1 |
C $Header: /u/gcmpack/MITgcm_contrib/dgoldberg/remeshing/code/ini_masks_remesh.F,v 1.2 2017/04/04 23:36:06 jmc Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "PACKAGES_CONFIG.h" |
5 |
#include "CPP_OPTIONS.h" |
6 |
#include "SHELFICE_OPTIONS.h" |
7 |
|
8 |
CBOP |
9 |
C !ROUTINE: INI_MASKS_ETC |
10 |
C !INTERFACE: |
11 |
SUBROUTINE INI_MASKS_REMESH( myThid ) |
12 |
C !DESCRIPTION: \bv |
13 |
C *==========================================================* |
14 |
C | SUBROUTINE INI_MASKS_ETC |
15 |
C | o Initialise masks and topography factors |
16 |
C *==========================================================* |
17 |
C | These arrays are used throughout the code and describe |
18 |
C | the topography of the domain through masks (0s and 1s) |
19 |
C | and fractional height factors (0<hFac<1). The latter |
20 |
C | distinguish between the lopped-cell and full-step |
21 |
C | topographic representations. |
22 |
C *==========================================================* |
23 |
C \ev |
24 |
|
25 |
C !USES: |
26 |
IMPLICIT NONE |
27 |
C === Global variables === |
28 |
#include "SIZE.h" |
29 |
#include "EEPARAMS.h" |
30 |
#include "PARAMS.h" |
31 |
#include "GRID.h" |
32 |
#include "DYNVARS.h" |
33 |
#ifdef NONLIN_FRSURF |
34 |
# include "SURFACE.h" |
35 |
#endif /* NONLIN_FRSURF */ |
36 |
|
37 |
C !INPUT/OUTPUT PARAMETERS: |
38 |
C == Routine arguments == |
39 |
C myThid :: Number of this instance of INI_MASKS_ETC |
40 |
INTEGER myThid |
41 |
|
42 |
#ifdef ALLOW_SHELFICE |
43 |
#ifdef ALLOW_SHELFICE_REMESHING |
44 |
|
45 |
C !LOCAL VARIABLES: |
46 |
C == Local variables == |
47 |
C bi,bj :: tile indices |
48 |
C i,j,k :: Loop counters |
49 |
C tmpfld :: Temporary array used to compute & write Total Depth |
50 |
_RS tmpfld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
51 |
|
52 |
_RS rsurftmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
53 |
|
54 |
INTEGER bi, bj |
55 |
INTEGER i, j, k, ks |
56 |
_RL hFacCtmp |
57 |
_RL hFacMnSz |
58 |
_RS hhm, hhp |
59 |
_RL Rmin_tmp |
60 |
CEOP |
61 |
|
62 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
63 |
|
64 |
IF ( selectSigmaCoord.EQ.0 ) THEN |
65 |
C--- r-coordinate with partial-cell or full cell mask |
66 |
|
67 |
C-- Calculate lopping factor hFacC : over-estimate the part inside of the domain |
68 |
C taking into account the lower_R Boundary (Bathymetrie / Top of Atmos) |
