1 |
C $Header: /u/gcmpack/MITgcm_contrib/torge/itd/code/seaice_growth.F,v 1.17 2013/04/10 00:35:33 torge Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SEAICE_OPTIONS.h" |
5 |
#ifdef ALLOW_EXF |
6 |
# include "EXF_OPTIONS.h" |
7 |
#endif |
8 |
|
9 |
CBOP |
10 |
C !ROUTINE: SEAICE_GROWTH |
11 |
C !INTERFACE: |
12 |
SUBROUTINE SEAICE_GROWTH( myTime, myIter, myThid ) |
13 |
C !DESCRIPTION: \bv |
14 |
C *==========================================================* |
15 |
C | SUBROUTINE seaice_growth |
16 |
C | o Updata ice thickness and snow depth |
17 |
C *==========================================================* |
18 |
C \ev |
19 |
|
20 |
C !USES: |
21 |
IMPLICIT NONE |
22 |
C === Global variables === |
23 |
#include "SIZE.h" |
24 |
#include "EEPARAMS.h" |
25 |
#include "PARAMS.h" |
26 |
#include "DYNVARS.h" |
27 |
#include "GRID.h" |
28 |
#include "FFIELDS.h" |
29 |
#include "SEAICE_SIZE.h" |
30 |
#include "SEAICE_PARAMS.h" |
31 |
#include "SEAICE.h" |
32 |
#include "SEAICE_TRACER.h" |
33 |
#ifdef ALLOW_EXF |
34 |
# include "EXF_PARAM.h" |
35 |
# include "EXF_FIELDS.h" |
36 |
#endif |
37 |
#ifdef ALLOW_SALT_PLUME |
38 |
# include "SALT_PLUME.h" |
39 |
#endif |
40 |
#ifdef ALLOW_AUTODIFF_TAMC |
41 |
# include "tamc.h" |
42 |
#endif |
43 |
|
44 |
C !INPUT/OUTPUT PARAMETERS: |
45 |
C === Routine arguments === |
46 |
C myTime :: Simulation time |
47 |
C myIter :: Simulation timestep number |
48 |
C myThid :: Thread no. that called this routine. |
49 |
_RL myTime |
50 |
INTEGER myIter, myThid |
51 |
CEOP |
52 |
|
53 |
C !FUNCTIONS: |
54 |
#ifdef ALLOW_DIAGNOSTICS |
55 |
LOGICAL DIAGNOSTICS_IS_ON |
56 |
EXTERNAL DIAGNOSTICS_IS_ON |
57 |
#endif |
58 |
|
59 |
C !LOCAL VARIABLES: |
60 |
C === Local variables === |
61 |
C |
62 |
C unit/sign convention: |
63 |
C Within the thermodynamic computation all stocks, except HSNOW, |
64 |
C are in 'effective ice meters' units, and >0 implies more ice. |
65 |
C This holds for stocks due to ocean and atmosphere heat, |
66 |
C at the outset of 'PART 2: determine heat fluxes/stocks' |
67 |
C and until 'PART 7: determine ocean model forcing' |
68 |
C This strategy minimizes the need for multiplications/divisions |
69 |
C by ice fraction, heat capacity, etc. The only conversions that |
70 |
C occurs are for the HSNOW (in effective snow meters) and |
71 |
C PRECIP (fresh water m/s). |
72 |
C |
73 |
C HEFF is effective Hice thickness (m3/m2) |
74 |
C HSNOW is Heffective snow thickness (m3/m2) |
75 |
C HSALT is Heffective salt content (g/m2) |
76 |
C AREA is the seaice cover fraction (0<=AREA<=1) |
77 |
C Q denotes heat stocks -- converted to ice stocks (m3/m2) early on |
78 |
C |
79 |
C For all other stocks/increments, such as d_HEFFbyATMonOCN |
80 |
C or a_QbyATM_cover, the naming convention is as follows: |
81 |
C The prefix 'a_' means available, the prefix 'd_' means delta |
82 |
C (i.e. increment), and the prefix 'r_' means residual. |
83 |
C The suffix '_cover' denotes a value for the ice covered fraction |
84 |
C of the grid cell, whereas '_open' is for the open water fraction. |
85 |
C The main part of the name states what ice/snow stock is concerned |
86 |
C (e.g. QbyATM or HEFF), and how it is affected (e.g. d_HEFFbyATMonOCN |
87 |
C is the increment of HEFF due to the ATMosphere extracting heat from the |
88 |
C OCeaN surface, or providing heat to the OCeaN surface). |
89 |
|
90 |
C i,j,bi,bj :: Loop counters |
91 |
INTEGER i, j, bi, bj |
92 |
C number of surface interface layer |
93 |
INTEGER kSurface |
94 |
C IT :: ice thickness category index (MULTICATEGORIES and ITD code) |
95 |
INTEGER IT |
96 |
#ifdef SEAICE_DEBUG |
97 |
C coordinates for debugging output |
