1 |
|
2 |
kwr=0; |
3 |
%kwr=-1; |
4 |
nx=80; ny=42; nr=3; nt=1; |
5 |
|
6 |
xc=[1:nx]; xc=xc-mean(xc); |
7 |
yc=[1:ny]-.5; |
8 |
|
9 |
%------------------------------------------------------ |
10 |
|
11 |
windx=10.; |
12 |
H0=-100.; |
13 |
|
14 |
namf='channel.bin'; |
15 |
depth=H0*ones(nx,ny); depth(:,1)=0.; depth(:,ny)=0.; |
16 |
if kwr > 0, |
17 |
fprintf('write to file: %s\n',namf); |
18 |
fid=fopen(namf,'w','b'); fwrite(fid,depth,'real*8'); fclose(fid); |
19 |
end |
20 |
|
21 |
namf='windx.bin'; |
22 |
wnd=windx*ones(nx,ny,nt); |
23 |
if kwr > 0, |
24 |
fprintf('write to file: %s\n',namf); |
25 |
fid=fopen(namf,'w','b'); fwrite(fid,wnd,'real*8'); fclose(fid); |
26 |
end |
27 |
|
28 |
%- file name convention: "const_{xx}.bin" <-> uniform value = xx (in percent) |
29 |
namf='const_00.bin'; |
30 |
fld=0*ones(nx,ny,nt); |
31 |
if kwr > 0, |
32 |
fprintf('write to file: %s\n',namf); |
33 |
fid=fopen(namf,'w','b'); fwrite(fid,fld,'real*8'); fclose(fid); |
34 |
end |
35 |
|
36 |
namf='const100.bin'; w0=1.; |
37 |
%var=w0*ones(nx,ny); |
38 |
%if kwr > 0, |
39 |
% fprintf('write to file: %s\n',namf); |
40 |
% fid=fopen(namf,'w','b'); fwrite(fid,var,'real*8'); fclose(fid); |
41 |
%end |
42 |
|
43 |
namf='const+20.bin'; w0=0.2; |
44 |
var=w0*ones(nx,ny); |
45 |
if kwr > 0, |
46 |
fprintf('write to file: %s\n',namf); |
47 |
fid=fopen(namf,'w','b'); fwrite(fid,var,'real*8'); fclose(fid); |
48 |
end |
49 |
|
50 |
namf='ice0_area.bin'; iceC0=1.; |
51 |
iceConc=zeros(nx,ny); |
52 |
iceConc(21:60,:)=iceC0; |
53 |
iceConc(:,1)=0; iceConc(:,ny)=0; |
54 |
if kwr > 0, |
55 |
fprintf('write to file: %s\n',namf); |
56 |
fid=fopen(namf,'w','b'); fwrite(fid,iceConc,'real*8'); fclose(fid); |
57 |
end |
58 |
|
59 |
namf='ice0_heff.bin'; iceH0=0.2; |
60 |
%iceVol=iceConc*iceH0; |
61 |
%if kwr > 0, |
62 |
% fprintf('write to file: %s\n',namf); |
63 |
% fid=fopen(namf,'w','b'); fwrite(fid,iceVol,'real*8'); fclose(fid); |
64 |
%end |
65 |
|
66 |
%------------------------------------------------------ |
67 |
|
68 |
dsw0=70; dswA=30; |
69 |
ymid=(yc(2)+yc(ny))/2; |
70 |
ysn=yc-ymid ; ysn=ysn/(yc(ny)-yc(2)); ysn=sin(pi*ysn); |
71 |
|
72 |
namf=['dsw_',int2str(dsw0),'y.bin']; |
73 |
dsw_y=dsw0+dswA*ysn; |
74 |
fld=ones(nx,1)*dsw_y; |
75 |
if kwr > 0, |
76 |
fprintf('write to file: %s\n',namf); |
77 |
fid=fopen(namf,'w','b'); fwrite(fid,fld,'real*8'); fclose(fid); |
78 |
end |
79 |
|
80 |
dlw0=270; dlwA=-20; |
81 |
namf=['dlw_',int2str(dlw0),'y.bin']; |
82 |
dlw_y=dlw0+dlwA*ysn; |
83 |
fld=ones(nx,1)*dlw_y; |
84 |
if kwr > 0, |
85 |
fprintf('write to file: %s\n',namf); |
86 |
fid=fopen(namf,'w','b'); fwrite(fid,fld,'real*8'); fclose(fid); |
87 |
end |
88 |
|
89 |
cel2K=273.15; taC=-10; |
90 |
%ta0=cel2K+taC; |
91 |
%- cheapAML works in deg.C |
92 |
ta0=taC; |
93 |
ta=ta0*ones(nx,ny); |
94 |
namf=['tair_',int2str(taC),'.bin']; |
95 |
if kwr > 0, |
96 |
fprintf('write to file: %s\n',namf); |
97 |
fid=fopen(namf,'w','b'); fwrite(fid,ta,'real*8'); fclose(fid); |
98 |
end; |
99 |
|
100 |
cvapor_fac = 640380.000 ; |
101 |
cvapor_exp = 5107.400 ; |
102 |
atmrho = 1.200 ; |
103 |
rh=70; %- specific humid <--> 70.% relative humid |
104 |
taK=cel2K+taC; |
105 |
tmpbulk = cvapor_fac*exp(-cvapor_exp./taK); |
106 |
qa0= (rh/100.)*tmpbulk/atmrho ; |
107 |
qa=qa0*ones(nx,ny); |
108 |
namf=['qa',int2str(rh),'_',int2str(taC),'.bin']; |
109 |
if kwr > 0, |
110 |
fprintf('write to file: %s\n',namf); |
111 |
fid=fopen(namf,'w','b'); fwrite(fid,qa,'real*8'); fclose(fid); |
