrans}
70 adcroft 1.1 \end{eqnarray}
71     The advection of momentum takes the same form as the advection of
72     tracers but by a translated advective flow. Consequently, the
73     conservation of second moments, derived for tracers later, applies to
74     $u^2$ and $v^2$ and $w^2$ so that advection of momentum correctly
75     conserves kinetic energy.
76    
77     \fbox{ \begin{minipage}{4.75in}
78     {\em S/R MOM\_U\_ADV\_UU} ({\em mom\_u\_adv\_uu.F})
79    
80     {\em S/R MOM\_U\_ADV\_VU} ({\em mom\_u\_adv\_vu.F})
81    
82     {\em S/R MOM\_U\_ADV\_WU} ({\em mom\_u\_adv\_wu.F})
83    
84     {\em S/R MOM\_U\_ADV\_UV} ({\em mom\_u\_adv\_uv.F})
85    
86     {\em S/R MOM\_U\_ADV\_VV} ({\em mom\_u\_adv\_vv.F})
87    
88     {\em S/R MOM\_U\_ADV\_WV} ({\em mom\_u\_adv\_wv.F})
89    
90     $uu$, $uv$, $vu$, $vv$: {\bf aF} (local to {\em calc\_mom\_rhs.F})
91     \end{minipage} }
92    
93    
94    
95     \subsection{Coriolis terms}
96    
97     The ``pure C grid'' Coriolis terms (i.e. in absence of C-D scheme) are
98     discretized:
99     \begin{eqnarray}
100     {\cal A}_w \Delta r_f h_w G_u^{Cor} & = &
101     \overline{ f {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i
102     - \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ w }^k }^i \\
103     {\cal A}_s \Delta r_f h_s G_v^{Cor} & = &
104     - \overline{ f {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
105     {\cal A}_c \Delta r_c G_w^{Cor} & = &
106     \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ u }^i }^k
107     \end{eqnarray}
108     where the Coriolis parameters $f$ and $f'$ are defined:
109     \begin{eqnarray}
110 cnh 1.4 f & = & 2 \Omega \sin{\varphi} \\
111     f' & = & 2 \Omega \cos{\varphi}
112 adcroft 1.1 \end{eqnarray}
113 cnh 1.4 where $\varphi$ is geographic latitude when using spherical geometry,
114 adcroft 1.2 otherwise the $\beta$-plane definition is used:
115 adcroft 1.1 \begin{eqnarray}
116     f & = & f_o + \beta y \\
117     f' & = & 0
118     \end{eqnarray}
119    
120     This discretization globally conserves kinetic energy. It should be
121     noted that despite the use of this discretization in former
122     publications, all calculations to date have used the following
123     different discretization:
124     \begin{eqnarray}
125     G_u^{Cor} & = &
126     f_u \overline{ v }^{ji}
127     - \epsilon_{nh} f_u' \overline{ w }^{ik} \\
128     G_v^{Cor} & = &
129     - f_v \overline{ u }^{ij} \\
130     G_w^{Cor} & = &
131     \epsilon_{nh} f_w' \overline{ u }^{ik}
132     \end{eqnarray}
133     \marginpar{Need to change the default in code to match this}
134     where the subscripts on $f$ and $f'$ indicate evaluation of the
135     Coriolis parameters at the appropriate points in space. The above
136 adcroft 1.3 discretization does {\em not} conserve anything, especially energy and
137     for historical reasons is the default for the code. A
138     flag controls this discretization: set run-time logical {\bf
139     useEnergyConservingCoriolis} to {\em true} which otherwise defaults to
140     {\em false}.