69 |
DO bj=myByLo(myThid), myByHi(myThid) |
70 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
71 |
DO k=1, Nr |
72 |
hFacMnSz=max( hFacMin, min(hFacMinDr*recip_drF(k),1. _d 0) ) |
73 |
DO j=1-OLy,sNy+OLy |
74 |
DO i=1-OLx,sNx+OLx |
75 |
C o Non-dimensional distance between grid bound. and domain lower_R bound. |
76 |
hFacCtmp = (rF(k)-R_low(i,j,bi,bj))*recip_drF(k) |
77 |
C o Select between, closed, open or partial (0,1,0-1) |
78 |
hFacCtmp=min( max( hFacCtmp, 0. _d 0) , 1. _d 0) |
79 |
C o Impose minimum fraction and/or size (dimensional) |
80 |
IF (hFacCtmp.LT.hFacMnSz) THEN |
81 |
IF (hFacCtmp.LT.hFacMnSz*0.5) THEN |
82 |
hFacC(i,j,k,bi,bj)=0. |
83 |
ELSE |
84 |
hFacC(i,j,k,bi,bj)=hFacMnSz |
85 |
ENDIF |
86 |
ELSE |
87 |
hFacC(i,j,k,bi,bj)=hFacCtmp |
88 |
ENDIF |
89 |
ENDDO |
90 |
ENDDO |
91 |
ENDDO |
92 |
|
93 |
C- Re-calculate lower-R Boundary position, taking into account hFacC |
94 |
DO j=1-OLy,sNy+OLy |
95 |
DO i=1-OLx,sNx+OLx |
96 |
R_low(i,j,bi,bj) = rF(1) |
97 |
ENDDO |
98 |
ENDDO |
99 |
DO k=Nr,1,-1 |
100 |
DO j=1-OLy,sNy+OLy |
101 |
DO i=1-OLx,sNx+OLx |
102 |
R_low(i,j,bi,bj) = R_low(i,j,bi,bj) |
103 |
& - drF(k)*hFacC(i,j,k,bi,bj) |
104 |
ENDDO |
105 |
ENDDO |
106 |
ENDDO |
107 |
C- end bi,bj loops. |
108 |
ENDDO |
109 |
ENDDO |
110 |
|
111 |
C-- Calculate lopping factor hFacC : Remove part outside of the domain |
112 |
C taking into account the Reference (=at rest) Surface Position Ro_surf |
113 |
DO bj=myByLo(myThid), myByHi(myThid) |
114 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
115 |
DO k=1, Nr |
116 |
hFacMnSz=max( hFacMin, min(hFacMinDr*recip_drF(k),1. _d 0) ) |
117 |
DO j=1-OLy,sNy+OLy |
118 |
DO i=1-OLx,sNx+OLx |
119 |
C JJ HACK |
120 |
Ro_surf(i,j,bi,bj)=0.0 |
121 |
C o Non-dimensional distance between grid boundary and model surface |
122 |
hFacCtmp = (rF(k)-Ro_surf(i,j,bi,bj))*recip_drF(k) |
123 |
C o Reduce the previous fraction : substract the outside part. |
124 |
hFacCtmp = hFacC(i,j,k,bi,bj) - max( hFacCtmp, 0. _d 0) |
125 |
C o set to zero if empty Column : |
126 |
hFacCtmp = max( hFacCtmp, 0. _d 0) |
127 |
C o Impose minimum fraction and/or size (dimensional) |
128 |
IF (hFacCtmp.LT.hFacMnSz) THEN |
129 |
IF (hFacCtmp.LT.hFacMnSz*0.5) THEN |
130 |
hFacC(i,j,k,bi,bj)=0. |
131 |
ELSE |
132 |
hFacC(i,j,k,bi,bj)=hFacMnSz |
133 |
ENDIF |
134 |
