/[MITgcm]/manual/s_algorithm/text/mom_fluxform.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/mom_fluxform.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Thu Aug 9 19:48:39 2001 UTC (22 years, 10 months ago) by adcroft
Branch: MAIN
File MIME type: application/x-tex
Moved things around for more sections fewer subsections
Split spatial-discrete.tex into several smaller files.

1 adcroft 1.1 % $Header: $
2     % $Name: $
3    
4     \section{Flux-form momentum equations}
5    
6     The original finite volume model was based on the Eulerian flux form
7     momentum equations. This is the default though the vector invariant
8     form is optionally available (and recommended in some cases).
9    
10     The ``G's'' (our colloquial name for all terms on rhs!) are broken
11     into the various advective, Coriolis, horizontal dissipation, vertical
12     dissipation and metric forces:
13     \marginpar{$G_u$: {\bf Gu} }
14     \marginpar{$G_v$: {\bf Gv} }
15     \marginpar{$G_w$: {\bf Gw} }
16     \begin{eqnarray}
17     G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} +
18     G_u^{metric} + G_u^{nh-metric} \\
19     G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} +
20     G_v^{metric} + G_v^{nh-metric} \\
21     G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} +
22     G_w^{metric} + G_w^{nh-metric}
23     \end{eqnarray}
24     In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the
25     vertical momentum to hydrostatic balance.
26    
27     These terms are calculated in routines called from subroutine {\em
28     CALC\_MOM\_RHS} a collected into the global arrays {\bf Gu}, {\bf Gv},
29     and {\bf Gw}.
30    
31     \fbox{ \begin{minipage}{4.75in}
32     {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_fluxform/calc\_mom\_rhs.F})
33    
34     $G_u$: {\bf Gu} ({\em DYNVARS.h})
35    
36     $G_v$: {\bf Gv} ({\em DYNVARS.h})
37    
38     $G_w$: {\bf Gw} ({\em DYNVARS.h})
39     \end{minipage} }
40    
41    
42     \subsection{Advection of momentum}
43    
44     The advective operator is second order accurate in space:
45     \begin{eqnarray}
46     {\cal A}_w \Delta r_f h_w G_u^{adv} & = &
47     \delta_i \overline{ U }^i \overline{ u }^i
48     + \delta_j \overline{ V }^i \overline{ u }^j
49     + \delta_k \overline{ W }^i \overline{ u }^k \\
50     {\cal A}_s \Delta r_f h_s G_v^{adv} & = &
51     \delta_i \overline{ U }^j \overline{ v }^i
52     + \delta_j \overline{ V }^j \overline{ v }^j
53     + \delta_k \overline{ W }^j \overline{ v }^k \\
54     {\cal A}_c \Delta r_c G_w^{adv} & = &
55     \delta_i \overline{ U }^k \overline{ w }^i
56     + \delta_j \overline{ V }^k \overline{ w }^j
57     + \delta_k \overline{ W }^k \overline{ w }^k \\
58     \end{eqnarray}
59     and because of the flux form does not contribute to the global budget
60     of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes
61     defined:
62     \marginpar{$U$: {\bf uTrans} }
63     \marginpar{$V$: {\bf vTrans} }
64     \marginpar{$W$: {\bf rTrans} }
65     \begin{eqnarray}
66     U & = & \Delta y_g \Delta r_f h_w u \\
67     V & = & \Delta x_g \Delta r_f h_s v \\
68     W & = & {\cal A}_c w
69     \end{eqnarray}
70     The advection of momentum takes the same form as the advection of
71     tracers but by a translated advective flow. Consequently, the
72     conservation of second moments, derived for tracers later, applies to
73     $u^2$ and $v^2$ and $w^2$ so that advection of momentum correctly
74     conserves kinetic energy.