98 |
INTEGER i_dbOut, j_dbOut |
99 |
#endif |
100 |
C msgBuf :: Informational/error message buffer |
101 |
#ifdef ALLOW_BALANCE_FLUXES |
102 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
103 |
#elif (defined (SEAICE_DEBUG)) |
104 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
105 |
CHARACTER*12 msgBufForm |
106 |
#endif |
107 |
C constants |
108 |
_RL pFac |
109 |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
110 |
_RL QI, QS, recip_QI |
111 |
_RL lhSublim |
112 |
|
113 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
114 |
_RL convertQ2HI, convertHI2Q |
115 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
116 |
_RL convertPRECIP2HI, convertHI2PRECIP |
117 |
C Factor by which we increase the upper ocean friction velocity (u*) when |
118 |
C ice is absent in a grid cell (dimensionless) |
119 |
_RL MixedLayerTurbulenceFactor |
120 |
|
121 |
C wind speed square |
122 |
_RL SPEED_SQ |
123 |
|
124 |
C Regularization values squared |
125 |
_RL area_reg_sq, hice_reg_sq |
126 |
C pathological cases thresholds |
127 |
_RL heffTooHeavy |
128 |
|
129 |
C Helper variables: reciprocal of some constants |
130 |
_RL recip_multDim |
131 |
_RL recip_deltaTtherm |
132 |
_RL recip_rhoIce |
133 |
C local value (=1/HO or 1/HO_south) |
134 |
_RL recip_HO |
135 |
C local value (=1/ice thickness) |
136 |
_RL recip_HH |
137 |
C facilitate multi-category snow implementation |
138 |
_RL pFacSnow |
139 |
|
140 |
C temporary variables available for the various computations |
141 |
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
142 |
#ifdef SEAICE_ITD |
143 |
_RL tmpscal1itd(1:sNx,1:sNy), tmpscal2itd(1:sNx,1:sNy) |
144 |
_RL tmpscal3itd(1:sNx,1:sNy) |
145 |
#endif |
146 |
|
147 |
#ifdef ALLOW_SITRACER |
148 |
INTEGER iTr |
149 |
#ifdef ALLOW_DIAGNOSTICS |
150 |
CHARACTER*8 diagName |
151 |
#endif |
152 |
#endif /* ALLOW_SITRACER */ |
153 |
#ifdef ALLOW_AUTODIFF_TAMC |
154 |
INTEGER ilockey |
155 |
#endif |
156 |
|
157 |
C== local arrays == |
158 |
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
159 |
_RL TmixLoc (1:sNx,1:sNy) |
160 |
|
161 |
C actual ice thickness (with upper and lower limit) |
162 |
_RL heffActual (1:sNx,1:sNy) |
163 |
C actual snow thickness |
164 |
_RL hsnowActual (1:sNx,1:sNy) |
165 |
C actual ice thickness (with lower limit only) Reciprocal |
166 |
_RL recip_heffActual (1:sNx,1:sNy) |
167 |
|
168 |
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
169 |
_RL AREApreTH (1:sNx,1:sNy) |
170 |
_RL HEFFpreTH (1:sNx,1:sNy) |
171 |
_RL HSNWpreTH (1:sNx,1:sNy) |
172 |
#ifdef SEAICE_ITD |
173 |
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
174 |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
175 |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
176 |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
177 |
#endif |
178 |
|
179 |
C wind speed |
180 |
_RL UG (1:sNx,1:sNy) |
181 |
|
182 |
C temporary variables available for the various computations |
183 |
_RL tmparr1 (1:sNx,1:sNy) |
184 |
#ifdef SEAICE_VARIABLE_SALINITY |
185 |
_RL saltFluxAdjust (1:sNx,1:sNy) |
186 |
#endif |
187 |
|
188 |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
189 |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
190 |
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
191 |
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
192 |
#ifdef SEAICE_ITD |
193 |
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
194 |
#endif |
195 |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
196 |
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
197 |
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
198 |
#ifdef SEAICE_ITD |
199 |
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