ELSE |
135 |
hFacC(i,j,k,bi,bj)=hFacCtmp |
136 |
ENDIF |
137 |
ENDDO |
138 |
ENDDO |
139 |
ENDDO |
140 |
ENDDO |
141 |
ENDDO |
142 |
|
143 |
#ifdef ALLOW_SHELFICE |
144 |
|
145 |
IF ( useShelfIce ) THEN |
146 |
C-- Modify lopping factor hFacC : Remove part outside of the domain |
147 |
C taking into account the Reference (=at rest) Surface Position Ro_shelfIce |
148 |
CALL SHELFICE_UPDATE_MASKS_REMESH( |
149 |
I rF, recip_drF, drF, kLowc, |
150 |
U hFacC, |
151 |
I myThid ) |
152 |
ENDIF |
153 |
#endif /* ALLOW_SHELFICE */ |
154 |
|
155 |
C- Re-calculate Reference surface position, taking into account hFacC |
156 |
C initialize Total column fluid thickness and surface k index |
157 |
C Note: if no fluid (continent) ==> kSurf = Nr+1 |
158 |
DO bj=myByLo(myThid), myByHi(myThid) |
159 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
160 |
DO j=1-OLy,sNy+OLy |
161 |
DO i=1-OLx,sNx+OLx |
162 |
tmpfld(i,j,bi,bj) = 0. |
163 |
kSurfC(i,j,bi,bj) = Nr+1 |
164 |
c maskH(i,j,bi,bj) = 0. |
165 |
Ro_surf(i,j,bi,bj) = R_low(i,j,bi,bj) |
166 |
DO k=Nr,1,-1 |
167 |
Ro_surf(i,j,bi,bj) = Ro_surf(i,j,bi,bj) |
168 |
& + drF(k)*hFacC(i,j,k,bi,bj) |
169 |
IF (hFacC(i,j,k,bi,bj).NE.0.) THEN |
170 |
kSurfC(i,j,bi,bj) = k |
171 |
c maskH(i,j,bi,bj) = 1. |
172 |
tmpfld(i,j,bi,bj) = tmpfld(i,j,bi,bj) + 1. |
173 |
ENDIF |
174 |
ENDDO |
175 |
kLowC(i,j,bi,bj) = 0 |
176 |
DO k= 1, Nr |
177 |
IF (hFacC(i,j,k,bi,bj).NE.0) THEN |
178 |
kLowC(i,j,bi,bj) = k |
179 |
ENDIF |
180 |
ENDDO |
181 |
maskInC(i,j,bi,bj)= 0. |
182 |
IF ( kSurfC(i,j,bi,bj).LE.Nr ) maskInC(i,j,bi,bj)= 1. |
183 |
ENDDO |
184 |
ENDDO |
185 |
C- end bi,bj loops. |
186 |
ENDDO |
187 |
ENDDO |
188 |
|
189 |
IF ( plotLevel.GE.debLevB ) THEN |
190 |
c CALL PLOT_FIELD_XYRS( tmpfld, |
191 |
c & 'Model Depths K Index' , -1, myThid ) |
192 |
CALL PLOT_FIELD_XYRS(R_low, |
193 |
& 'Model R_low (ini_masks_etc)', -1, myThid ) |
194 |
CALL PLOT_FIELD_XYRS(Ro_surf, |
195 |
& 'Model Ro_surf (ini_masks_etc)', -1, myThid ) |
196 |
ENDIF |
197 |
|
198 |
C-- Calculate quantities derived from XY depth map |
199 |
DO bj = myByLo(myThid), myByHi(myThid) |
200 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
201 |
DO j=1-OLy,sNy+OLy |
202 |
DO i=1-OLx,sNx+OLx |
203 |
C Total fluid column thickness (r_unit) : |
204 |
c Rcolumn(i,j,bi,bj)= Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj) |