75    
76     \fbox{ \begin{minipage}{4.75in}
77     {\em S/R MOM\_U\_ADV\_UU} ({\em mom\_u\_adv\_uu.F})
78    
79     {\em S/R MOM\_U\_ADV\_VU} ({\em mom\_u\_adv\_vu.F})
80    
81     {\em S/R MOM\_U\_ADV\_WU} ({\em mom\_u\_adv\_wu.F})
82    
83     {\em S/R MOM\_U\_ADV\_UV} ({\em mom\_u\_adv\_uv.F})
84    
85     {\em S/R MOM\_U\_ADV\_VV} ({\em mom\_u\_adv\_vv.F})
86    
87     {\em S/R MOM\_U\_ADV\_WV} ({\em mom\_u\_adv\_wv.F})
88    
89     $uu$, $uv$, $vu$, $vv$: {\bf aF} (local to {\em calc\_mom\_rhs.F})
90     \end{minipage} }
91    
92    
93    
94     \subsection{Coriolis terms}
95    
96     The ``pure C grid'' Coriolis terms (i.e. in absence of C-D scheme) are
97     discretized:
98     \begin{eqnarray}
99     {\cal A}_w \Delta r_f h_w G_u^{Cor} & = &
100     \overline{ f {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i
101     - \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ w }^k }^i \\
102     {\cal A}_s \Delta r_f h_s G_v^{Cor} & = &
103     - \overline{ f {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
104     {\cal A}_c \Delta r_c G_w^{Cor} & = &
105     \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ u }^i }^k
106     \end{eqnarray}
107     where the Coriolis parameters $f$ and $f'$ are defined:
108     \begin{eqnarray}
109     f & = & 2 \Omega \sin{\phi} \\
110     f' & = & 2 \Omega \cos{\phi}
111     \end{eqnarray}
112     when using spherical geometry, otherwise the $\beta$-plane definition is used:
113     \begin{eqnarray}
114     f & = & f_o + \beta y \\
115     f' & = & 0
116     \end{eqnarray}
117    
118     This discretization globally conserves kinetic energy. It should be
119     noted that despite the use of this discretization in former
120     publications, all calculations to date have used the following
121     different discretization:
122     \begin{eqnarray}
123     G_u^{Cor} & = &
124     f_u \overline{ v }^{ji}
125     - \epsilon_{nh} f_u' \overline{ w }^{ik} \\
126     G_v^{Cor} & = &
127     - f_v \overline{ u }^{ij} \\
128     G_w^{Cor} & = &
129     \epsilon_{nh} f_w' \overline{ u }^{ik}
130     \end{eqnarray}
131     \marginpar{Need to change the default in code to match this}
132     where the subscripts on $f$ and $f'$ indicate evaluation of the
133     Coriolis parameters at the appropriate points in space. The above
134     discretization does {\em not} conserve anything, especially energy. An
135     option to recover this discretization has been retained for backward
136     compatibility testing (set run-time logical {\bf
137     useNonconservingCoriolis} to {\em true} which otherwise defaults to
138     {\em false}).
139    
140     \fbox{ \begin{minipage}{4.75in}
141     {\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F})
142    
143     {\em S/R MOM\_U\_CORIOLIS} ({\em mom\_u\_coriolis.F})
144    
145     {\em S/R MOM\_V\_CORIOLIS} ({\em mom\_v\_coriolis.F})
146    
147     $G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (local to {\em calc\_mom\_rhs.F})
148     \end{minipage} }
149    
150    
151     \subsection{Curvature metric terms}
152    
153     The most commonly used coordinate system on the sphere is the
154     geographic system $(\lambda,\phi)$. The curvilinear nature of these
155     coordinates on the sphere lead to some ``metric'' terms in the
156     component momentum equations. Under the thin-atmosphere and
157     hydrostatic approximations these terms are discretized:
158     \begin{eqnarray}
159     {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
160     \overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\
161     {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
162     - \overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\
163     G_w^{metric} & = & 0
164     \end{eqnarray}
165     where $a$ is the radius of the planet (sphericity is assumed) or the
166     radial distance of the particle (i.e. a function of height). It is
167     easy to see that this discretization satisfies all the properties of
168     the discrete Coriolis terms since the metric factor $\frac{u}{a}
169     \tan{\phi}$ can be viewed as a modification of the vertical Coriolis
170     parameter: $f \rightarrow f+\frac{u}{a} \tan{\phi}$.
