1 |
dgoldberg |
1.1 |
%Verion of gendata.m modified by DNG |
2 |
|
|
%This is a matlab script that generates the input data |
3 |
|
|
|
4 |
|
|
|
5 |
|
|
% the configuation approximately the ISOMIP experiment no. 1 |
6 |
|
|
% require matlab functions for equation of state |
7 |
|
|
|
8 |
|
|
|
9 |
|
|
% Dimensions of grid |
10 |
|
|
nx=3; |
11 |
|
|
ny=200; |
12 |
|
|
nz=90; |
13 |
|
|
delz = 10; |
14 |
|
|
|
15 |
|
|
hfacMin = 0.2; |
16 |
|
|
%mwct = 3; |
17 |
|
|
|
18 |
|
|
dlat = 0.125/32; dy=dlat; |
19 |
|
|
dlon = 0.125/4; dx=dlon; |
20 |
|
|
|
21 |
|
|
%eos = 'linear'; |
22 |
|
|
eos = 'jmd95z'; |
23 |
|
|
% eos = 'mdjwf'; |
24 |
|
|
|
25 |
|
|
acc = 'real*8'; |
26 |
|
|
|
27 |
|
|
long = [-105.5:dlon:-105.5]; |
28 |
|
|
lonc = long+dlon/2; |
29 |
|
|
latg = [-75.4457:dlat:-73.8809-dlat]; |
30 |
|
|
latc = latg+dlat/2; |
31 |
|
|
size(latc); |
32 |
|
|
|
33 |
|
|
|
34 |
|
|
|
35 |
|
|
dz = delz*ones(1,nz); |
36 |
|
|
zgp1 = [0,cumsum(dz)]; |
37 |
|
|
zc = .5*(zgp1(1:end-1)+zgp1(2:end)); |
38 |
|
|
zg = zgp1(1:end-1); |
39 |
|
|
dz = diff(zgp1); |
40 |
|
|
% sprintf('delZ = %d * %7.6g,',nz,dz) |
41 |
|
|
|
42 |
|
|
%%%%%%%%% stratification %%%%%%%%%%%%%%%% |
43 |
|
|
|
44 |
|
|
T_sfc = -1.9; |
45 |
|
|
T_bottom = 1.2; |
46 |
|
|
del_T = (T_bottom - T_sfc)/(59*delz); |
47 |
|
|
|
48 |
|
|
for iz = 1:nz; |
49 |
|
|
|
50 |
|
|
|
51 |
|
|
tref(iz) = T_sfc + del_T*((iz-30)*delz); |
52 |
|
|
if iz<=30; |
53 |
|
|
tref(iz)=-1.9; |
54 |
|
|
end |
55 |
|
|
if iz>=90 |
56 |
|
|
tref(iz) =2; |
57 |
|
|
end |
58 |
|
|
end |
59 |
|
|
|
60 |
|
|
S_sfc = 34.2; |
61 |
|
|
S_bottom = 34.7; |
62 |
|
|
del_S = (S_bottom - S_sfc)/(59*delz); |
63 |
|
|
|
64 |
|
|
for iz = 1:nz; |
65 |
|
|
|
66 |
|
|
|
67 |
|
|
sref(iz) = S_sfc + del_S*((iz-30)*delz); |
68 |
|
|
if iz<=30; |
69 |
|
|
sref(iz)=34.2; |
70 |
|
|
end |
71 |
|
|
if iz>=90 |
72 |
|
|
sref(iz) =34.7; |
73 |
|
|
end |
74 |
|
|
end |
75 |
|
|
|
76 |
|
|
%%%%%%%%%%% density %%%%%%%%%%%%%%%%% |
77 |
|
|
|
78 |
|
|
% Gravity |
79 |
|
|
gravity=9.81; |
80 |
|
|
rhoConst = 1000; |
81 |
|
|
k=1; |
82 |
|
|
dzm = abs([zg(1)-zc(1) .5*diff(zc)]); |
83 |
|
|
dzp = abs([.5*diff(zc) zc(end)-zg(end)]); |
84 |
|
|
p = abs(zc)*gravity*rhoConst*1e-4; |
85 |
|
|
dp = p; |
86 |
|
|
kp = 0; |
87 |
|
|
|
88 |
|
|
Rho = zeros(nz,1); |
89 |
|
|
|
90 |
|
|
while rms(dp) > 1e-13 |
91 |
|
|
phiHydF(k) = 0; |
92 |
|
|
p0 = p; |
93 |
|
|
kp = kp+1; |
94 |
|
|
for k = 1:nz |
95 |
|
|
switch eos |
96 |
|
|
case 'linear' |
97 |
|
|
|
98 |
|
|
case 'jmd95z' |
99 |
|
|
drho = densjmd95(sref(k),tref(k),p(k))-rhoConst; |
100 |
|
|
case 'mdjwf' |
101 |
|
|
drho = densmdjwf(sref(k),tref(k),p(k))-rhoConst; |
102 |
|
|
otherwise |
103 |
|
|
error(sprintf('unknown EOS: %s',eos)) |
104 |
|
|
end |
105 |
|
|
Rho(k) = drho+rhoConst; |
106 |
|
|
phiHydC(k) = phiHydF(k) + dzm(k)*gravity*drho/rhoConst; |
107 |
|
|
phiHydF(k+1) = phiHydC(k) + dzp(k)*gravity*drho/rhoConst; |
108 |
|
|
end |
109 |
|
|
switch eos |
110 |
|
|
case 'mdjwf' |
111 |
|
|
p = (gravity*rhoConst*abs(zc) + phiHydC*rhoConst)/gravity/rhoConst; |