205 |
tmpfld(i,j,bi,bj) = Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj) |
206 |
C Inverse of fluid column thickness (1/r_unit) |
207 |
IF ( tmpfld(i,j,bi,bj) .LE. 0. ) THEN |
208 |
recip_Rcol(i,j,bi,bj) = 0. |
209 |
ELSE |
210 |
recip_Rcol(i,j,bi,bj) = 1. _d 0 / tmpfld(i,j,bi,bj) |
211 |
ENDIF |
212 |
ENDDO |
213 |
ENDDO |
214 |
ENDDO |
215 |
ENDDO |
216 |
|
217 |
C-- hFacW and hFacS (at U and V points) |
218 |
DO bj=myByLo(myThid), myByHi(myThid) |
219 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
220 |
DO k=1, Nr |
221 |
DO j=1-OLy,sNy+OLy |
222 |
hFacW(1-OLx,j,k,bi,bj)= 0. |
223 |
DO i=2-OLx,sNx+OLx |
224 |
hFacW(i,j,k,bi,bj)= |
225 |
& MIN(hFacC(i,j,k,bi,bj),hFacC(i-1,j,k,bi,bj)) |
226 |
ENDDO |
227 |
ENDDO |
228 |
DO i=1-OLx,sNx+OLx |
229 |
hFacS(i,1-OLy,k,bi,bj)= 0. |
230 |
ENDDO |
231 |
DO j=2-OLy,sNy+OLy |
232 |
DO i=1-OLx,sNx+OLx |
233 |
hFacS(i,j,k,bi,bj)= |
234 |
& MIN(hFacC(i,j,k,bi,bj),hFacC(i,j-1,k,bi,bj)) |
235 |
ENDDO |
236 |
ENDDO |
237 |
ENDDO |
238 |
C rLow & reference rSurf at Western & Southern edges (U and V points) |
239 |
i = 1-OLx |
240 |
DO j=1-OLy,sNy+OLy |
241 |
rLowW (i,j,bi,bj) = 0. |
242 |
rSurfW(i,j,bi,bj) = 0. |
243 |
ENDDO |
244 |
j = 1-OLy |
245 |
DO i=1-OLx,sNx+OLx |
246 |
rLowS (i,j,bi,bj) = 0. |
247 |
rSurfS(i,j,bi,bj) = 0. |
248 |
ENDDO |
249 |
DO j=1-OLy,sNy+OLy |
250 |
DO i=2-OLx,sNx+OLx |
251 |
rLowW(i,j,bi,bj) = |
252 |
& MAX( R_low(i-1,j,bi,bj), R_low(i,j,bi,bj) ) |
253 |
rSurfW(i,j,bi,bj) = |
254 |
& MIN( Ro_surf(i-1,j,bi,bj), Ro_surf(i,j,bi,bj) ) |
255 |
rSurfW(i,j,bi,bj) = |
256 |
& MAX( rSurfW(i,j,bi,bj), rLowW(i,j,bi,bj) ) |
257 |
ENDDO |
258 |
ENDDO |
259 |
DO j=2-OLy,sNy+OLy |
260 |
DO i=1-OLx,sNx+OLx |
261 |
rLowS(i,j,bi,bj) = |
262 |
& MAX( R_low(i,j-1,bi,bj), R_low(i,j,bi,bj) ) |
263 |
rSurfS(i,j,bi,bj) = |
264 |
& MIN( Ro_surf(i,j-1,bi,bj), Ro_surf(i,j,bi,bj) ) |
265 |
rSurfS(i,j,bi,bj) = |
266 |
& MAX( rSurfS(i,j,bi,bj), rLowS(i,j,bi,bj) ) |
267 |
ENDDO |
268 |
ENDDO |
269 |
C- end bi,bj loops. |
270 |
ENDDO |
271 |
ENDDO |
272 |
CALL EXCH_UV_XYZ_RS(hFacW,hFacS,.FALSE.,myThid) |
273 |
CALL EXCH_UV_XY_RS( rSurfW, rSurfS, .FALSE., myThid ) |
274 |
CALL EXCH_UV_XY_RS( rLowW, rLowS, .FALSE., myThid ) |
275 |
|
276 |
C-- Addtional closing of Western and Southern grid-cell edges: for example, |
277 |
C a) might add some "thin walls" in specific location |