200 |
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
201 |
c for lateral melt parameterization: |
202 |
_RL latMeltFrac (1:sNx,1:sNy,MULTDIM) |
203 |
_RL latMeltRate (1:sNx,1:sNy,MULTDIM) |
204 |
_RL floeAlpha |
205 |
_RL floeDiameter |
206 |
_RL floeDiameterMin |
207 |
_RL floeDiameterMax |
208 |
#endif |
209 |
|
210 |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
211 |
C the atmosphere and the ocean surface - for ice covered water |
212 |
C a_QbyATM_open :: same but for open water |
213 |
C r_QbyATM_cover :: residual of a_QbyATM_cover after freezing/melting processes |
214 |
C r_QbyATM_open :: same but for open water |
215 |
_RL a_QbyATM_cover (1:sNx,1:sNy) |
216 |
_RL a_QbyATM_open (1:sNx,1:sNy) |
217 |
_RL r_QbyATM_cover (1:sNx,1:sNy) |
218 |
_RL r_QbyATM_open (1:sNx,1:sNy) |
219 |
C a_QSWbyATM_open - short wave heat flux over ocean in W/m^2 |
220 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
221 |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
222 |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
223 |
C a_QbyOCN :: available heat (in W/m^2) due to the |
224 |
C interaction of the ice pack and the ocean surface |
225 |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
226 |
C processes have been accounted for |
227 |
_RL a_QbyOCN (1:sNx,1:sNy) |
228 |
_RL r_QbyOCN (1:sNx,1:sNy) |
229 |
|
230 |
C The change of mean ice thickness due to out-of-bounds values following |
231 |
C sea ice dyhnamics |
232 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
233 |
|
234 |
C The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
235 |
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
236 |
|
237 |
C The sum of mean ice thickness increments due to atmospheric fluxes over |
238 |
C the open water fraction and ice-covered fractions of the grid cell |
239 |
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
240 |
C The change of mean ice thickness due to flooding by snow |
241 |
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
242 |
|
243 |
C The mean ice thickness increments due to atmospheric fluxes over the open |
244 |
C water fraction and ice-covered fractions of the grid cell, respectively |
245 |
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
246 |
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
247 |
|
248 |
_RL d_HSNWbyNEG (1:sNx,1:sNy) |
249 |
_RL d_HSNWbyATMonSNW (1:sNx,1:sNy) |
250 |
_RL d_HSNWbyOCNonSNW (1:sNx,1:sNy) |
251 |
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
252 |
|
253 |
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
254 |
|
255 |
C a_FWbySublim :: fresh water flux implied by latent heat of |
256 |
C sublimation to atmosphere, same sign convention |
257 |
C as EVAP (positive upward) |
258 |
_RL a_FWbySublim (1:sNx,1:sNy) |
259 |
_RL r_FWbySublim (1:sNx,1:sNy) |
260 |
_RL d_HEFFbySublim (1:sNx,1:sNy) |
261 |
_RL d_HSNWbySublim (1:sNx,1:sNy) |
262 |
|
263 |
#ifdef SEAICE_CAP_SUBLIM |
264 |
C The latent heat flux which will sublimate all snow and ice |
265 |
C over one time step |
266 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
267 |
_RL latentHeatFluxMaxMult(1:sNx,1:sNy,MULTDIM) |
268 |
#endif |
269 |
|
270 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
271 |
C ICE/SNOW stocks tendency associated with relaxation towards observation |
272 |
_RL d_AREAbyRLX (1:sNx,1:sNy) |
273 |
C The change of mean ice thickness due to relaxation |
274 |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
275 |
#endif |
276 |
|
277 |
#ifdef SEAICE_ITD |
278 |
_RL d_HEFFbySublim_ITD (1:sNx,1:sNy,1:nITD) |
279 |
_RL d_HSNWbySublim_ITD (1:sNx,1:sNy,1:nITD) |
280 |
_RL d_HEFFbyOCNonICE_ITD (1:sNx,1:sNy,1:nITD) |