141 adcroft 1.1
142     \fbox{ \begin{minipage}{4.75in}
143     {\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F})
144    
145     {\em S/R MOM\_U\_CORIOLIS} ({\em mom\_u\_coriolis.F})
146    
147     {\em S/R MOM\_V\_CORIOLIS} ({\em mom\_v\_coriolis.F})
148    
149     $G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (local to {\em calc\_mom\_rhs.F})
150     \end{minipage} }
151    
152    
153     \subsection{Curvature metric terms}
154    
155     The most commonly used coordinate system on the sphere is the
156 cnh 1.4 geographic system $(\lambda,\varphi)$. The curvilinear nature of these
157 adcroft 1.1 coordinates on the sphere lead to some ``metric'' terms in the
158     component momentum equations. Under the thin-atmosphere and
159     hydrostatic approximations these terms are discretized:
160     \begin{eqnarray}
161     {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
162 cnh 1.4 \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\
163 adcroft 1.1 {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
164 cnh 1.4 - \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
165 adcroft 1.1 G_w^{metric} & = & 0
166     \end{eqnarray}
167     where $a$ is the radius of the planet (sphericity is assumed) or the
168     radial distance of the particle (i.e. a function of height). It is
169     easy to see that this discretization satisfies all the properties of
170     the discrete Coriolis terms since the metric factor $\frac{u}{a}
171 cnh 1.4 \tan{\varphi}$ can be viewed as a modification of the vertical Coriolis
172     parameter: $f \rightarrow f+\frac{u}{a} \tan{\varphi}$.
173 adcroft 1.1
174     However, as for the Coriolis terms, a non-energy conserving form has
175     exclusively been used to date:
176     \begin{eqnarray}
177 cnh 1.4 G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\varphi} \\
178     G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\varphi}
179 adcroft 1.1 \end{eqnarray}
180 cnh 1.4 where $\tan{\varphi}$ is evaluated at the $u$ and $v$ points
181 adcroft 1.1 respectively.
182    
183     \fbox{ \begin{minipage}{4.75in}
184     {\em S/R MOM\_U\_METRIC\_SPHERE} ({\em mom\_u\_metric\_sphere.F})
185    
186     {\em S/R MOM\_V\_METRIC\_SPHERE} ({\em mom\_v\_metric\_sphere.F})
187    
188     $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F})
189     \end{minipage} }
190    
191    
192    
193     \subsection{Non-hydrostatic metric terms}
194    
195     For the non-hydrostatic equations, dropping the thin-atmosphere
196     approximation re-introduces metric terms involving $w$ and are
197     required to conserve anglular momentum:
198     \begin{eqnarray}
199     {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
200     - \overline{ \frac{ \overline{u}^i \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c }^i \\
201     {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
202     - \overline{ \frac{ \overline{v}^j \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c}^j \\
203     {\cal A}_c \Delta r_c G_w^{metric} & = &
204     \overline{ \frac{ {\overline{u}^i}^2 + {\overline{v}^j}^2}{a} {\cal A}_c \Delta r_f h_c }^k
205     \end{eqnarray}
206    
207     Because we are always consistent, even if consistently wrong, we have,
208     in the past, used a different discretization in the model which is:
209     \begin{eqnarray}
210     G_u^{metric} & = &
211     - \frac{u}{a} \overline{w}^{ik} \\
212     G_v^{metric} & = &
213     - \frac{v}{a} \overline{w}^{jk} \\
214     G_w^{metric} & = &
215     \frac{1}{a} ( {\overline{u}^{ik}}^2 + {\overline{v}^{jk}}^2 )
216     \end{eqnarray}
217    
218     \fbox{ \begin{minipage}{4.75in}
219     {\em S/R MOM\_U\_METRIC\_NH} ({\em mom\_u\_metric\_nh.F})
220    
221     {\em S/R MOM\_V\_METRIC\_NH} ({\em mom\_v\_metric\_nh.F})
222    
223     $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F})
224     \end{minipage} }
225    
226    
227     \subsection{Lateral dissipation}
228    
229     Historically, we have represented the SGS Reynolds stresses as simply
230     down gradient momentum fluxes, ignoring constraints on the stress
231     tensor such as symmetry.
