1 |
dgoldberg |
1.2 |
C $Header: /u/gcmpack/MITgcm_contrib/verification_other/shelfice_remeshing/code/shelfice_thermodynamics.F,v 1.1 2015/12/11 19:48:32 dgoldberg Exp $ |
2 |
dgoldberg |
1.1 |
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "SHELFICE_OPTIONS.h" |
5 |
|
|
#ifdef ALLOW_AUTODIFF |
6 |
|
|
# include "AUTODIFF_OPTIONS.h" |
7 |
|
|
#endif |
8 |
|
|
#ifdef ALLOW_CTRL |
9 |
|
|
# include "CTRL_OPTIONS.h" |
10 |
|
|
#endif |
11 |
|
|
|
12 |
|
|
CBOP |
13 |
|
|
C !ROUTINE: SHELFICE_THERMODYNAMICS |
14 |
|
|
C !INTERFACE: |
15 |
|
|
SUBROUTINE SHELFICE_THERMODYNAMICS( |
16 |
|
|
I myTime, myIter, myThid ) |
17 |
|
|
C !DESCRIPTION: \bv |
18 |
|
|
C *=============================================================* |
19 |
|
|
C | S/R SHELFICE_THERMODYNAMICS |
20 |
|
|
C | o shelf-ice main routine. |
21 |
|
|
C | compute temperature and (virtual) salt flux at the |
22 |
|
|
C | shelf-ice ocean interface |
23 |
|
|
C | |
24 |
|
|
C | stresses at the ice/water interface are computed in separate |
25 |
|
|
C | routines that are called from mom_fluxform/mom_vecinv |
26 |
|
|
C *=============================================================* |
27 |
|
|
C \ev |
28 |
|
|
|
29 |
|
|
C !USES: |
30 |
|
|
IMPLICIT NONE |
31 |
|
|
|
32 |
|
|
C === Global variables === |
33 |
|
|
#include "SIZE.h" |
34 |
|
|
#include "EEPARAMS.h" |
35 |
|
|
#include "PARAMS.h" |
36 |
|
|
#include "GRID.h" |
37 |
|
|
#include "DYNVARS.h" |
38 |
|
|
#include "FFIELDS.h" |
39 |
|
|
#include "SHELFICE.h" |
40 |
|
|
#include "SHELFICE_COST.h" |
41 |
|
|
#ifdef ALLOW_AUTODIFF |
42 |
|
|
# include "CTRL_SIZE.h" |
43 |
|
|
# include "ctrl.h" |
44 |
|
|
# include "ctrl_dummy.h" |
45 |
|
|
#endif /* ALLOW_AUTODIFF */ |
46 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
47 |
|
|
# ifdef SHI_ALLOW_GAMMAFRICT |
48 |
|
|
# include "tamc.h" |
49 |
|
|
# include "tamc_keys.h" |
50 |
|
|
# endif /* SHI_ALLOW_GAMMAFRICT */ |
51 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
52 |
|
|
#ifdef ALLOW_STREAMICE |
53 |
|
|
# include "STREAMICE.h" |
54 |
|
|
#endif /* ALLOW_STREAMICE */ |
55 |
|
|
|
56 |
|
|
C !INPUT/OUTPUT PARAMETERS: |
57 |
|
|
C === Routine arguments === |
58 |
|
|
C myIter :: iteration counter for this thread |
59 |
|
|
C myTime :: time counter for this thread |
60 |
|
|
C myThid :: thread number for this instance of the routine. |
61 |
|
|
_RL myTime |
62 |
|
|
INTEGER myIter |
63 |
|
|
INTEGER myThid |
64 |
|
|
|
65 |
|
|
#ifdef ALLOW_SHELFICE |
66 |
|
|
C !LOCAL VARIABLES : |
67 |
|
|
C === Local variables === |
68 |
|
|
C I,J,K,Kp1,bi,bj :: loop counters |
69 |
|
|
C tLoc, sLoc, pLoc :: local in-situ temperature, salinity, pressure |
70 |
|
|
C theta/saltFreeze :: temperature and salinity of water at the |
71 |
|
|
C ice-ocean interface (at the freezing point) |
72 |
|
|
C freshWaterFlux :: local variable for fresh water melt flux due |
73 |
|
|
C to melting in kg/m^2/s |
74 |
|
|
C (negative density x melt rate) |
75 |
|
|
C convertFW2SaltLoc:: local copy of convertFW2Salt |
76 |
|
|
C cFac :: 1 for conservative form, 0, otherwise |
77 |
|
|
C rFac :: realFreshWaterFlux factor |
78 |
|
|
C dFac :: 0 for diffusive heat flux (Holland and Jenkins, 1999, |
79 |
|
|
C eq21) |
80 |
|
|
C 1 for advective and diffusive heat flux (eq22, 26, 31) |
81 |
|
|
C fwflxFac :: only effective for dFac=1, 1 if we expect a melting |
82 |
|
|
C fresh water flux, 0 otherwise |
83 |
|
|
C auxiliary variables and abbreviations: |
84 |
|
|
C a0, a1, a2, b, c0 |
85 |
|
|
C eps1, eps2, eps3, eps3a, eps4, eps5, eps6, eps7, eps8 |
86 |
|
|
C aqe, bqe, cqe, discrim, recip_aqe |
87 |
|
|
C drKp1, recip_drLoc |
88 |
|
|
INTEGER I,J,K,Kp1,kp2 |
89 |
|
|
INTEGER bi,bj |
90 |
|
|
_RL tLoc(1:sNx,1:sNy) |
91 |
|
|
_RL sLoc(1:sNx,1:sNy) |
92 |
|
|
_RL pLoc(1:sNx,1:sNy) |
93 |
|
|
_RL uLoc(1:sNx,1:sNy) |
94 |
|
|
_RL vLoc(1:sNx,1:sNy) |
95 |
|
|
_RL u_topdr(1:sNx+1,1:sNy+1,nSx,nSy) |
96 |
|
|
_RL v_topdr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
97 |
|
|
_RL thetaFreeze, saltFreeze, recip_Cp |
98 |
|
|
_RL freshWaterFlux, convertFW2SaltLoc |
99 |
|
|
_RL a0, a1, a2, b, c0 |
100 |
|
|
_RL eps1, eps2, eps3, eps3a, eps4, eps5, eps6, eps7, eps8 |
101 |
|
|
_RL cFac, rFac, dFac, fwflxFac, realfwFac |
102 |
|
|
_RL aqe, bqe, cqe, discrim, recip_aqe |
103 |
|
|
_RL drKp1, drKp2, recip_drLoc |