278 |
C-- b) close non-periodic N & S boundaries of lat-lon grid at the N/S poles. |
279 |
CALL ADD_WALLS2MASKS( myThid ) |
280 |
|
281 |
C-- Calculate surface k index for interface W & S (U & V points) |
282 |
DO bj=myByLo(myThid), myByHi(myThid) |
283 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
284 |
DO j=1-OLy,sNy+OLy |
285 |
DO i=1-OLx,sNx+OLx |
286 |
kSurfW(i,j,bi,bj) = Nr+1 |
287 |
kSurfS(i,j,bi,bj) = Nr+1 |
288 |
DO k=Nr,1,-1 |
289 |
IF (hFacW(i,j,k,bi,bj).NE.0.) kSurfW(i,j,bi,bj) = k |
290 |
IF (hFacS(i,j,k,bi,bj).NE.0.) kSurfS(i,j,bi,bj) = k |
291 |
ENDDO |
292 |
maskInW(i,j,bi,bj)= 0. |
293 |
IF ( kSurfW(i,j,bi,bj).LE.Nr ) maskInW(i,j,bi,bj)= 1. |
294 |
maskInS(i,j,bi,bj)= 0. |
295 |
IF ( kSurfS(i,j,bi,bj).LE.Nr ) maskInS(i,j,bi,bj)= 1. |
296 |
ENDDO |
297 |
ENDDO |
298 |
ENDDO |
299 |
ENDDO |
300 |
|
301 |
ELSE |
302 |
#ifndef DISABLE_SIGMA_CODE |
303 |
C--- Sigma and Hybrid-Sigma set-up: |
304 |
CALL INI_SIGMA_HFAC( myThid ) |
305 |
#endif /* DISABLE_SIGMA_CODE */ |
306 |
ENDIF |
307 |
|
308 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
309 |
|
310 |
C-- Write to disk: Total Column Thickness & hFac(C,W,S): |
311 |
C This I/O is now done in write_grid.F |
312 |
c CALL WRITE_FLD_XY_RS( 'Depth',' ',tmpfld,0,myThid) |
313 |
c CALL WRITE_FLD_XYZ_RS( 'hFacC',' ',hFacC,0,myThid) |
314 |
c CALL WRITE_FLD_XYZ_RS( 'hFacW',' ',hFacW,0,myThid) |
315 |
c CALL WRITE_FLD_XYZ_RS( 'hFacS',' ',hFacS,0,myThid) |
316 |
|
317 |
IF ( plotLevel.GE.debLevB ) THEN |
318 |
CALL PLOT_FIELD_XYZRS( hFacC, 'hFacC' , Nr, 0, myThid ) |
319 |
CALL PLOT_FIELD_XYZRS( hFacW, 'hFacW' , Nr, 0, myThid ) |
320 |
CALL PLOT_FIELD_XYZRS( hFacS, 'hFacS' , Nr, 0, myThid ) |
321 |
ENDIF |
322 |
|
323 |
C-- Masks and reciprocals of hFac[CWS] |
324 |
DO bj = myByLo(myThid), myByHi(myThid) |
325 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
326 |
DO k=1,Nr |
327 |
DO j=1-OLy,sNy+OLy |
328 |
DO i=1-OLx,sNx+OLx |
329 |
IF (hFacC(i,j,k,bi,bj) .NE. 0. ) THEN |
330 |
recip_hFacC(i,j,k,bi,bj) = 1. _d 0 / hFacC(i,j,k,bi,bj) |
331 |
maskC(i,j,k,bi,bj) = 1. |
332 |
ELSE |
333 |
recip_hFacC(i,j,k,bi,bj) = 0. |
334 |
maskC(i,j,k,bi,bj) = 0. |
335 |
ENDIF |
336 |
IF (hFacW(i,j,k,bi,bj) .NE. 0. ) THEN |
337 |
recip_hFacW(i,j,k,bi,bj) = 1. _d 0 / hFacW(i,j,k,bi,bj) |
338 |
maskW(i,j,k,bi,bj) = 1. |
339 |
ELSE |
340 |