281 |
_RL d_HSNWbyATMonSNW_ITD (1:sNx,1:sNy,1:nITD) |
282 |
_RL d_HEFFbyATMonOCN_ITD (1:sNx,1:sNy,1:nITD) |
283 |
_RL d_HEFFbyATMonOCN_cover_ITD (1:sNx,1:sNy,1:nITD) |
284 |
_RL d_HEFFbyATMonOCN_open_ITD (1:sNx,1:sNy,1:nITD) |
285 |
_RL d_HSNWbyRAIN_ITD (1:sNx,1:sNy,1:nITD) |
286 |
_RL d_HSNWbyOCNonSNW_ITD (1:sNx,1:sNy,1:nITD) |
287 |
_RL d_HEFFbyFLOODING_ITD (1:sNx,1:sNy,1:nITD) |
288 |
#endif |
289 |
|
290 |
#ifdef ALLOW_DIAGNOSTICS |
291 |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
292 |
_RL d_AREAbyATM (1:sNx,1:sNy) |
293 |
_RL d_AREAbyOCN (1:sNx,1:sNy) |
294 |
_RL d_AREAbyICE (1:sNx,1:sNy) |
295 |
C Helper variables for diagnostics |
296 |
_RL DIAGarrayA (1:sNx,1:sNy) |
297 |
_RL DIAGarrayB (1:sNx,1:sNy) |
298 |
_RL DIAGarrayC (1:sNx,1:sNy) |
299 |
_RL DIAGarrayD (1:sNx,1:sNy) |
300 |
#endif /* ALLOW_DIAGNOSTICS */ |
301 |
|
302 |
_RL SItflux (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
303 |
_RL SIatmQnt (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
304 |
_RL SIatmFW (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
305 |
#ifdef ALLOW_BALANCE_FLUXES |
306 |
_RL FWFsiTile(nSx,nSy) |
307 |
_RL FWFsiGlob |
308 |
_RL HFsiTile(nSx,nSy) |
309 |
_RL HFsiGlob |
310 |
_RL FWF2HFsiTile(nSx,nSy) |
311 |
_RL FWF2HFsiGlob |
312 |
#endif |
313 |
|
314 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
315 |
|
316 |
C =================================================================== |
317 |
C =================PART 0: constants and initializations============= |
318 |
C =================================================================== |
319 |
|
320 |
IF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN |
321 |
kSurface = Nr |
322 |
ELSE |
323 |
kSurface = 1 |
324 |
ENDIF |
325 |
|
326 |
C avoid unnecessary divisions in loops |
327 |
c#ifdef SEAICE_ITD |
328 |
CToM this is now set by MULTDIM = nITD in SEAICE_SIZE.h |
329 |
C (see SEAICE_SIZE.h and seaice_readparms.F) |
330 |
c SEAICE_multDim = nITD |
331 |
c#endif |
332 |
recip_multDim = SEAICE_multDim |
333 |
recip_multDim = ONE / recip_multDim |
334 |
C above/below: double/single precision calculation of recip_multDim |
335 |
c recip_multDim = 1./float(SEAICE_multDim) |
336 |
recip_deltaTtherm = ONE / SEAICE_deltaTtherm |
337 |
recip_rhoIce = ONE / SEAICE_rhoIce |
338 |
|
339 |
C Cutoff for iceload |
340 |
heffTooHeavy=drF(kSurface) / 5. _d 0 |
341 |
|
342 |
C RATIO OF SEA ICE DENSITY to SNOW DENSITY |
343 |
ICE2SNOW = SEAICE_rhoIce/SEAICE_rhoSnow |
344 |
SNOW2ICE = ONE / ICE2SNOW |
345 |
|
346 |
C HEAT OF FUSION OF ICE (J/m^3) |
347 |
QI = SEAICE_rhoIce*SEAICE_lhFusion |
348 |
recip_QI = ONE / QI |
349 |
C HEAT OF FUSION OF SNOW (J/m^3) |
350 |
QS = SEAICE_rhoSnow*SEAICE_lhFusion |
351 |
|
352 |
C ICE LATENT HEAT CONSTANT |
353 |
lhSublim = SEAICE_lhEvap + SEAICE_lhFusion |
354 |
|
355 |
C regularization constants |
356 |
area_reg_sq = SEAICE_area_reg * SEAICE_area_reg |
357 |
hice_reg_sq = SEAICE_hice_reg * SEAICE_hice_reg |
358 |
|
359 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
360 |
convertQ2HI=SEAICE_deltaTtherm/QI |
361 |
convertHI2Q = ONE/convertQ2HI |
362 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
363 |
convertPRECIP2HI=SEAICE_deltaTtherm*rhoConstFresh/SEAICE_rhoIce |
364 |
convertHI2PRECIP = ONE/convertPRECIP2HI |
365 |
#ifdef SEAICE_ITD |
366 |
c constants for lateral melt parameterization: |
367 |
c following Steele (1992), Equ. 2 |
368 |
floeAlpha = 0.66 _d 0 |
369 |
c typical mean diameter used in CICE 4.1: |
370 |
c (this is currently computed as a function of ice concentration |
371 |
c following a suggestion by Luepkes at al. (2012)) |
372 |