104 |
|
|
_RL recip_latentHeat |
105 |
|
|
_RL tmpFac |
106 |
|
|
_RL SHICEHAF |
107 |
|
|
_RL SHC,SHW,SHA,FACTOR1,FACTOR2,FACTOR3 |
108 |
|
|
#ifdef SHI_ALLOW_GAMMAFRICT |
109 |
|
|
_RL shiPr, shiSc, shiLo, recip_shiKarman, shiTwoThirds |
110 |
|
|
_RL gammaTmoleT, gammaTmoleS, gammaTurb, gammaTurbConst |
111 |
|
|
_RL ustar, ustarSq, etastar |
112 |
|
|
PARAMETER ( shiTwoThirds = 0.66666666666666666666666666667D0 ) |
113 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
114 |
|
|
_RL uStarDiag(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
115 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
116 |
|
|
#endif |
117 |
|
|
|
118 |
|
|
#ifndef ALLOW_OPENAD |
119 |
|
|
_RL SW_TEMP |
120 |
|
|
EXTERNAL SW_TEMP |
121 |
|
|
#endif |
122 |
|
|
|
123 |
|
|
#ifdef ALLOW_SHIFWFLX_CONTROL |
124 |
|
|
_RL xx_shifwflx_loc(1-olx:snx+olx,1-oly:sny+oly,nsx,nsy) |
125 |
|
|
#endif |
126 |
|
|
CEOP |
127 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
128 |
|
|
|
129 |
|
|
#ifdef SHI_ALLOW_GAMMAFRICT |
130 |
|
|
#ifdef ALLOW_AUTODIFF |
131 |
|
|
C re-initialize here again, curtesy to TAF |
132 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
133 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
134 |
|
|
DO J = 1-OLy,sNy+OLy |
135 |
|
|
DO I = 1-OLx,sNx+OLx |
136 |
|
|
shiTransCoeffT(i,j,bi,bj) = SHELFICEheatTransCoeff |
137 |
|
|
shiTransCoeffS(i,j,bi,bj) = SHELFICEsaltTransCoeff |
138 |
|
|
ENDDO |
139 |
|
|
ENDDO |
140 |
|
|
ENDDO |
141 |
|
|
ENDDO |
142 |
|
|
#endif /* ALLOW_AUTODIFF */ |
143 |
|
|
IF ( SHELFICEuseGammaFrict ) THEN |
144 |
|
|
C Implement friction velocity-dependent transfer coefficient |
145 |
|
|
C of Holland and Jenkins, JPO, 1999 |
146 |
|
|
recip_shiKarman= 1. _d 0 / 0.4 _d 0 |
147 |
|
|
shiLo = 0. _d 0 |
148 |
|
|
shiPr = shiPrandtl**shiTwoThirds |
149 |
|
|
shiSc = shiSchmidt**shiTwoThirds |
150 |
|
|
cph shiPr = (viscArNr(1)/diffKrNrT(1))**shiTwoThirds |
151 |
|
|
cph shiSc = (viscArNr(1)/diffKrNrS(1))**shiTwoThirds |
152 |
|
|
gammaTmoleT = 12.5 _d 0 * shiPr - 6. _d 0 |
153 |
|
|
gammaTmoleS = 12.5 _d 0 * shiSc - 6. _d 0 |
154 |
|
|
C instead of etastar = sqrt(1+zetaN*ustar./(f*Lo*Rc)) |
155 |
|
|
etastar = 1. _d 0 |
156 |
|
|
gammaTurbConst = 1. _d 0 / (2. _d 0 * shiZetaN*etastar) |
157 |
|
|
& - recip_shiKarman |
158 |
|
|
#ifdef ALLOW_AUTODIFF |
159 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
160 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
161 |
|
|
DO J = 1-OLy,sNy+OLy |
162 |
|
|
DO I = 1-OLx,sNx+OLx |
163 |
|
|
shiTransCoeffT(i,j,bi,bj) = 0. _d 0 |
164 |
|
|
shiTransCoeffS(i,j,bi,bj) = 0. _d 0 |
165 |
|
|
ENDDO |
166 |
|
|
ENDDO |
167 |
|
|
ENDDO |
168 |
|
|
ENDDO |
169 |
|
|
#endif /* ALLOW_AUTODIFF */ |
170 |
|
|
ENDIF |
171 |
|
|
#endif /* SHI_ALLOW_GAMMAFRICT */ |
172 |
|
|
|
173 |
|
|
recip_latentHeat = 0. _d 0 |
174 |
|
|
IF ( SHELFICElatentHeat .NE. 0. _d 0 ) |
175 |
|
|
& recip_latentHeat = 1. _d 0/SHELFICElatentHeat |
176 |
|
|
C are we doing the conservative form of Jenkins et al. (2001)? |
177 |
|
|
recip_Cp = 1. _d 0 / HeatCapacity_Cp |
178 |
|
|
cFac = 0. _d 0 |
179 |
|
|
IF ( SHELFICEconserve ) cFac = 1. _d 0 |
180 |
|
|
|
181 |
|
|
realFWfac = 0. _d 0 |
182 |
|
|
IF ( SHELFICErealFWflux ) realFWfac = 1. _d 0 |
183 |
|
|
C with "real fresh water flux" (affecting ETAN), |
184 |
|
|
C there is more to modify |
185 |
|
|
rFac = 1. _d 0 |
186 |
|
|
IF ( SHELFICEconserve .AND. useRealFreshWaterFlux ) rFac = 0. _d 0 |
187 |
|
|
C heat flux into the ice shelf, default is diffusive flux |
188 |
|
|
C (Holland and Jenkins, 1999, eq.21) |
189 |
|
|
dFac = 0. _d 0 |
190 |
|
|
IF ( SHELFICEadvDiffHeatFlux ) dFac = 1. _d 0 |
191 |
|
|
fwflxFac = 0. _d 0 |
192 |
|
|
C linear dependence of freezing point on salinity |
193 |
|
|
a0 = -0.0575 _d 0 |
194 |
|
|
a1 = 0.0 _d -0 |
195 |
|
|
a2 = 0.0 _d -0 |
196 |
|
|
c0 = 0.0901 _d 0 |
197 |
|
|
b = -7.61 _d -4 |
198 |
|
|
#ifdef ALLOW_ISOMIP_TD |
199 |
|
|
IF ( useISOMIPTD ) THEN |
200 |
|
|
C non-linear dependence of freezing point on salinity |
201 |
|
|
a0 = -0.0575 _d 0 |
202 |
|
|
a1 = 1.710523 _d -3 |
203 |
|
|
a2 = -2.154996 _d -4 |
204 |
|
|
b = -7.53 _d -4 |
205 |
|
|
c0 = 0. _d 0 |
206 |
|
|
ENDIF |
207 |
|
|
convertFW2SaltLoc = convertFW2Salt |
208 |
|
|
C hardcoding this value here is OK because it only applies to ISOMIP |