recip_hFacW(i,j,k,bi,bj) = 0. |
341 |
maskW(i,j,k,bi,bj) = 0. |
342 |
ENDIF |
343 |
IF (hFacS(i,j,k,bi,bj) .NE. 0. ) THEN |
344 |
recip_hFacS(i,j,k,bi,bj) = 1. _d 0 / hFacS(i,j,k,bi,bj) |
345 |
maskS(i,j,k,bi,bj) = 1. |
346 |
ELSE |
347 |
recip_hFacS(i,j,k,bi,bj) = 0. |
348 |
maskS(i,j,k,bi,bj) = 0. |
349 |
ENDIF |
350 |
ENDDO |
351 |
ENDDO |
352 |
ENDDO |
353 |
#ifdef NONLIN_FRSURF |
354 |
C-- Save initial geometrical hFac factor into h0Fac (fixed in time): |
355 |
C Note: In case 1 pkg modifies hFac (from packages_init_fixed, called |
356 |
C later in sequence of calls) this pkg would need also to update h0Fac. |
357 |
DO k=1,Nr |
358 |
DO j=1-OLy,sNy+OLy |
359 |
DO i=1-OLx,sNx+OLx |
360 |
h0FacC(i,j,k,bi,bj) = _hFacC(i,j,k,bi,bj) |
361 |
h0FacW(i,j,k,bi,bj) = _hFacW(i,j,k,bi,bj) |
362 |
h0FacS(i,j,k,bi,bj) = _hFacS(i,j,k,bi,bj) |
363 |
ENDDO |
364 |
ENDDO |
365 |
ENDDO |
366 |
#endif /* NONLIN_FRSURF */ |
367 |
C- end bi,bj loops. |
368 |
ENDDO |
369 |
ENDDO |
370 |
|
371 |
DO bj = myByLo(myThid), myByHi(myThid) |
372 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
373 |
DO k=1,Nr |
374 |
DO j=1-OLy,sNy+OLy |
375 |
DO i=1-OLx,sNx+OLx |
376 |
uVel(i,j,k,bi,bj)=uVel(i,j,k,bi,bj)*maskW(i,j,k,bi,bj) |
377 |
vVel(i,j,k,bi,bj)=vVel(i,j,k,bi,bj)*maskS(i,j,k,bi,bj) |
378 |
wVel(i,j,k,bi,bj)=0.0 |
379 |
salt(i,j,k,bi,bj)=salt(i,j,k,bi,bj)*maskC(i,j,k,bi,bj) |
380 |
theta(i,j,k,bi,bj)=theta(i,j,k,bi,bj)*maskC(i,j,k,bi,bj) |
381 |
|
382 |
ENDDO |
383 |
ENDDO |
384 |
ENDDO |
385 |
ENDDO |
386 |
ENDDO |
387 |
|
388 |
DO bj = myByLo(myThid), myByHi(myThid) |
389 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
390 |
DO j=1,sNy |
391 |
DO i=1,sNx+1 |
392 |
ks = kSurfW(i,j,bi,bj) |
393 |
IF (ks.LE.Nr) THEN |
394 |
c- allows hFacW to be larger than surrounding hFacC=1 @ edge of a step with |
395 |
C different kSurfC on either side (topo in p-coords, ice-shelf in z-coords) |
396 |
hhm = Ro_surf(i-1,j,bi,bj)+etaN(i-1,j,bi,bj) |
397 |
|
398 |
hhp = Ro_surf(i,j,bi,bj)+etaN(i,j,bi,bj) |
399 |
|
400 |
C- make sure hFacW is not larger than the 2 surrounding hFacC |
401 |
c hhm = rF(ks) |
402 |
c IF(ks.EQ.kSurfC(i-1,j,bi,bj)) hhm = rSurftmp(i-1,j) |
403 |
c hhp = rF(ks) |
404 |
c IF(ks.EQ.kSurfC(i,j,bi,bj)) hhp = rSurftmp(i,j) |
405 |
hFac_surfW(i,j,bi,bj) = h0FacW(i,j,ks,bi,bj) |
406 |
& + ( MIN(hhm,hhp) |
407 |