112 |
end; |
113 |
|
114 |
%- salinity |
115 |
sCst=30; |
116 |
so=sCst*ones(nx,ny,nt); |
117 |
namf='socn.bin'; |
118 |
%if kwr > 0, |
119 |
% fprintf('write to file: %s\n',namf); |
120 |
% fid=fopen(namf,'w','b'); fwrite(fid,so,'real*8'); fclose(fid); |
121 |
%end; |
122 |
|
123 |
muTf = 5.4e-2; |
124 |
tfreeze=-muTf*sCst; |
125 |
fprintf('T-freeze = %10.6f\n',tfreeze); |
126 |
dtx=1; %- dtx = amplitude of relaxing ocean temp variations in X-dir |
127 |
%to_x=tfreeze + dtx*sin(pi*(1+2*xc'/nx)) + dtx; |
128 |
to_x=tfreeze + dtx*sin(pi*(2*xc'/nx)) + dtx; |
129 |
mnV=min(to_x); MxV=max(to_x); Avr=mean(to_x); |
130 |
fprintf(' SST* av,mn,Mx: %9.6f , %9.6f , %9.6f , %9.6f\n',Avr,mnV,MxV,MxV-mnV); |
131 |
to=repmat(to_x,[1 ny nt]); |
132 |
namf=['tocn_',int2str(dtx),'x.bin']; |
133 |
if kwr > 0, |
134 |
fprintf('write to file: %s\n',namf); |
135 |
fid=fopen(namf,'w','b'); fwrite(fid,to,'real*8'); fclose(fid); |
136 |
end; |
137 |
|
138 |
%-- make some plots to check: ---------------- |
139 |
|
140 |
hScal=[-1.1 0.1]*abs(H0); |
141 |
figure(1); clf; |
142 |
subplot(211); |
143 |
var=depth; |
144 |
imagesc(xc,yc,var'); set(gca,'YDir','normal'); |
145 |
%caxis(hScal); |
146 |
%change_colmap(-1); |
147 |
colorbar; |
148 |
title('Depth [m]'); |
149 |
|
150 |
subplot(413); |
151 |
var=depth; |
152 |
j1=2; |
153 |
j2=ny/2; |
154 |
j3=j2+1; |
155 |
plot(xc,var(:,j1),'k-') |
156 |
hold on; j=j+1; |
157 |
plot(xc,var(:,j2),'ro-') |
158 |
plot(xc,var(:,j3),'b-') |
159 |
hold off; |
160 |
axis([-nx/2 nx/2 hScal]); |
161 |
grid |
162 |
legend(int2str(j1),int2str(j2),int2str(j3)); |
163 |
title('Depth @ j= cst'); |
164 |
|
165 |
subplot(414); |
166 |
i=nx/2; |
167 |
plot(yc,var(i,:),'k-') |
168 |
axis([0 ny H0*1.1 -H0*.1]); |
169 |
grid |
170 |
title(['Depth @ i=',int2str(i)]); |
171 |
|
172 |
%-- |
173 |
|
174 |
figure(2);clf; |
175 |
subplot(211) |
176 |
plot(xc,to_x,'r-'); hold on; |
177 |
%plot(xc,dewPt-cel2K,'b-'); |
178 |
plot(xc,tfreeze*ones(nx,1),'k-'); |
179 |
hold off; |
180 |
AA=axis; axis([-nx/2 nx/2 AA(3:4)]); |
181 |
legend('To','Tfrz'); |
182 |
grid |
183 |
title('Ocean Temp ^oC'); |
184 |
%title(['del-Temp-X= ',int2str(dtx),' ; RH= ',int2str(rh),' ; Air Temp (^oC)']); |
185 |
subplot(212) |
186 |
plot(yc,dsw_y,'r-'); hold on; |
187 |
plot(yc,dlw_y-200,'b-'); |
188 |
hold off; |
189 |
%AA=axis; axis([0 ny AA(3:4)]); |
190 |
axis([0 ny 30 110]); |
191 |
grid |
192 |
legend('sw','lw','Location','South'); |
193 |
title('Downward SW and LW (-200) [W/m^2]'); |
194 |
|
195 |
%-- |
196 |
|
197 |
figure(3);clf; |
198 |
subplot(311) |
199 |
var=iceConc; ccB=[-1 12]/10; |
200 |
imagesc(xc,yc,var'); set(gca,'YDir','normal'); |
201 |
caxis(ccB); |
202 |
%change_colmap(-1); |
203 |
colorbar; |
204 |
title('Ice Concentration in Channel'); |
205 |
|
206 |
iceVol=iceH0*iceConc; |
207 |
subplot(312) |
208 |
var=iceVol; ccB=[-1 12]/50; |
209 |
imagesc(xc,yc,var'); set(gca,'YDir','normal'); |
210 |
caxis(ccB); |
211 |
%change_colmap(-1); |
212 |
colorbar; |
213 |
title('Effective ice thickness in Channel'); |
214 |
|
215 |
subplot(313) |
216 |
var=iceConc(1,:); |
217 |
%plot(yc,var,'b-x'); hold on; |
218 |
semilogy(yc,var,'b-x'); hold on; |
219 |
var=iceVol(1,:); |
220 |
%plot(yc,var,'r-x'); hold off; |
221 |
semilogy(yc,var,'r-x'); hold on; |
222 |
AA=axis; axis([0 ny [0 2]*iceC0]); |
223 |
grid |
224 |
legend('iceC','hEff','Location','South'); |
225 |
title('Initial ice in Channel : y-section'); |
226 |
%-- |