209 |
|
|
C where this value is part of the protocol |
210 |
|
|
IF ( convertFW2SaltLoc .EQ. -1. ) convertFW2SaltLoc = 33.4 _d 0 |
211 |
|
|
#endif /* ALLOW_ISOMIP_TD */ |
212 |
|
|
|
213 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
214 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
215 |
|
|
DO J = 1-OLy,sNy+OLy |
216 |
|
|
DO I = 1-OLx,sNx+OLx |
217 |
|
|
shelfIceHeatFlux (I,J,bi,bj) = 0. _d 0 |
218 |
|
|
shelfIceFreshWaterFlux(I,J,bi,bj) = 0. _d 0 |
219 |
|
|
shelficeForcingT (I,J,bi,bj) = 0. _d 0 |
220 |
|
|
shelficeForcingS (I,J,bi,bj) = 0. _d 0 |
221 |
|
|
#if (defined SHI_ALLOW_GAMMAFRICT && defined ALLOW_DIAGNOSTICS) |
222 |
|
|
uStarDiag (I,J,bi,bj) = 0. _d 0 |
223 |
|
|
#endif /* SHI_ALLOW_GAMMAFRICT and ALLOW_DIAGNOSTICS */ |
224 |
|
|
ENDDO |
225 |
|
|
ENDDO |
226 |
|
|
ENDDO |
227 |
|
|
ENDDO |
228 |
|
|
#ifdef ALLOW_SHIFWFLX_CONTROL |
229 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
230 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
231 |
|
|
DO J = 1-OLy,sNy+OLy |
232 |
|
|
DO I = 1-OLx,sNx+OLx |
233 |
|
|
xx_shifwflx_loc(I,J,bi,bj) = 0. _d 0 |
234 |
|
|
ENDDO |
235 |
|
|
ENDDO |
236 |
|
|
ENDDO |
237 |
|
|
ENDDO |
238 |
|
|
#ifdef ALLOW_CTRL |
239 |
|
|
if (useCTRL) CALL CTRL_GET_GEN ( |
240 |
|
|
& xx_shifwflx_file, xx_shifwflxstartdate, xx_shifwflxperiod, |
241 |
|
|
& maskSHI, xx_shifwflx_loc, xx_shifwflx0, xx_shifwflx1, |
242 |
|
|
& xx_shifwflx_dummy, |
243 |
|
|
& xx_shifwflx_remo_intercept, xx_shifwflx_remo_slope, |
244 |
|
|
& wshifwflx, |
245 |
|
|
& myTime, myIter, myThid ) |
246 |
|
|
#endif |
247 |
|
|
#endif /* ALLOW_SHIFWFLX_CONTROL */ |
248 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
249 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
250 |
|
|
|
251 |
|
|
IF ( SHELFICEBoundaryLayer ) THEN |
252 |
|
|
C-- average over boundary layer width |
253 |
|
|
DO J = 1, sNy+1 |
254 |
|
|
DO I = 1, sNx+1 |
255 |
|
|
u_topdr(I,J,bi,bj) = 0.0 |
256 |
|
|
v_topdr(I,J,bi,bj) = 0.0 |
257 |
|
|
ENDDO |
258 |
|
|
ENDDO |
259 |
|
|
ENDIF |
260 |
|
|
|
261 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
262 |
|
|
# ifdef SHI_ALLOW_GAMMAFRICT |
263 |
|
|
act1 = bi - myBxLo(myThid) |
264 |
|
|
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
265 |
|
|
act2 = bj - myByLo(myThid) |
266 |
|
|
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
267 |
|
|
act3 = myThid - 1 |
268 |
|
|
max3 = nTx*nTy |
269 |
|
|
act4 = ikey_dynamics - 1 |
270 |
|
|
ikey = (act1 + 1) + act2*max1 |
271 |
|
|
& + act3*max1*max2 |
272 |
|
|
& + act4*max1*max2*max3 |
273 |
|
|
# endif /* SHI_ALLOW_GAMMAFRICT */ |
274 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
275 |
|
|
DO J = 1, sNy |
276 |
|
|
DO I = 1, sNx |
277 |
|
|
C-- make local copies of temperature, salinity and depth (pressure in deci-bar) |
278 |
|
|
C-- underneath the ice |
279 |
|
|
K = MAX(1,kTopC(I,J,bi,bj)) |
280 |
|
|
pLoc(I,J) = ABS(R_shelfIce(I,J,bi,bj)) |
281 |
|
|
c pLoc(I,J) = shelficeMass(I,J,bi,bj)*gravity*1. _d -4 |
282 |
|
|
tLoc(I,J) = theta(I,J,K,bi,bj) |
283 |
|
|
sLoc(I,J) = MAX(salt(I,J,K,bi,bj), zeroRL) |
284 |
|
|
IF ( .not.SHELFICEBoundaryLayer ) THEN |
285 |
|
|
uLoc(I,J) = recip_hFacC(I,J,K,bi,bj) * |
286 |
|
|
& ( uVel(I, J,K,bi,bj) * _hFacW(I, J,K,bi,bj) |
287 |
|
|
& + uVel(I+1,J,K,bi,bj) * _hFacW(I+1,J,K,bi,bj) ) |
288 |
|
|
vLoc(I,J) = recip_hFacC(I,J,K,bi,bj) * |
289 |
|
|
& ( vVel(I, J,K,bi,bj) * _hFacS(I, J,K,bi,bj) |
290 |
|
|
& + vVel(I,J+1,K,bi,bj) * _hFacS(I,J+1,K,bi,bj) ) |
291 |
|
|
ENDIF |
292 |
|
|
ENDDO |
293 |
|
|
ENDDO |
294 |
|
|
|
295 |
|
|
! IF ( SHELFICEBoundaryLayer ) THEN |
296 |
|
|
! DO J = 1, sNy+1 |
297 |
|
|
! DO I = 1, sNx+1 |
298 |
|
|
! |
299 |
|
|
! K = ksurfW(I,J,bi,bj) |
300 |
|
|
! Kp1 = K+1 |
301 |
|
|
! Kp2 = K+2 |
302 |
|
|
! |
303 |
|
|
! IF (ShelficeThickBoundaryLayer .and. |
304 |
|
|
! & (K.ne.0.and.K.LT.Nr-1)) THEN |
305 |
|
|
! |
306 |
|
|
! drKp1 = drF(K)*( 1.5 - _hFacW(I,J,K,bi,bj) ) |
307 |
|
|
! drKp2 = drKp1 - drF(kp1)*_hFacW(I,J,kp1,bi,bj) |
308 |
|
|
! drKp2 = MAX( drKp2, 0. _d 0) |
309 |
|
|
! drKp2 = MIN( drKp2, |
310 |
|
|
! & drF(kp2)*_hFacW(I,J,kp2,bi,bj)) |
311 |
|
|
! drKp1 = drKp1 - drKp2 |
312 |
|
|
! drKp1 = MAX( drKp1, 0. _d 0) |
313 |
|
|
! recip_drLoc = 1. _d 0 / |
314 |
|
|
! & (drF(K)*_hFacW(I,J,K,bi,bj)+drKp1+drKp2) |