c floeDiameter = 300. _d 0 |
373 |
c parameters needed for variable floe diameter following Luepkes et al. (2012): |
374 |
floeDiameterMin = 8. _d 0 |
375 |
floeDiameterMax = 300. _d 0 |
376 |
#endif |
377 |
#ifdef SEAICE_DEBUG |
378 |
i_dbOut = 1 |
379 |
j_dbOut = 1 |
380 |
#endif |
381 |
|
382 |
DO bj=myByLo(myThid),myByHi(myThid) |
383 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
384 |
|
385 |
#ifdef ALLOW_AUTODIFF_TAMC |
386 |
act1 = bi - myBxLo(myThid) |
387 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
388 |
act2 = bj - myByLo(myThid) |
389 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
390 |
act3 = myThid - 1 |
391 |
max3 = nTx*nTy |
392 |
act4 = ikey_dynamics - 1 |
393 |
iicekey = (act1 + 1) + act2*max1 |
394 |
& + act3*max1*max2 |
395 |
& + act4*max1*max2*max3 |
396 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
397 |
|
398 |
C array initializations |
399 |
C ===================== |
400 |
|
401 |
DO J=1,sNy |
402 |
DO I=1,sNx |
403 |
a_QbyATM_cover (I,J) = 0.0 _d 0 |
404 |
a_QbyATM_open(I,J) = 0.0 _d 0 |
405 |
r_QbyATM_cover (I,J) = 0.0 _d 0 |
406 |
r_QbyATM_open (I,J) = 0.0 _d 0 |
407 |
|
408 |
a_QSWbyATM_open (I,J) = 0.0 _d 0 |
409 |
a_QSWbyATM_cover (I,J) = 0.0 _d 0 |
410 |
|
411 |
a_QbyOCN (I,J) = 0.0 _d 0 |
412 |
r_QbyOCN (I,J) = 0.0 _d 0 |
413 |
|
414 |
#ifdef ALLOW_DIAGNOSTICS |
415 |
d_AREAbyATM(I,J) = 0.0 _d 0 |
416 |
d_AREAbyICE(I,J) = 0.0 _d 0 |
417 |
d_AREAbyOCN(I,J) = 0.0 _d 0 |
418 |
#endif |
419 |
|
420 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
421 |
d_AREAbyRLX(I,J) = 0.0 _d 0 |
422 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
423 |
#endif |
424 |
|
425 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
426 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
427 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
428 |
d_HEFFbyFLOODING(I,J) = 0.0 _d 0 |
429 |
|
430 |
d_HEFFbyATMonOCN_open(I,J) = 0.0 _d 0 |
431 |
d_HEFFbyATMonOCN_cover(I,J) = 0.0 _d 0 |
432 |
|
433 |
d_HSNWbyNEG(I,J) = 0.0 _d 0 |
434 |
d_HSNWbyATMonSNW(I,J) = 0.0 _d 0 |
435 |
d_HSNWbyOCNonSNW(I,J) = 0.0 _d 0 |
436 |
d_HSNWbyRAIN(I,J) = 0.0 _d 0 |
437 |
a_FWbySublim(I,J) = 0.0 _d 0 |
438 |
r_FWbySublim(I,J) = 0.0 _d 0 |
439 |
d_HEFFbySublim(I,J) = 0.0 _d 0 |
440 |
d_HSNWbySublim(I,J) = 0.0 _d 0 |
441 |
#ifdef SEAICE_CAP_SUBLIM |
442 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
443 |
#endif |
444 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
445 |
tmparr1(I,J) = 0.0 _d 0 |
446 |
#ifdef SEAICE_VARIABLE_SALINITY |
447 |
saltFluxAdjust(I,J) = 0.0 _d 0 |
448 |
#endif |
449 |
DO IT=1,SEAICE_multDim |
450 |
ticeInMult(I,J,IT) = 0.0 _d 0 |
451 |
ticeOutMult(I,J,IT) = 0.0 _d 0 |
452 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
453 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
454 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
455 |
#ifdef SEAICE_CAP_SUBLIM |
456 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
457 |
#endif |
458 |
#ifdef SEAICE_ITD |
459 |
d_HEFFbySublim_ITD(I,J,IT) = 0.0 _d 0 |
460 |
d_HSNWbySublim_ITD(I,J,IT) = 0.0 _d 0 |
461 |
d_HEFFbyOCNonICE_ITD(I,J,IT) = 0.0 _d 0 |
462 |
d_HSNWbyATMonSNW_ITD(I,J,IT) = 0.0 _d 0 |
463 |
d_HEFFbyATMonOCN_ITD(I,J,IT) = 0.0 _d 0 |
464 |
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = 0.0 _d 0 |
465 |
d_HEFFbyATMonOCN_open_ITD(I,J,IT) = 0.0 _d 0 |
466 |
d_HSNWbyRAIN_ITD(I,J,IT) = 0.0 _d 0 |
467 |
d_HSNWbyOCNonSNW_ITD(I,J,IT) = 0.0 _d 0 |
468 |
d_HEFFbyFLOODING_ITD(I,J,IT) = 0.0 _d 0 |
469 |
r_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
470 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
471 |
c for lateral melt parameterization: |
472 |
latMeltFrac(I,J,IT) = 0.0 _d 0 |