171    
172     However, as for the Coriolis terms, a non-energy conserving form has
173     exclusively been used to date:
174     \begin{eqnarray}
175     G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\phi} \\
176     G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\phi}
177     \end{eqnarray}
178     where $\tan{\phi}$ is evaluated at the $u$ and $v$ points
179     respectively.
180    
181     \fbox{ \begin{minipage}{4.75in}
182     {\em S/R MOM\_U\_METRIC\_SPHERE} ({\em mom\_u\_metric\_sphere.F})
183    
184     {\em S/R MOM\_V\_METRIC\_SPHERE} ({\em mom\_v\_metric\_sphere.F})
185    
186     $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F})
187     \end{minipage} }
188    
189    
190    
191     \subsection{Non-hydrostatic metric terms}
192    
193     For the non-hydrostatic equations, dropping the thin-atmosphere
194     approximation re-introduces metric terms involving $w$ and are
195     required to conserve anglular momentum:
196     \begin{eqnarray}
197     {\cal A}_w \Delta r_f h_w G_u^{metric} & = &
198     - \overline{ \frac{ \overline{u}^i \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c }^i \\
199     {\cal A}_s \Delta r_f h_s G_v^{metric} & = &
200     - \overline{ \frac{ \overline{v}^j \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c}^j \\
201     {\cal A}_c \Delta r_c G_w^{metric} & = &
202     \overline{ \frac{ {\overline{u}^i}^2 + {\overline{v}^j}^2}{a} {\cal A}_c \Delta r_f h_c }^k
203     \end{eqnarray}
204    
205     Because we are always consistent, even if consistently wrong, we have,
206     in the past, used a different discretization in the model which is:
207     \begin{eqnarray}
208     G_u^{metric} & = &
209     - \frac{u}{a} \overline{w}^{ik} \\
210     G_v^{metric} & = &
211     - \frac{v}{a} \overline{w}^{jk} \\
212     G_w^{metric} & = &
213     \frac{1}{a} ( {\overline{u}^{ik}}^2 + {\overline{v}^{jk}}^2 )
214     \end{eqnarray}
215    
216     \fbox{ \begin{minipage}{4.75in}
217     {\em S/R MOM\_U\_METRIC\_NH} ({\em mom\_u\_metric\_nh.F})
218    
219     {\em S/R MOM\_V\_METRIC\_NH} ({\em mom\_v\_metric\_nh.F})
220    
221     $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F})
222     \end{minipage} }
223    
224    
225     \subsection{Lateral dissipation}
226    
227     Historically, we have represented the SGS Reynolds stresses as simply
228     down gradient momentum fluxes, ignoring constraints on the stress
229     tensor such as symmetry.
230     \begin{eqnarray}
231     {\cal A}_w \Delta r_f h_w G_u^{h-diss} & = &
232     \delta_i \Delta y_f \Delta r_f h_c \tau_{11}
233     + \delta_j \Delta x_v \Delta r_f h_\zeta \tau_{12} \\
234     {\cal A}_s \Delta r_f h_s G_v^{h-diss} & = &
235     \delta_i \Delta y_u \Delta r_f h_\zeta \tau_{21}
236     + \delta_j \Delta x_f \Delta r_f h_c \tau_{22}
237     \end{eqnarray}
238     \marginpar{Check signs of stress definitions}
239    
240     The lateral viscous stresses are discretized:
241     \begin{eqnarray}
242     \tau_{11} & = & A_h c_{11\Delta}(\phi) \frac{1}{\Delta x_f} \delta_i u
243     -A_4 c_{11\Delta^2}(\phi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\
244     \tau_{12} & = & A_h c_{12\Delta}(\phi) \frac{1}{\Delta y_u} \delta_j u
245     -A_4 c_{12\Delta^2}(\phi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\
246     \tau_{21} & = & A_h c_{21\Delta}(\phi) \frac{1}{\Delta x_v} \delta_i v
247     -A_4 c_{21\Delta^2}(\phi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\
248     \tau_{22} & = & A_h c_{22\Delta}(\phi) \frac{1}{\Delta y_f} \delta_j v
249     -A_4 c_{22\Delta^2}(\phi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v
250     \end{eqnarray}
251     where the non-dimensional factors $c_{lm\Delta^n}(\phi), \{l,m,n\} \in
252     \{1,2\}$ define the ``cosine'' scaling with latitude which can be
253     applied in various ad-hoc ways. For instance, $c_{11\Delta} =
254     c_{21\Delta} = (\cos{\phi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would
255     represent the an-isotropic cosine scaling typically used on the
256     ``lat-lon'' grid for Laplacian viscosity.