315 |
|
|
! u_topdr(I,J,bi,bj) = |
316 |
|
|
! & (drF(K)*_hFacW(I,J,K,bi,bj)*uVel(I,J,K,bi,bj) + |
317 |
|
|
! & drKp1*uVel(I,J,Kp1,bi,bj)) * recip_drLoc |
318 |
|
|
! u_topdr(I,J,bi,bj) = u_topdr(I,J,bi,bj) + |
319 |
|
|
! & drKp2 * uVel(I,J,Kp2,bi,bj) * recip_drLoc |
320 |
|
|
! |
321 |
|
|
! ELSEIF ( (K .NE. 0 .AND. K.EQ.Nr-1) .OR. |
322 |
|
|
! & (.not.SHELFICEthickboundarylayer.AND. |
323 |
|
|
! & (K .NE. 0 .AND. K .LT. Nr) ) ) THEN |
324 |
|
|
! |
325 |
|
|
! drKp1 = drF(K)*(1. _d 0-_hFacW(I,J,K,bi,bj)) |
326 |
|
|
! drKp1 = max (drKp1, 0. _d 0) |
327 |
|
|
! recip_drLoc = 1.0 / |
328 |
|
|
! & (drF(K)*_hFacW(I,J,K,bi,bj)+drKp1) |
329 |
|
|
! u_topdr(I,J,bi,bj) = |
330 |
|
|
! & (drF(K)*_hFacW(I,J,K,bi,bj)*uVel(I,J,K,bi,bj) + |
331 |
|
|
! & drKp1*uVel(I,J,Kp1,bi,bj)) |
332 |
|
|
! & * recip_drLoc |
333 |
|
|
! |
334 |
|
|
! ELSE |
335 |
|
|
! |
336 |
|
|
! u_topdr(I,J,bi,bj) = 0. _d 0 |
337 |
|
|
! |
338 |
|
|
! ENDIF |
339 |
|
|
! |
340 |
|
|
! K = ksurfS(I,J,bi,bj) |
341 |
|
|
! Kp1 = K+1 |
342 |
|
|
! Kp2 = K+2 |
343 |
|
|
! |
344 |
|
|
! IF (ShelficeThickBoundaryLayer .and. |
345 |
|
|
! & (K.ne.0.and.K.LT.Nr-1)) THEN |
346 |
|
|
! |
347 |
|
|
! drKp1 = drF(K)*( 1.5 - _hFacS(I,J,K,bi,bj) ) |
348 |
|
|
! drKp2 = drKp1 - drF(kp1)*_hFacS(I,J,kp1,bi,bj) |
349 |
|
|
! drKp2 = MAX( drKp2, 0. _d 0) |
350 |
|
|
! drKp2 = MIN( drKp2, |
351 |
|
|
! & drF(kp2)*_hFacS(I,J,kp2,bi,bj)) |
352 |
|
|
! drKp1 = drKp1 - drKp2 |
353 |
|
|
! drKp1 = MAX( drKp1, 0. _d 0) |
354 |
|
|
! recip_drLoc = 1. _d 0 / |
355 |
|
|
! & (drF(K)*_hFacS(I,J,K,bi,bj)+drKp1+drKp2) |
356 |
|
|
! v_topdr(I,J,bi,bj) = |
357 |
|
|
! & (drF(K)*_hFacS(I,J,K,bi,bj)*vVel(I,J,K,bi,bj) + |
358 |
|
|
! & drKp1*vVel(I,J,Kp1,bi,bj)) * recip_drLoc |
359 |
|
|
! v_topdr(I,J,bi,bj) = v_topdr(I,J,bi,bj) + |
360 |
|
|
! & drKp2 * vVel(I,J,Kp2,bi,bj) * recip_drLoc |
361 |
|
|
! |
362 |
|
|
! ELSEIF ( (K .NE. 0 .AND. K.EQ.Nr-1) .OR. |
363 |
|
|
! & ((.NOT.SHELFICEthickboundarylayer).AND. |
364 |
|
|
! & (K .NE. 0 .AND. K .LT. Nr) ) ) THEN |
365 |
|
|
! |
366 |
|
|
! drKp1 = drF(K)*(1. _d 0-_hFacS(I,J,K,bi,bj)) |
367 |
|
|
! drKp1 = max (drKp1, 0. _d 0) |
368 |
|
|
! recip_drLoc = 1.0 / |
369 |
|
|
! & (drF(K)*_hFacS(I,J,K,bi,bj)+drKp1) |
370 |
|
|
! v_topdr(I,J,bi,bj) = |
371 |
|
|
! & (drF(K)*_hFacS(I,J,K,bi,bj)*vVel(I,J,K,bi,bj) + |
372 |
|
|
! & drKp1*vVel(I,J,Kp1,bi,bj)) |
373 |
|
|
! & * recip_drLoc |
374 |
|
|
! |
375 |
|
|
! ELSE |
376 |
|
|
! |
377 |
|
|
! v_topdr(I,J,bi,bj) = 0. _d 0 |
378 |
|
|
! |
379 |
|
|
! ENDIF |
380 |
|
|
! |
381 |
|
|
! ENDDO |
382 |
|
|
! ENDDO |
383 |
|
|
! ENDIF |
384 |
|
|
|
385 |
|
|
IF ( SHELFICEBoundaryLayer ) THEN |
386 |
|
|
DO J = 1, sNy+1 |
387 |
|
|
DO I = 1, sNx+1 |
388 |
|
|
K = ksurfW(I,J,bi,bj) |
389 |
|
|
Kp1 = K+1 |
390 |
|
|
IF (K.lt.Nr) then |
391 |
|
|
drKp1 = drF(K)*(1. _d 0-_hFacW(I,J,K,bi,bj)) |
392 |
|
|
drKp1 = max (drKp1, 0. _d 0) |
393 |
|
|
recip_drLoc = 1.0 / |
394 |
|
|
& (drF(K)*_hFacW(I,J,K,bi,bj)+drKp1) |
395 |
|
|
u_topdr(I,J,bi,bj) = |
396 |
|
|
& (drF(K)*_hFacW(I,J,K,bi,bj)*uVel(I,J,K,bi,bj) + |
397 |
|
|
& drKp1*uVel(I,J,Kp1,bi,bj)) |
398 |
|
|
& * recip_drLoc |
399 |
|
|
ELSE |
400 |
|
|
u_topdr(I,J,bi,bj) = 0. _d 0 |
401 |
|
|
ENDIF |
402 |
|
|
|
403 |
|
|
K = ksurfS(I,J,bi,bj) |
404 |
|
|
Kp1 = K+1 |
405 |
|
|
IF (K.lt.Nr) then |
406 |
|
|
drKp1 = drF(K)*(1. _d 0-_hFacS(I,J,K,bi,bj)) |
407 |
|
|
drKp1 = max (drKp1, 0. _d 0) |
408 |
|
|
recip_drLoc = 1.0 / |
409 |
|
|
& (drF(K)*_hFacS(I,J,K,bi,bj)+drKp1) |
410 |
|
|
v_topdr(I,J,bi,bj) = |
411 |
|
|
& (drF(K)*_hFacS(I,J,K,bi,bj)*vVel(I,J,K,bi,bj) + |
412 |
|
|
& drKp1*vVel(I,J,Kp1,bi,bj)) |
413 |
|
|
& * recip_drLoc |
414 |
|
|
ELSE |
415 |
|
|
v_topdr(I,J,bi,bj) = 0. _d 0 |
416 |
|
|
ENDIF |
417 |
|
|
|
418 |
|
|
ENDDO |
419 |
|
|
ENDDO |
420 |
|
|
ENDIF |
421 |
|
|
|
422 |
|
|
IF ( SHELFICEBoundaryLayer ) THEN |
423 |
|
|
C-- average over boundary layer width |
424 |
|
|
DO J = 1, sNy |
425 |
|
|
DO I = 1, sNx |
426 |
|
|
K = kTopC(I,J,bi,bj) |
427 |
|
|
IF ( K .NE. 0 .AND. K .LT. Nr ) THEN |
428 |
|
|
Kp1 = MIN(Nr,K+1) |
429 |
|
|
C-- overlap into lower cell |
430 |
|
|
drKp1 = drF(K)*( 1. _d 0 - _hFacC(I,J,K,bi,bj) ) |
431 |
|
|
C-- Dans fix |
432 |
|
|
drKp1 = MAX(drKp1, 0.) |
433 |
|
|
C-- lower cell may not be as thick as required |
434 |
|
|