473 |
latMeltRate(I,J,IT) = 0.0 _d 0 |
474 |
#endif |
475 |
ENDDO |
476 |
ENDDO |
477 |
ENDDO |
478 |
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
479 |
DO J=1-oLy,sNy+oLy |
480 |
DO I=1-oLx,sNx+oLx |
481 |
frWtrAtm(I,J,bi,bj) = 0.0 _d 0 |
482 |
ENDDO |
483 |
ENDDO |
484 |
#endif |
485 |
|
486 |
C ===================================================================== |
487 |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
488 |
C ===================================================================== |
489 |
|
490 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
491 |
Cgf no dependency through pathological cases treatment |
492 |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
493 |
#endif |
494 |
|
495 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
496 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
497 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
498 |
C 0) relax sea ice concentration towards observation |
499 |
IF (SEAICE_tauAreaObsRelax .GT. 0.) THEN |
500 |
DO J=1,sNy |
501 |
DO I=1,sNx |
502 |
C d_AREAbyRLX(i,j) = 0. _d 0 |
503 |
C d_HEFFbyRLX(i,j) = 0. _d 0 |
504 |
IF ( obsSIce(I,J,bi,bj).GT.AREA(I,J,bi,bj)) THEN |
505 |
d_AREAbyRLX(i,j) = |
506 |
& SEAICE_deltaTtherm/SEAICE_tauAreaObsRelax |
507 |
& * (obsSIce(I,J,bi,bj) - AREA(I,J,bi,bj)) |
508 |
ENDIF |
509 |
IF ( obsSIce(I,J,bi,bj).GT.0. _d 0 .AND. |
510 |
& AREA(I,J,bi,bj).EQ.0. _d 0) THEN |
511 |
C d_HEFFbyRLX(i,j) = 1. _d 1 * siEps * d_AREAbyRLX(i,j) |
512 |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
513 |
ENDIF |
514 |
#ifdef SEAICE_ITD |
515 |
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
516 |
& + d_AREAbyRLX(i,j) |
517 |
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
518 |
& + d_HEFFbyRLX(i,j) |
519 |
#endif |
520 |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj) + d_AREAbyRLX(i,j) |
521 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + d_HEFFbyRLX(i,j) |
522 |
ENDDO |
523 |
ENDDO |
524 |
ENDIF |
525 |
#endif /* EXF_ALLOW_SEAICE_RELAX */ |
526 |
|
527 |
C 1) treat the case of negative values: |
528 |
|
529 |
#ifdef ALLOW_AUTODIFF_TAMC |
530 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
531 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
532 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
533 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
534 |
#ifdef SEAICE_ITD |
535 |
DO IT=1,nITD |
536 |
#endif |
537 |
DO J=1,sNy |
538 |
DO I=1,sNx |
539 |
#ifdef SEAICE_ITD |
540 |
tmpscal2=0. _d 0 |
541 |
tmpscal3=0. _d 0 |
542 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
543 |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
544 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
545 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
546 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
547 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
548 |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
549 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
550 |
C by calling SEAICE_ITD_SUM |
551 |
#else |
552 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
553 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
554 |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
555 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
556 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
557 |
#endif |
558 |
ENDDO |
559 |
ENDDO |
560 |
#ifdef SEAICE_ITD |
561 |
ENDDO |
562 |
#endif |
563 |
|
564 |
C 1.25) treat the case of very thin ice: |
565 |
|
566 |
#ifdef ALLOW_AUTODIFF_TAMC |
567 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
568 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
569 |