& - MIN( Ro_surf(i-1,j,bi,bj), Ro_surf(i,j,bi,bj) ) |
408 |
& )*recip_drF(ks)*maskW(i,j,ks,bi,bj) |
409 |
ENDIF |
410 |
ENDDO |
411 |
ENDDO |
412 |
|
413 |
DO j=1,sNy+1 |
414 |
DO i=1,sNx |
415 |
ks = kSurfS(i,j,bi,bj) |
416 |
IF (ks.LE.Nr) THEN |
417 |
C- allows hFacS to be larger than surrounding hFacC=1 @ edge of a step with |
418 |
C different kSurfC on either side (topo in p-coords, ice-shelf in z-coords) |
419 |
hhm = Ro_surf(i,j-1,bi,bj)+etaN(i,j-1,bi,bj) |
420 |
|
421 |
hhp = Ro_surf(i,j,bi,bj)+etaN(i,j,bi,bj) |
422 |
|
423 |
C- make sure hFacS is not larger than the 2 surrounding hFacC |
424 |
c hhm = rF(ks) |
425 |
c IF(ks.EQ.kSurfC(i,j-1,bi,bj)) hhm = rSurftmp(i,j-1) |
426 |
c hhp = rF(ks) |
427 |
c IF(ks.EQ.kSurfC(i,j,bi,bj)) hhp = rSurftmp(i,j) |
428 |
hFac_surfS(i,j,bi,bj) = h0FacS(i,j,ks,bi,bj) |
429 |
& + ( MIN(hhm,hhp) |
430 |
& - MIN( Ro_surf(i,j-1,bi,bj), Ro_surf(i,j,bi,bj) ) |
431 |
& )*recip_drF(ks)*maskS(i,j,ks,bi,bj) |
432 |
ENDIF |
433 |
ENDDO |
434 |
ENDDO |
435 |
ENDDO |
436 |
ENDDO |
437 |
|
438 |
#ifdef NONLIN_FRSURF |
439 |
|
440 |
DO bj=myByLo(myThid), myByHi(myThid) |
441 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
442 |
|
443 |
C-- Compute the mimimum value of r_surf (used for computing hFac_surfC) |
444 |
DO j=1,sNy |
445 |
DO i=1,sNx |
446 |
ks = kSurfC(i,j,bi,bj) |
447 |
IF (ks.LE.Nr) THEN |
448 |
Rmin_tmp = rF(ks+1) |
449 |
IF ( ks.EQ.kSurfW(i,j,bi,bj)) |
450 |
& Rmin_tmp = MAX(Rmin_tmp, R_low(i-1,j,bi,bj)) |
451 |
IF ( ks.EQ.kSurfW(i+1,j,bi,bj)) |
452 |
& Rmin_tmp = MAX(Rmin_tmp, R_low(i+1,j,bi,bj)) |
453 |
IF ( ks.EQ.kSurfS(i,j,bi,bj)) |
454 |
& Rmin_tmp = MAX(Rmin_tmp, R_low(i,j-1,bi,bj)) |
455 |
IF ( ks.EQ.kSurfS(i,j+1,bi,bj)) |
456 |
& Rmin_tmp = MAX(Rmin_tmp, R_low(i,j+1,bi,bj)) |
457 |
|
458 |
Rmin_surf(i,j,bi,bj) = |
459 |
& MAX( MAX(rF(ks+1),R_low(i,j,bi,bj)) + hFacInf*drF(ks), |
460 |
& Rmin_tmp + hFacInf*drF(ks) |
461 |
& ) |
462 |
|
463 |
ENDIF |
464 |
ENDDO |
465 |
ENDDO |
466 |
|
467 |
C- end bi,bj loop. |
468 |
ENDDO |
469 |
ENDDO |
470 |
|
471 |
CALL EXCH_XY_RL( Rmin_surf, myThid ) |
472 |
|
473 |
#endif /* NONLIN_FRSURF */ |
474 |
|
475 |
c #if |
476 |
C-- Calculate "recip_hFacU" = reciprocal hfac distance/volume for W cells |
477 |
C NOTE: not used ; computed locally in CALC_GW |
478 |
c #endif |
479 |
|
480 |
#endif |
481 |
#endif |
482 |
|
483 |
RETURN |
484 |
END |