drKp1 = MIN( drKp1, drF(Kp1) * _hFacC(I,J,Kp1,bi,bj) ) |
435 |
|
|
recip_drLoc = 1. _d 0 / |
436 |
|
|
& ( drF(K)*_hFacC(I,J,K,bi,bj) + drKp1 ) |
437 |
|
|
tLoc(I,J) = ( tLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) |
438 |
|
|
& + theta(I,J,Kp1,bi,bj) *drKp1 ) |
439 |
|
|
& * recip_drLoc |
440 |
|
|
sLoc(I,J) = ( sLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) |
441 |
|
|
& + MAX(salt(I,J,Kp1,bi,bj), zeroRL) * drKp1 ) |
442 |
|
|
& * recip_drLoc |
443 |
|
|
|
444 |
|
|
! uLoc(I,J) = ( uLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) |
445 |
|
|
! & + drKp1 * recip_hFacC(I,J,Kp1,bi,bj) * |
446 |
|
|
! & ( uVel(I, J,Kp1,bi,bj) * _hFacW(I, J,Kp1,bi,bj) |
447 |
|
|
! & + uVel(I+1,J,Kp1,bi,bj) * _hFacW(I+1,J,Kp1,bi,bj) ) |
448 |
|
|
! & ) * recip_drLoc |
449 |
|
|
! vLoc(I,J) = ( vLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) |
450 |
|
|
! & + drKp1 * recip_hFacC(I,J,Kp1,bi,bj) * |
451 |
|
|
! & ( vVel(I,J, Kp1,bi,bj) * _hFacS(I,J, Kp1,bi,bj) |
452 |
|
|
! & + vVel(I,J+1,Kp1,bi,bj) * _hFacS(I,J+1,Kp1,bi,bj) ) |
453 |
|
|
! & ) * recip_drLoc |
454 |
|
|
ENDIF |
455 |
|
|
ENDDO |
456 |
|
|
ENDDO |
457 |
|
|
ENDIF |
458 |
|
|
|
459 |
|
|
|
460 |
|
|
IF ( SHELFICEBoundaryLayer ) THEN |
461 |
|
|
DO J = 1, sNy |
462 |
|
|
DO I = 1, sNx |
463 |
|
|
uLoc(I,J) = |
464 |
|
|
& u_topdr(I,J,bi,bj) + u_topdr(I+1,J,bi,bj) |
465 |
|
|
vLoc(I,J) = |
466 |
|
|
& v_topdr(I,J,bi,bj) + v_topdr(I,J+1,bi,bj) |
467 |
|
|
ENDDO |
468 |
|
|
ENDDO |
469 |
|
|
ENDIF |
470 |
|
|
|
471 |
|
|
C-- turn potential temperature into in-situ temperature relative |
472 |
|
|
C-- to the surface |
473 |
|
|
DO J = 1, sNy |
474 |
|
|
DO I = 1, sNx |
475 |
|
|
#ifndef ALLOW_OPENAD |
476 |
|
|
tLoc(I,J) = SW_TEMP(sLoc(I,J),tLoc(I,J),pLoc(I,J),zeroRL) |
477 |
|
|
#else |
478 |
|
|
CALL SW_TEMP(sLoc(I,J),tLoc(I,J),pLoc(I,J),zeroRL,tLoc(I,J)) |
479 |
|
|
#endif |
480 |
|
|
ENDDO |
481 |
|
|
ENDDO |
482 |
|
|
|
483 |
|
|
#ifdef SHI_ALLOW_GAMMAFRICT |
484 |
|
|
IF ( SHELFICEuseGammaFrict ) THEN |
485 |
|
|
DO J = 1, sNy |
486 |
|
|
DO I = 1, sNx |
487 |
|
|
K = kTopC(I,J,bi,bj) |
488 |
|
|
IF ( K .NE. 0 .AND. pLoc(I,J) .GT. 0. _d 0 ) THEN |
489 |
|
|
ustarSq = shiCdrag * MAX( 1.D-6, |
490 |
|
|
& 0.25 _d 0 *(uLoc(I,J)*uLoc(I,J)+vLoc(I,J)*vLoc(I,J)) ) |
491 |
|
|
ustar = SQRT(ustarSq) |
492 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
493 |
|
|
uStarDiag(I,J,bi,bj) = ustar |
494 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
495 |
|
|
C instead of etastar = sqrt(1+zetaN*ustar./(f*Lo*Rc)) |
496 |
|
|
C etastar = 1. _d 0 |
497 |
|
|
C gammaTurbConst = 1. _d 0 / (2. _d 0 * shiZetaN*etastar) |
498 |
|
|
C & - recip_shiKarman |
499 |
|
|
IF ( fCori(I,J,bi,bj) .NE. 0. _d 0 ) THEN |
500 |
|
|
gammaTurb = LOG( ustarSq * shiZetaN * etastar**2 |
501 |
|
|
& / ABS(fCori(I,J,bi,bj) * 5.0 _d 0 * shiKinVisc)) |
502 |
|
|
& * recip_shiKarman |
503 |
|
|
& + gammaTurbConst |
504 |
|
|
C Do we need to catch the unlikely case of very small ustar |
505 |
|
|
C that can lead to negative gammaTurb? |
506 |
|
|
C gammaTurb = MAX(0.D0, gammaTurb) |
507 |
|
|
ELSE |
508 |
|
|
gammaTurb = gammaTurbConst |
509 |
|
|
ENDIF |
510 |
|
|
shiTransCoeffT(i,j,bi,bj) = MAX( zeroRL, |
511 |
|
|
& ustar/(gammaTurb + gammaTmoleT) ) |
512 |
|
|
shiTransCoeffS(i,j,bi,bj) = MAX( zeroRL, |
513 |
|
|
& ustar/(gammaTurb + gammaTmoleS) ) |
514 |
|
|
ENDIF |
515 |
|
|
ENDDO |
516 |
|
|
ENDDO |
517 |
|
|
ENDIF |
518 |
|
|
#endif /* SHI_ALLOW_GAMMAFRICT */ |
519 |
|
|
|
520 |
|
|
|
521 |
|
|
|
522 |
|
|
c DO bj = myByLo(myThid), myByHi(myThid) |
523 |
|
|
c DO bi = myBxLo(myThid), myBxHi(myThid) |
524 |
|
|
DO j=1-OLy,sNy+OLy |
525 |
|
|
DO i=1-OLx,sNx+OLx |
526 |
|
|
IF (R_shelfice(i,j,bi,bj) .EQ. R_Grounding(i,j,bi,bj))THEN |
527 |
|
|
shiTransCoeffT(i,j,bi,bj)=0 |
528 |
|
|
shiTransCoeffS (i,j,bi,bj)=0 |
529 |
|
|
ENDIF |
530 |
|
|
ENDDO |
531 |
|
|
ENDDO |
532 |
|
|
c ENDDO |
533 |
|
|
c ENDDO |
534 |
|
|
|
535 |
|
|
|
536 |
|
|
|
537 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
538 |
|
|
# ifdef SHI_ALLOW_GAMMAFRICT |
539 |
|
|
CADJ STORE shiTransCoeffS(:,:,bi,bj) = comlev1_bibj, |
540 |
|
|
CADJ & key=ikey, byte=isbyte |
541 |
|
|
CADJ STORE shiTransCoeffT(:,:,bi,bj) = comlev1_bibj, |
542 |
|
|
CADJ & key=ikey, byte=isbyte |
543 |
|
|