232     \begin{eqnarray}
233     {\cal A}_w \Delta r_f h_w G_u^{h-diss} & = &
234     \delta_i \Delta y_f \Delta r_f h_c \tau_{11}
235     + \delta_j \Delta x_v \Delta r_f h_\zeta \tau_{12} \\
236     {\cal A}_s \Delta r_f h_s G_v^{h-diss} & = &
237     \delta_i \Delta y_u \Delta r_f h_\zeta \tau_{21}
238     + \delta_j \Delta x_f \Delta r_f h_c \tau_{22}
239     \end{eqnarray}
240     \marginpar{Check signs of stress definitions}
241    
242     The lateral viscous stresses are discretized:
243     \begin{eqnarray}
244 cnh 1.4 \tau_{11} & = & A_h c_{11\Delta}(\varphi) \frac{1}{\Delta x_f} \delta_i u
245     -A_4 c_{11\Delta^2}(\varphi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\
246     \tau_{12} & = & A_h c_{12\Delta}(\varphi) \frac{1}{\Delta y_u} \delta_j u
247     -A_4 c_{12\Delta^2}(\varphi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\
248     \tau_{21} & = & A_h c_{21\Delta}(\varphi) \frac{1}{\Delta x_v} \delta_i v
249     -A_4 c_{21\Delta^2}(\varphi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\
250     \tau_{22} & = & A_h c_{22\Delta}(\varphi) \frac{1}{\Delta y_f} \delta_j v
251     -A_4 c_{22\Delta^2}(\varphi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v
252 adcroft 1.1 \end{eqnarray}
253 cnh 1.4 where the non-dimensional factors $c_{lm\Delta^n}(\varphi), \{l,m,n\} \in
254 adcroft 1.1 \{1,2\}$ define the ``cosine'' scaling with latitude which can be
255     applied in various ad-hoc ways. For instance, $c_{11\Delta} =
256 cnh 1.4 c_{21\Delta} = (\cos{\varphi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would
257 adcroft 1.1 represent the an-isotropic cosine scaling typically used on the
258     ``lat-lon'' grid for Laplacian viscosity.
259     \marginpar{Need to tidy up method for controlling this in code}
260    
261     It should be noted that dispite the ad-hoc nature of the scaling, some
262     scaling must be done since on a lat-lon grid the converging meridians
263     make it very unlikely that a stable viscosity parameter exists across
264     the entire model domain.
265    
266     The Laplacian viscosity coefficient, $A_h$ ({\bf viscAh}), has units
267     of $m^2 s^{-1}$. The bi-harmonic viscosity coefficient, $A_4$ ({\bf
268     viscA4}), has units of $m^4 s^{-1}$.
269    
270     \fbox{ \begin{minipage}{4.75in}
271     {\em S/R MOM\_U\_XVISCFLUX} ({\em mom\_u\_xviscflux.F})
272    
273     {\em S/R MOM\_U\_YVISCFLUX} ({\em mom\_u\_yviscflux.F})
274    
275     {\em S/R MOM\_V\_XVISCFLUX} ({\em mom\_v\_xviscflux.F})
276    
277     {\em S/R MOM\_V\_YVISCFLUX} ({\em mom\_v\_yviscflux.F})
278    
279     $\tau_{11}$, $\tau_{12}$, $\tau_{22}$, $\tau_{22}$: {\bf vF}, {\bf
280     v4F} (local to {\em calc\_mom\_rhs.F})
281     \end{minipage} }
282    
283     Two types of lateral boundary condition exist for the lateral viscous
284     terms, no-slip and free-slip.
285    
286     The free-slip condition is most convenient to code since it is
287     equivalent to zero-stress on boundaries. Simple masking of the stress
288     components sets them to zero. The fractional open stress is properly
289     handled using the lopped cells.
290    
291     The no-slip condition defines the normal gradient of a tangential flow
292     such that the flow is zero on the boundary. Rather than modify the
293     stresses by using complicated functions of the masks and ``ghost''
294     points (see \cite{Adcroft+Marshall98}) we add the boundary stresses as
295     an additional source term in cells next to solid boundaries. This has
296     the advantage of being able to cope with ``thin walls'' and also makes
297     the interior stress calculation (code) independent of the boundary
298     conditions. The ``body'' force takes the form:
299     \begin{eqnarray}
300     G_u^{side-drag} & = &
301     \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j
302 cnh 1.4 \left( A_h c_{12\Delta}(\varphi) u - A_4 c_{12\Delta^2}(\varphi) \nabla^2 u \right)
303 adcroft 1.1 \\
304     G_v^{side-drag} & = &
305     \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i
306 cnh 1.4 \left( A_h c_{21\Delta}(\varphi) v - A_4 c_{21\Delta^2}(\varphi) \nabla^2 v \right)
307 adcroft 1.1 \end{eqnarray}
308    
309     In fact, the above discretization is not quite complete because it
310     assumes that the bathymetry at velocity points is deeper than at
311     neighbouring vorticity points, e.g. $1-h_w < 1-h_\zeta$
312    
313     \fbox{ \begin{minipage}{4.75in}
314     {\em S/R MOM\_U\_SIDEDRAG} ({\em mom\_u\_sidedrag.F})
315    
316     {\em S/R MOM\_V\_SIDEDRAG} ({\em mom\_v\_sidedrag.F})
317    
318     $G_u^{side-drag}$, $G_v^{side-drag}$: {\bf vF} (local to {\em calc\_mom\_rhs.F})
319     \end{minipage} }
320    
321    
322     \subsection{Vertical dissipation}
323    
324     Vertical viscosity terms are discretized with only partial adherence
325     to the variable grid lengths introduced by the finite volume
326     formulation. This reduces the formal accuracy of these terms to just
327     first order but only next to boundaries; exactly where other terms
328     appear such as linar and quadratic bottom drag.