112 |
|
|
end |
113 |
|
|
dp = p-p0; |
114 |
|
|
end |
115 |
|
|
|
116 |
|
|
shelficemass = binread('h0.bin',3,200) * 917; |
117 |
|
|
|
118 |
|
|
%phi0surf = zeros(nx,ny); |
119 |
|
|
topo = zeros(nx,ny); |
120 |
|
|
|
121 |
|
|
for ix=1:nx |
122 |
|
|
for iy=1:ny |
123 |
|
|
% k=max(find(abs(zg)<abs(topo(ix,iy)))); |
124 |
|
|
% if isempty(k) |
125 |
|
|
% k=0; |
126 |
|
|
% end |
127 |
|
|
% if k>0 |
128 |
|
|
|
129 |
|
|
% dr = -zg(k) - topo(ix,iy); |
130 |
|
|
|
131 |
|
|
% if (dr<delz/2) |
132 |
|
|
% phi0surf(ix,iy) = phiHydF(k) + (delz/2-dr) * (phiHydC(k)-phiHydF(k))/(delz/2); |
133 |
|
|
% else |
134 |
|
|
% phi0surf(ix,iy) = phiHydC(k) + (dr-delz/2) * (phiHydF(k+1)-phiHydC(k))/(delz/2); |
135 |
|
|
% end |
136 |
|
|
|
137 |
|
|
% end |
138 |
|
|
|
139 |
|
|
mass = shelficemass (ix,iy); |
140 |
|
|
massFuncC = rhoConst * (phiHydC/gravity + zc); |
141 |
|
|
massFuncF = rhoConst * (phiHydF/gravity + zgp1); |
142 |
|
|
|
143 |
|
|
k = max (find ( massFuncF < mass )); |
144 |
|
|
if (isempty(k)) |
145 |
|
|
k=0; |
146 |
|
|
end |
147 |
|
|
if (k>0) |
148 |
|
|
if (mass < massFuncC(k)) |
149 |
|
|
topo(ix,iy) = -zg(k) - (mass-massFuncF(k)) * delz/2 / (massFuncC(k)-massFuncF(k)); |
150 |
|
|
else |
151 |
|
|
topo(ix,iy) = -zc(k) - (mass-massFuncC(k)) * delz/2 / (massFuncF(k+1)-massFuncC(k)); |
152 |
|
|
end |
153 |
|
|
end |
154 |
|
|
|
155 |
|
|
end |
156 |
|
|
end |
157 |
|
|
|
158 |
|
|
%mass = rhoConst * (phi0surf / gravity - topo); |
159 |
|
|
%mass(:,1:100) = mass(:,1:100) + 917 * 10; |
160 |
|
|
%topo(:,1:100) = bathy(:,1:100)+mwct; |
161 |
|
|
|
162 |
|
|
etainit = zeros(size(topo)); |
163 |
|
|
|
164 |
|
|
% new topography: icetopo rounded to the nearest k * deltaZ |
165 |
|
|
% eta_init set to make difference |
166 |
|
|
|
167 |
|
|
icetopo2 = topo; |
168 |
|
|
|
169 |
|
|
for ix=1:nx |
170 |
|
|
for iy=1:ny |
171 |
|
|
k=max(find(abs(zg)<abs(icetopo2(ix,iy)))); |
172 |
|
|
if isempty(k) |
173 |
|
|
k=0; |
174 |
|
|
else |
175 |
|
|
|
176 |
|
|
dr = 1-(-zg(k) - icetopo2(ix,iy))/delz; |
177 |
|
|
if (dr > .25) |
178 |
|
|
% bring Ro_surf *up* to closest grid face & make etainit negative |
179 |
|
|
% to compensate |
180 |
|
|
icetopo2(ix,iy) = -zg(k); |
181 |
|
|
etainit(ix,iy) = (dr-1)*delz; |
182 |
|
|
else |
183 |
|
|
% bring Ro_surf *down* to closest grid face & make etainit pos |
184 |
|
|
% to compensate |
185 |
|
|
icetopo2(ix,iy) = -zg(k+1); |
186 |
|
|
etainit(ix,iy) = (dr)*delz; |
187 |
|
|
end |
188 |
|
|
|
189 |
|
|
end |
190 |
|
|
end |
191 |
|
|
end |
192 |
|
|
|
193 |
|
|
etainit(:,1)=0; |
194 |
|
|
icetopo2(:,1)=0; |
195 |
|
|
bathy(:,1)=0; |
196 |
|
|
|
197 |
|
|
fid = fopen('shelftopo.round.bin','w','b'); fwrite(fid,icetopo2,'real*8'); fclose(fid); |
198 |
|
|
fid = fopen('etainit.round.bin','w','b'); fwrite(fid,etainit,'real*8'); fclose(fid); |
199 |
|
|
fid = fopen('shelficemassinit.bin','w','b'); fwrite(fid,shelficemass,'real*8'); fclose(fid); |
200 |
|
|
%fid = fopen('bathy_step.bin','w','b'); fwrite(fid,bathy,'real*8'); fclose(fid); |
201 |
|
|
|