# endif /* SHI_ALLOW_GAMMAFRICT */ |
544 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
545 |
|
|
#ifdef ALLOW_ISOMIP_TD |
546 |
|
|
IF ( useISOMIPTD ) THEN |
547 |
|
|
DO J = 1, sNy |
548 |
|
|
DO I = 1, sNx |
549 |
|
|
K = kTopC(I,J,bi,bj) |
550 |
|
|
IF ( K .NE. 0 .AND. pLoc(I,J) .GT. 0. _d 0 ) THEN |
551 |
|
|
C-- Calculate freezing temperature as a function of salinity and pressure |
552 |
|
|
thetaFreeze = |
553 |
|
|
& sLoc(I,J) * ( a0 + a1*sqrt(sLoc(I,J)) + a2*sLoc(I,J) ) |
554 |
|
|
& + b*pLoc(I,J) + c0 |
555 |
|
|
C-- Calculate the upward heat and fresh water fluxes |
556 |
|
|
shelfIceHeatFlux(I,J,bi,bj) = maskC(I,J,K,bi,bj) |
557 |
|
|
& * shiTransCoeffT(i,j,bi,bj) |
558 |
|
|
& * ( tLoc(I,J) - thetaFreeze ) |
559 |
|
|
& * HeatCapacity_Cp*rUnit2mass |
560 |
|
|
#ifdef ALLOW_SHIFWFLX_CONTROL |
561 |
|
|
& - xx_shifwflx_loc(I,J,bi,bj)*SHELFICElatentHeat |
562 |
|
|
#endif /* ALLOW_SHIFWFLX_CONTROL */ |
563 |
|
|
C upward heat flux into the shelf-ice implies basal melting, |
564 |
|
|
C thus a downward (negative upward) fresh water flux (as a mass flux), |
565 |
|
|
C and vice versa |
566 |
|
|
shelfIceFreshWaterFlux(I,J,bi,bj) = |
567 |
|
|
& - shelfIceHeatFlux(I,J,bi,bj) |
568 |
|
|
& *recip_latentHeat |
569 |
|
|
C-- compute surface tendencies |
570 |
|
|
shelficeForcingT(i,j,bi,bj) = |
571 |
|
|
& - shelfIceHeatFlux(I,J,bi,bj) |
572 |
|
|
& *recip_Cp*mass2rUnit |
573 |
|
|
& - cFac * shelfIceFreshWaterFlux(I,J,bi,bj)*mass2rUnit |
574 |
|
|
& * ( thetaFreeze - tLoc(I,J) ) |
575 |
|
|
shelficeForcingS(i,j,bi,bj) = |
576 |
|
|
& shelfIceFreshWaterFlux(I,J,bi,bj) * mass2rUnit |
577 |
|
|
& * ( cFac*sLoc(I,J) + (1. _d 0-cFac)*convertFW2SaltLoc ) |
578 |
|
|
C-- stress at the ice/water interface is computed in separate |
579 |
|
|
C routines that are called from mom_fluxform/mom_vecinv |
580 |
|
|
ELSE |
581 |
|
|
shelfIceHeatFlux (I,J,bi,bj) = 0. _d 0 |
582 |
|
|
shelfIceFreshWaterFlux(I,J,bi,bj) = 0. _d 0 |
583 |
|
|
shelficeForcingT (I,J,bi,bj) = 0. _d 0 |
584 |
|
|
shelficeForcingS (I,J,bi,bj) = 0. _d 0 |
585 |
|
|
ENDIF |
586 |
|
|
ENDDO |
587 |
|
|
ENDDO |
588 |
|
|
ELSE |
589 |
|
|
#else |
590 |
|
|
IF ( .TRUE. ) THEN |
591 |
|
|
#endif /* ALLOW_ISOMIP_TD */ |
592 |
|
|
C use BRIOS thermodynamics, following Hellmers PhD thesis: |
593 |
|
|
C Hellmer, H., 1989, A two-dimensional model for the thermohaline |
594 |
|
|
C circulation under an ice shelf, Reports on Polar Research, No. 60 |
595 |
|
|
C (in German). |
596 |
|
|
|
597 |
|
|
DO J = 1, sNy |
598 |
|
|
DO I = 1, sNx |
599 |
|
|
K = kTopC(I,J,bi,bj) |
600 |
|
|
IF ( K .NE. 0 .AND. pLoc(I,J) .GT. 0. _d 0 ) THEN |
601 |
|
|
C heat flux into the ice shelf, default is diffusive flux |
602 |
|
|
C (Holland and Jenkins, 1999, eq.21) |
603 |
|
|
thetaFreeze = a0*sLoc(I,J)+c0+b*pLoc(I,J) |
604 |
|
|
fwflxFac = 0. _d 0 |
605 |
|
|
IF ( tLoc(I,J) .GT. thetaFreeze ) fwflxFac = dFac |
606 |
|
|
C a few abbreviations |
607 |
|
|
eps1 = rUnit2mass*HeatCapacity_Cp |
608 |
|
|
& *shiTransCoeffT(i,j,bi,bj) |
609 |
|
|
eps2 = rUnit2mass*SHELFICElatentHeat |
610 |
|
|
& *shiTransCoeffS(i,j,bi,bj) |
611 |
|
|
eps5 = rUnit2mass*HeatCapacity_Cp |
612 |
|
|
& *shiTransCoeffS(i,j,bi,bj) |
613 |
|
|
|
614 |
|
|
C solve quadratic equation for salinity at shelfice-ocean interface |
615 |
|
|
C note: this part of the code is not very intuitive as it involves |
616 |
|
|
C many arbitrary abbreviations that were introduced to derive the |
617 |
|
|
C correct form of the quadratic equation for salinity. The abbreviations |
618 |
|
|
C only make sense in connection with my notes on this (M.Losch) |
619 |
|
|
C |
620 |
|
|
C eps3a was introduced as a constant variant of eps3 to avoid AD of |
621 |
|
|
C code of typ (pLoc-const)/pLoc |
622 |
|
|
eps3a = rhoShelfIce*SHELFICEheatCapacity_Cp |
623 |
|
|
& * SHELFICEkappa * ( 1. _d 0 - dFac ) |
624 |
|
|
eps3 = eps3a/pLoc(I,J) |
625 |
|
|
eps4 = b*pLoc(I,J) + c0 |
626 |
|
|
eps6 = eps4 - tLoc(I,J) |
627 |
|
|
eps7 = eps4 - SHELFICEthetaSurface |
628 |
|
|
eps8 = rUnit2mass*SHELFICEheatCapacity_Cp |
629 |
|
|
& *shiTransCoeffS(i,j,bi,bj) * fwflxFac |
630 |
|
|
aqe = a0 *(eps1+eps3-eps8) |
631 |
|
|
recip_aqe = 0. _d 0 |
632 |
|
|
IF ( aqe .NE. 0. _d 0 ) recip_aqe = 0.5 _d 0/aqe |
633 |
|
|
c bqe = eps1*eps6 + eps3*eps7 - eps2 |
634 |
|
|
bqe = eps1*eps6 |
635 |
|
|
& + eps3a*( b |
636 |
|
|