#ifdef SEAICE_ITD |
570 |
DO IT=1,nITD |
571 |
#endif |
572 |
DO J=1,sNy |
573 |
DO I=1,sNx |
574 |
tmpscal2=0. _d 0 |
575 |
tmpscal3=0. _d 0 |
576 |
#ifdef SEAICE_ITD |
577 |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
578 |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
579 |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
580 |
TICES(I,J,IT,bi,bj)=celsius2K |
581 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
582 |
ENDIF |
583 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
584 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
585 |
#else |
586 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
587 |
tmpscal2=-HEFF(I,J,bi,bj) |
588 |
tmpscal3=-HSNOW(I,J,bi,bj) |
589 |
TICE(I,J,bi,bj)=celsius2K |
590 |
DO IT=1,SEAICE_multDim |
591 |
TICES(I,J,IT,bi,bj)=celsius2K |
592 |
ENDDO |
593 |
ENDIF |
594 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+tmpscal2 |
595 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
596 |
#endif |
597 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
598 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
599 |
ENDDO |
600 |
ENDDO |
601 |
#ifdef SEAICE_ITD |
602 |
ENDDO |
603 |
#endif |
604 |
|
605 |
C 1.5) treat the case of area but no ice/snow: |
606 |
|
607 |
#ifdef ALLOW_AUTODIFF_TAMC |
608 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
609 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
610 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
611 |
#ifdef SEAICE_ITD |
612 |
DO IT=1,nITD |
613 |
#endif |
614 |
DO J=1,sNy |
615 |
DO I=1,sNx |
616 |
#ifdef SEAICE_ITD |
617 |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
618 |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
619 |
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
620 |
#else |
621 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
622 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
623 |
#endif |
624 |
ENDDO |
625 |
ENDDO |
626 |
#ifdef SEAICE_ITD |
627 |
ENDDO |
628 |
#endif |
629 |
|
630 |
C 2) treat the case of very small area: |
631 |
|
632 |
#ifndef DISABLE_AREA_FLOOR |
633 |
#ifdef ALLOW_AUTODIFF_TAMC |
634 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
635 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
636 |
#ifdef SEAICE_ITD |
637 |
DO IT=1,nITD |
638 |
#endif |
639 |
DO J=1,sNy |
640 |
DO I=1,sNx |
641 |
#ifdef SEAICE_ITD |
642 |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
643 |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
644 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
645 |
C hence use SEAICE_area_floor devided by nITD |
646 |
C (or install a warning in e.g. seaice_readparms.F) |
647 |
AREAITD(I,J,IT,bi,bj)= |
648 |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
649 |
ENDIF |
650 |
#else |
651 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
652 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
653 |
ENDIF |
654 |
#endif |
655 |
ENDDO |
656 |
ENDDO |
657 |
#ifdef SEAICE_ITD |
658 |
ENDDO |
659 |
#endif |
660 |
#endif /* DISABLE_AREA_FLOOR */ |
661 |
|
662 |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
663 |
|
664 |
CToM for SEAICE_ITD this case is treated in SEAICE_ITD_REDIST, |
665 |
C which is called at end of PART 1 below |
666 |
#ifndef SEAICE_ITD |
667 |
#ifdef ALLOW_AUTODIFF_TAMC |
668 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
669 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
670 |
DO J=1,sNy |
671 |
DO I=1,sNx |
672 |
#ifdef ALLOW_DIAGNOSTICS |
673 |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
674 |
#endif |
675 |
#ifdef ALLOW_SITRACER |
676 |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
677 |
#endif |