257     \marginpar{Need to tidy up method for controlling this in code}
258    
259     It should be noted that dispite the ad-hoc nature of the scaling, some
260     scaling must be done since on a lat-lon grid the converging meridians
261     make it very unlikely that a stable viscosity parameter exists across
262     the entire model domain.
263    
264     The Laplacian viscosity coefficient, $A_h$ ({\bf viscAh}), has units
265     of $m^2 s^{-1}$. The bi-harmonic viscosity coefficient, $A_4$ ({\bf
266     viscA4}), has units of $m^4 s^{-1}$.
267    
268     \fbox{ \begin{minipage}{4.75in}
269     {\em S/R MOM\_U\_XVISCFLUX} ({\em mom\_u\_xviscflux.F})
270    
271     {\em S/R MOM\_U\_YVISCFLUX} ({\em mom\_u\_yviscflux.F})
272    
273     {\em S/R MOM\_V\_XVISCFLUX} ({\em mom\_v\_xviscflux.F})
274    
275     {\em S/R MOM\_V\_YVISCFLUX} ({\em mom\_v\_yviscflux.F})
276    
277     $\tau_{11}$, $\tau_{12}$, $\tau_{22}$, $\tau_{22}$: {\bf vF}, {\bf
278     v4F} (local to {\em calc\_mom\_rhs.F})
279     \end{minipage} }
280    
281     Two types of lateral boundary condition exist for the lateral viscous
282     terms, no-slip and free-slip.
283    
284     The free-slip condition is most convenient to code since it is
285     equivalent to zero-stress on boundaries. Simple masking of the stress
286     components sets them to zero. The fractional open stress is properly
287     handled using the lopped cells.
288    
289     The no-slip condition defines the normal gradient of a tangential flow
290     such that the flow is zero on the boundary. Rather than modify the
291     stresses by using complicated functions of the masks and ``ghost''
292     points (see \cite{Adcroft+Marshall98}) we add the boundary stresses as
293     an additional source term in cells next to solid boundaries. This has
294     the advantage of being able to cope with ``thin walls'' and also makes
295     the interior stress calculation (code) independent of the boundary
296     conditions. The ``body'' force takes the form:
297     \begin{eqnarray}
298     G_u^{side-drag} & = &
299     \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j
300     \left( A_h c_{12\Delta}(\phi) u - A_4 c_{12\Delta^2}(\phi) \nabla^2 u \right)
301     \\
302     G_v^{side-drag} & = &
303     \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i
304     \left( A_h c_{21\Delta}(\phi) v - A_4 c_{21\Delta^2}(\phi) \nabla^2 v \right)
305     \end{eqnarray}
306    
307     In fact, the above discretization is not quite complete because it
308     assumes that the bathymetry at velocity points is deeper than at
309     neighbouring vorticity points, e.g. $1-h_w < 1-h_\zeta$
310    
311     \fbox{ \begin{minipage}{4.75in}
312     {\em S/R MOM\_U\_SIDEDRAG} ({\em mom\_u\_sidedrag.F})
313    
314     {\em S/R MOM\_V\_SIDEDRAG} ({\em mom\_v\_sidedrag.F})
315    
316     $G_u^{side-drag}$, $G_v^{side-drag}$: {\bf vF} (local to {\em calc\_mom\_rhs.F})
317     \end{minipage} }
318    
319    
320     \subsection{Vertical dissipation}
321    
322     Vertical viscosity terms are discretized with only partial adherence
323     to the variable grid lengths introduced by the finite volume
324     formulation. This reduces the formal accuracy of these terms to just
325     first order but only next to boundaries; exactly where other terms
326     appear such as linar and quadratic bottom drag.