& + ( c0 - SHELFICEthetaSurface )/pLoc(I,J) ) |
637 |
|
|
& - eps2 |
638 |
|
|
& + eps8*( a0*sLoc(I,J) - eps7 ) |
639 |
|
|
cqe = ( eps2 + eps8*eps7 )*sLoc(I,J) |
640 |
|
|
discrim = bqe*bqe - 4. _d 0*aqe*cqe |
641 |
|
|
#undef ALLOW_SHELFICE_DEBUG |
642 |
|
|
#ifdef ALLOW_SHELFICE_DEBUG |
643 |
|
|
IF ( discrim .LT. 0. _d 0 ) THEN |
644 |
|
|
print *, 'ml-shelfice: discrim = ', discrim,aqe,bqe,cqe |
645 |
|
|
print *, 'ml-shelfice: pLoc = ', pLoc(I,J) |
646 |
|
|
print *, 'ml-shelfice: tLoc = ', tLoc(I,J) |
647 |
|
|
print *, 'ml-shelfice: sLoc = ', sLoc(I,J) |
648 |
|
|
print *, 'ml-shelfice: tsurface= ', |
649 |
|
|
& SHELFICEthetaSurface |
650 |
|
|
print *, 'ml-shelfice: eps1 = ', eps1 |
651 |
|
|
print *, 'ml-shelfice: eps2 = ', eps2 |
652 |
|
|
print *, 'ml-shelfice: eps3 = ', eps3 |
653 |
|
|
print *, 'ml-shelfice: eps4 = ', eps4 |
654 |
|
|
print *, 'ml-shelfice: eps5 = ', eps5 |
655 |
|
|
print *, 'ml-shelfice: eps6 = ', eps6 |
656 |
|
|
print *, 'ml-shelfice: eps7 = ', eps7 |
657 |
|
|
print *, 'ml-shelfice: eps8 = ', eps8 |
658 |
|
|
print *, 'ml-shelfice: rU2mass = ', rUnit2mass |
659 |
|
|
print *, 'ml-shelfice: rhoIce = ', rhoShelfIce |
660 |
|
|
print *, 'ml-shelfice: cFac = ', cFac |
661 |
|
|
print *, 'ml-shelfice: Cp_W = ', HeatCapacity_Cp |
662 |
|
|
print *, 'ml-shelfice: Cp_I = ', |
663 |
|
|
& SHELFICEHeatCapacity_Cp |
664 |
|
|
print *, 'ml-shelfice: gammaT = ', |
665 |
|
|
& SHELFICEheatTransCoeff |
666 |
|
|
print *, 'ml-shelfice: gammaS = ', |
667 |
|
|
& SHELFICEsaltTransCoeff |
668 |
|
|
print *, 'ml-shelfice: lat.heat= ', |
669 |
|
|
& SHELFICElatentHeat |
670 |
|
|
STOP 'ABNORMAL END in S/R SHELFICE_THERMODYNAMICS' |
671 |
|
|
ENDIF |
672 |
|
|
#endif /* ALLOW_SHELFICE_DEBUG */ |
673 |
|
|
saltFreeze = (- bqe - SQRT(discrim))*recip_aqe |
674 |
|
|
IF ( saltFreeze .LT. 0. _d 0 ) |
675 |
|
|
& saltFreeze = (- bqe + SQRT(discrim))*recip_aqe |
676 |
|
|
thetaFreeze = a0*saltFreeze + eps4 |
677 |
|
|
C-- upward fresh water flux due to melting (in kg/m^2/s) |
678 |
|
|
cph change to identical form |
679 |
|
|
cph freshWaterFlux = rUnit2mass |
680 |
|
|
cph & * shiTransCoeffS(i,j,bi,bj) |
681 |
|
|
cph & * ( saltFreeze - sLoc(I,J) ) / saltFreeze |
682 |
|
|
freshWaterFlux = rUnit2mass |
683 |
|
|
& * shiTransCoeffS(i,j,bi,bj) |
684 |
|
|
& * ( 1. _d 0 - sLoc(I,J) / saltFreeze ) |
685 |
|
|
#ifdef ALLOW_SHIFWFLX_CONTROL |
686 |
|
|
& + xx_shifwflx_loc(I,J,bi,bj) |
687 |
|
|
#endif /* ALLOW_SHIFWFLX_CONTROL */ |
688 |
|
|
C-- Calculate the upward heat and fresh water fluxes; |
689 |
|
|
C-- MITgcm sign conventions: downward (negative) fresh water flux |
690 |
|
|
C-- implies melting and due to upward (positive) heat flux |
691 |
|
|
shelfIceHeatFlux(I,J,bi,bj) = |
692 |
|
|
& ( eps3 |
693 |
|
|
& - freshWaterFlux*SHELFICEheatCapacity_Cp*fwflxFac ) |
694 |
|
|
& * ( thetaFreeze - SHELFICEthetaSurface ) |
695 |
|
|
& - cFac*freshWaterFlux*( SHELFICElatentHeat |
696 |
|
|
& - HeatCapacity_Cp*( thetaFreeze - rFac*tLoc(I,J) ) ) |
697 |
|
|
shelfIceFreshWaterFlux(I,J,bi,bj) = freshWaterFlux |
698 |
|
|
C-- compute surface tendencies |
699 |
|
|
shelficeForcingT(i,j,bi,bj) = |
700 |
|
|
& ( shiTransCoeffT(i,j,bi,bj) |
701 |
|
|
& - cFac*shelfIceFreshWaterFlux(I,J,bi,bj)*mass2rUnit ) |
702 |
|
|
& * ( thetaFreeze - tLoc(I,J) ) |
703 |
|
|
& - realFWfac*shelfIceFreshWaterFlux(I,J,bi,bj)* |
704 |
|
|
& mass2rUnit* |
705 |
|
|
& ( tLoc(I,J) - theta(I,J,K,bi,bj) ) |
706 |
|
|
shelficeForcingS(i,j,bi,bj) = |
707 |
|
|
& ( shiTransCoeffS(i,j,bi,bj) |
708 |
|
|
& - cFac*shelfIceFreshWaterFlux(I,J,bi,bj)*mass2rUnit ) |
709 |
|
|
& * ( saltFreeze - sLoc(I,J) ) |
710 |
|
|
& - realFWfac*shelfIceFreshWaterFlux(I,J,bi,bj)* |
711 |
|
|
& mass2rUnit* |
712 |
|
|
& ( sLoc(I,J) - salt(I,J,K,bi,bj) ) |
713 |
|
|
ELSE |
714 |
|
|
shelfIceHeatFlux (I,J,bi,bj) = 0. _d 0 |
715 |
|
|
shelfIceFreshWaterFlux(I,J,bi,bj) = 0. _d 0 |
716 |
|
|
shelficeForcingT (I,J,bi,bj) = 0. _d 0 |
717 |
|
|
shelficeForcingS (I,J,bi,bj) = 0. _d 0 |
718 |
|
|
ENDIF |
719 |
|
|
ENDDO |
720 |
|
|
ENDDO |
721 |
|
|
ENDIF |
722 |
|
|
C endif (not) useISOMIPTD |
723 |
|
|
ENDDO |
724 |
|
|
ENDDO |
725 |
|
|
|
726 |
|
|
IF (SHELFICEMassStepping) THEN |
727 |
|
|
CALL SHELFICE_STEP_ICEMASS( myTime, myIter, myThid ) |
728 |
|
|
ENDIF |
729 |
|
|
|
730 |
|
|