329     \begin{eqnarray}
330     G_u^{v-diss} & = &
331     \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
332     G_v^{v-diss} & = &
333     \frac{1}{\Delta r_f h_s} \delta_k \tau_{23} \\
334     G_w^{v-diss} & = & \epsilon_{nh}
335     \frac{1}{\Delta r_f h_d} \delta_k \tau_{33}
336     \end{eqnarray}
337     represents the general discrete form of the vertical dissipation terms.
338    
339     In the interior the vertical stresses are discretized:
340     \begin{eqnarray}
341     \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
342     \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v \\
343     \tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w
344     \end{eqnarray}
345     It should be noted that in the non-hydrostatic form, the stress tensor
346     is even less consistent than for the hydrostatic (see Wazjowicz
347     \cite{Waojz}). It is well known how to do this properly (see Griffies
348     \cite{Griffies}) and is on the list of to-do's.
349    
350     \fbox{ \begin{minipage}{4.75in}
351     {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
352    
353     {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
354    
355     $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})
356    
357     $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})
358     \end{minipage} }
359    
360    
361     As for the lateral viscous terms, the free-slip condition is
362     equivalent to simply setting the stress to zero on boundaries. The
363     no-slip condition is implemented as an additional term acting on top
364     of the interior and free-slip stresses. Bottom drag represents
365     additional friction, in addition to that imposed by the no-slip
366     condition at the bottom. The drag is cast as a stress expressed as a
367     linear or quadratic function of the mean flow in the layer above the
368     topography:
369     \begin{eqnarray}
370     \tau_{13}^{bottom-drag} & = &
371     \left(
372     2 A_v \frac{1}{\Delta r_c}
373     + r_b
374     + C_d \sqrt{ \overline{2 KE}^i }
375     \right) u \\
376     \tau_{23}^{bottom-drag} & = &
377     \left(
378     2 A_v \frac{1}{\Delta r_c}
379     + r_b
380     + C_d \sqrt{ \overline{2 KE}^j }
381     \right) v
382     \end{eqnarray}
383     where these terms are only evaluated immediately above topography.
384     $r_b$ ({\bf bottomDragLinear}) has units of $m s^{-1}$ and a typical value
385     of the order 0.0002 $m s^{-1}$. $C_d$ ({\bf bottomDragQuadratic}) is
386     dimensionless with typical values in the range 0.001--0.003.
387    
388     \fbox{ \begin{minipage}{4.75in}
389     {\em S/R MOM\_U\_BOTTOMDRAG} ({\em mom\_u\_bottomdrag.F})
390    
391     {\em S/R MOM\_V\_BOTTOMDRAG} ({\em mom\_v\_bottomdrag.F})
392    
393     $\tau_{13}^{bottom-drag}$, $\tau_{23}^{bottom-drag}$: {\bf vf} (local to {\em calc\_mom\_rhs.F})
394     \end{minipage} }
395    
396     \subsection{Derivation of discrete energy conservation}
397    
398     These discrete equations conserve kinetic plus potential energy using the
399     following definitions:
400     \begin{equation}
401     KE = \frac{1}{2} \left( \overline{ u^2 }^i + \overline{ v^2 }^j +
402     \epsilon_{nh} \overline{ w^2 }^k \right)
403     \end{equation}
404    

  ViewVC Help
Powered by ViewVC 1.1.22