327     \begin{eqnarray}
328     G_u^{v-diss} & = &
329     \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\
330     G_v^{v-diss} & = &
331     \frac{1}{\Delta r_f h_s} \delta_k \tau_{23} \\
332     G_w^{v-diss} & = & \epsilon_{nh}
333     \frac{1}{\Delta r_f h_d} \delta_k \tau_{33}
334     \end{eqnarray}
335     represents the general discrete form of the vertical dissipation terms.
336    
337     In the interior the vertical stresses are discretized:
338     \begin{eqnarray}
339     \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
340     \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v \\
341     \tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w
342     \end{eqnarray}
343     It should be noted that in the non-hydrostatic form, the stress tensor
344     is even less consistent than for the hydrostatic (see Wazjowicz
345     \cite{Waojz}). It is well known how to do this properly (see Griffies
346     \cite{Griffies}) and is on the list of to-do's.
347    
348     \fbox{ \begin{minipage}{4.75in}
349     {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})
350    
351     {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})
352    
353     $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})
354    
355     $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})
356     \end{minipage} }
357    
358    
359     As for the lateral viscous terms, the free-slip condition is
360     equivalent to simply setting the stress to zero on boundaries. The
361     no-slip condition is implemented as an additional term acting on top
362     of the interior and free-slip stresses. Bottom drag represents
363     additional friction, in addition to that imposed by the no-slip
364     condition at the bottom. The drag is cast as a stress expressed as a
365     linear or quadratic function of the mean flow in the layer above the
366     topography:
367     \begin{eqnarray}
368     \tau_{13}^{bottom-drag} & = &
369     \left(
370     2 A_v \frac{1}{\Delta r_c}
371     + r_b
372     + C_d \sqrt{ \overline{2 KE}^i }
373     \right) u \\
374     \tau_{23}^{bottom-drag} & = &
375     \left(
376     2 A_v \frac{1}{\Delta r_c}
377     + r_b
378     + C_d \sqrt{ \overline{2 KE}^j }
379     \right) v
380     \end{eqnarray}
381     where these terms are only evaluated immediately above topography.
382     $r_b$ ({\bf bottomDragLinear}) has units of $m s^{-1}$ and a typical value
383     of the order 0.0002 $m s^{-1}$. $C_d$ ({\bf bottomDragQuadratic}) is
384     dimensionless with typical values in the range 0.001--0.003.
385    
386     \fbox{ \begin{minipage}{4.75in}
387     {\em S/R MOM\_U\_BOTTOMDRAG} ({\em mom\_u\_bottomdrag.F})
388    
389     {\em S/R MOM\_V\_BOTTOMDRAG} ({\em mom\_v\_bottomdrag.F})
390    
391     $\tau_{13}^{bottom-drag}$, $\tau_{23}^{bottom-drag}$: {\bf vf} (local to {\em calc\_mom\_rhs.F})
392     \end{minipage} }
393    
394     \subsection{Derivation of discrete energy conservation}
395    
396     These discrete equations conserve kinetic plus potential energy using the
397     following definitions:
398     \begin{equation}
399     KE = \frac{1}{2} \left( \overline{ u^2 }^i + \overline{ v^2 }^j +
400     \epsilon_{nh} \overline{ w^2 }^k \right)
401     \end{equation}
402    

  ViewVC Help
Powered by ViewVC 1.1.22