C-- Calculate new loading anomaly (in case the ice-shelf mass was updated) |
731 |
|
|
#ifndef ALLOW_AUTODIFF |
732 |
|
|
c IF ( SHELFICEloadAnomalyFile .EQ. ' ' ) THEN |
733 |
|
|
|
734 |
|
|
c print *, 'JJBEF',gravity*(shelficemass(2,30,1,1) |
735 |
|
|
c & +rhoconst*ro_surf(2,30,1,1)) |
736 |
|
|
c print *, 'JJBEF',gravity*(shelficemass(2,230,1,1) |
737 |
|
|
c & +rhoconst*ro_surf(2,230,1,1)) |
738 |
|
|
|
739 |
|
|
c print *, 'JJBEF',gravity*(shelficemass(2,330,1,1) |
740 |
|
|
c & +rhoconst*ro_surf(2,330,1,1)) |
741 |
|
|
|
742 |
|
|
|
743 |
|
|
|
744 |
|
|
|
745 |
|
|
|
746 |
dgoldberg |
1.2 |
DO bj = myByLo(myThid), myByHi(myThid) |
747 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
748 |
|
|
DO j = 1-OLy, sNy+OLy |
749 |
|
|
DO i = 1-OLx, sNx+OLx |
750 |
|
|
shelficeLoadAnomaly(i,j,bi,bj) = gravity |
751 |
|
|
& *( shelficeMass(i,j,bi,bj) + rhoConst*Ro_surf(i,j,bi,bj) ) |
752 |
dgoldberg |
1.1 |
c#ifdef ALLOW_STREAMICE |
753 |
|
|
c IF ( R_shelfice(i,j,bi,bj) .EQ. R_grounding(i,j,bi,bj) ) THEN |
754 |
|
|
c |
755 |
|
|
c if(i==1) then |
756 |
|
|
c print * ,'JRJ1',i,j,shelficeloadanomaly(i,j,bi,bj), |
757 |
|
|
c & FACTOR1,FACTOR2,FACTOR3 |
758 |
|
|
c endif |
759 |
|
|
|
760 |
|
|
c SHICEHAF=H_streamice(i,j,bi,bj)+R_low(i,j,bi,bj) |
761 |
|
|
c & *(streamice_density_ocean_avg/streamice_density) |
762 |
|
|
|
763 |
|
|
! SHICEHAF=SHICEHAF-((990*streamice_density_ocean_avg/ |
764 |
|
|
! & streamice_density)-990) |
765 |
|
|
|
766 |
|
|
c |
767 |
|
|
c SHA=SHELFICEGroundC/ |
768 |
|
|
c & SQRT(.01+shelficeLoadAnomaly(i,j,bi,bj)**2) |
769 |
|
|
c |
770 |
|
|
c FACTOR1 = (1-SHA)/2. |
771 |
|
|
c FACTOR2 = (1+SHA)/2. |
772 |
|
|
c FACTOR3 = tanh(SHELFICEGroundW/2.- |
773 |
|
|
c & 8*SHICEHAF/SHELFICEGroundW) |
774 |
|
|
c |
775 |
|
|
c shelficeLoadAnomaly(i,j,bi,bj)= |
776 |
|
|
c & (FACTOR1*FACTOR3 + FACTOR2)* |
777 |
|
|
c & shelficeLoadAnomaly(i,j,bi,bj) |
778 |
|
|
c |
779 |
|
|
c if(i==1) then |
780 |
|
|
c print * ,'JRJ2',i,j,shelficeloadanomaly(i,j,bi,bj), |
781 |
|
|
c & FACTOR1,FACTOR2,FACTOR3 |
782 |
|
|
c endif |
783 |
|
|
|
784 |
|
|
c ENDIF |
785 |
|
|
c#endif /* ALLOW_STREAMICE */ |
786 |
dgoldberg |
1.2 |
|
787 |
|
|
ENDDO |
788 |
|
|
ENDDO |
789 |
|
|
ENDDO |
790 |
|
|
ENDDO |
791 |
dgoldberg |
1.1 |
c ENDIF |
792 |
|
|
|
793 |
|
|
c print *, 'JJHAF', (H_streamice(2,30,1,1)+R_low(2,30,1,1)) |
794 |
|
|
c & *(streamice_density_ocean_avg/streamice_density) |
795 |
|
|
|
796 |
|
|
|
797 |
|
|
|
798 |
|
|
c print *, 'JJSLA',shelficeloadanomaly(2,30,1,1) |
799 |
|
|
c print *, 'JJSLA',shelficeloadanomaly(2,230,1,1) |
800 |
|
|
c print *, 'JJSLA',shelficeloadanomaly(2,330,1,1) |
801 |
|
|
c print *, 'JJETAN', etaN(2,30,1,1) |
802 |
|
|
|
803 |
|
|
|
804 |
|
|
|
805 |
|
|
|
806 |
|
|
#endif /* ndef ALLOW_AUTODIFF */ |
807 |
|
|
|
808 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
809 |
|
|
IF ( useDiagnostics ) THEN |
810 |
|
|
CALL DIAGNOSTICS_FILL_RS(shelfIceFreshWaterFlux,'SHIfwFlx', |
811 |
|
|
& 0,1,0,1,1,myThid) |
812 |
|
|
CALL DIAGNOSTICS_FILL_RS(shelfIceHeatFlux, 'SHIhtFlx', |
813 |
|
|
& 0,1,0,1,1,myThid) |
814 |
|
|
C SHIForcT (Ice shelf forcing for theta [W/m2], >0 increases theta) |
815 |
|
|
tmpFac = HeatCapacity_Cp*rUnit2mass |
816 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(shelficeForcingT,tmpFac,1, |
817 |
|
|
& 'SHIForcT',0,1,0,1,1,myThid) |
818 |
|
|
C SHIForcS (Ice shelf forcing for salt [g/m2/s], >0 increases salt) |
819 |
|
|
tmpFac = rUnit2mass |
820 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(shelficeForcingS,tmpFac,1, |
821 |
|
|
& 'SHIForcS',0,1,0,1,1,myThid) |
822 |
|
|
C Transfer coefficients |
823 |
|
|
CALL DIAGNOSTICS_FILL(shiTransCoeffT,'SHIgammT', |
824 |
|
|
& 0,1,0,1,1,myThid) |
825 |
|
|
CALL DIAGNOSTICS_FILL(shiTransCoeffS,'SHIgammS', |
826 |
|
|
& 0,1,0,1,1,myThid) |
827 |
|
|
C Friction velocity |
828 |
|
|
#ifdef SHI_ALLOW_GAMMAFRICT |
829 |
|
|
IF ( SHELFICEuseGammaFrict ) |
830 |
|
|
& CALL DIAGNOSTICS_FILL(uStarDiag,'SHIuStar',0,1,0,1,1,myThid) |
831 |
|
|
#endif /* SHI_ALLOW_GAMMAFRICT */ |
832 |
|
|
ENDIF |
833 |
|
|
CALL DIAGNOSTICS_FILL(R_shelfice,'SHI_Rshelfice', |
834 |
|
|
& 0,1,0,1,1,myThid) |
835 |
|
|
|
836 |
|
|
|
837 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
838 |
|
|
|
839 |
|
|
#endif /* ALLOW_SHELFICE */ |
840 |
|
|
RETURN |
841 |
|
|
END |