678 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
679 |
ENDDO |
680 |
ENDDO |
681 |
#endif /* notSEAICE_ITD */ |
682 |
|
683 |
#ifdef SEAICE_ITD |
684 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
685 |
DO IT=1,nITD |
686 |
DO J=1,sNy |
687 |
DO I=1,sNx |
688 |
C TICES was changed above (item 1.25), now update TICE as ice volume |
689 |
C weighted average of TICES |
690 |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
691 |
IF (IT .eq. 1) THEN |
692 |
tmpscal1itd(i,j) = 0. _d 0 |
693 |
tmpscal2itd(i,j) = 0. _d 0 |
694 |
tmpscal3itd(i,j) = 0. _d 0 |
695 |
ENDIF |
696 |
tmpscal1itd(i,j)=tmpscal1itd(i,j) + TICES(I,J,IT,bi,bj) |
697 |
& * HEFFITD(I,J,IT,bi,bj) |
698 |
tmpscal2itd(i,j)=tmpscal2itd(i,j) + HEFFITD(I,J,IT,bi,bj) |
699 |
tmpscal3itd(i,j)=tmpscal3itd(i,j) + AREAITD(I,J,IT,bi,bj) |
700 |
IF (IT .eq. nITD) THEN |
701 |
TICE(I,J,bi,bj)=tmpscal1itd(i,j)/tmpscal2itd(i,j) |
702 |
C lines of item 2.5 that were omitted: |
703 |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
704 |
C hence we execute them here before SEAICE_ITD_REDIST is called |
705 |
C although this means that AREA has not been completely regularized |
706 |
#ifdef ALLOW_DIAGNOSTICS |
707 |
DIAGarrayA(I,J) = tmpscal3itd(i,j) |
708 |
#endif |
709 |
#ifdef ALLOW_SITRACER |
710 |
SItrAREA(I,J,bi,bj,1)=tmpscal3itd(i,j) |
711 |
#endif |
712 |
ENDIF |
713 |
ENDDO |
714 |
ENDDO |
715 |
ENDDO |
716 |
|
717 |
CToM finally make sure that all categories meet their thickness limits |
718 |
C which includes ridging as in item 2.5 |
719 |
C and update AREA, HEFF, and HSNOW |
720 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
721 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
722 |
#endif /* SEAICE_ITD */ |
723 |
|
724 |
#ifdef SEAICE_DEBUG |
725 |
#ifdef SEAICE_ITD |
726 |
WRITE(msgBufForm,'(A,I2,A)') '(A,',nITD,'F14.10)' |
727 |
#else |
728 |
WRITE(msgBufForm,'(A,A)') '(A, F14.10)' |
729 |
#endif |
730 |
WRITE(msgBuf,msgBufForm) |
731 |
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
732 |
#ifdef SEAICE_ITD |
733 |
& HEFFITD(i_dbOut,j_dbOut,:,bi,bj) |
734 |
#else |
735 |
& HEFF(i_dbOut,j_dbOut,bi,bj) |
736 |
#endif |
737 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
738 |
& SQUEEZE_RIGHT , myThid) |
739 |
WRITE(msgBuf,msgBufForm) |
740 |
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
741 |
#ifdef SEAICE_ITD |
742 |
& AREAITD(i_dbOut,j_dbOut,:,bi,bj) |
743 |
#else |
744 |
& AREA(i_dbOut,j_dbOut,bi,bj) |
745 |
#endif |
746 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
747 |
& SQUEEZE_RIGHT , myThid) |
748 |
#endif /* SEAICE_DEBUG */ |
749 |
|
750 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
751 |
C end SEAICEadjMODE.EQ.0 statement: |
752 |
ENDIF |
753 |
#endif |
754 |
|
755 |
C 3) store regularized values of heff, hsnow, area at the onset of thermo. |
756 |
DO J=1,sNy |
757 |
DO I=1,sNx |
758 |
HEFFpreTH(I,J)=HEFF(I,J,bi,bj) |
759 |
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
760 |
AREApreTH(I,J)=AREA(I,J,bi,bj) |
761 |
#ifdef ALLOW_DIAGNOSTICS |
762 |
DIAGarrayB(I,J) = AREA(I,J,bi,bj) |
763 |
DIAGarrayC(I,J) = HEFF(I,J,bi,bj) |
764 |
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
765 |
#endif |
766 |
#ifdef ALLOW_SITRACER |
767 |
SItrHEFF(I,J,bi,bj,1)=HEFF(I,J,bi,bj) |
768 |
SItrAREA(I,J,bi,bj,2)=AREA(I,J,bi,bj) |
769 |
#endif |
770 |
ENDDO |
771 |
ENDDO |
772 |
#ifdef SEAICE_ITD |
773 |
DO IT=1,nITD |
774 |
DO J=1,sNy |
775 |
DO I=1,sNx |
776 |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
777 |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
778 |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
779 |
|
780 |
C memorize areal and volume fraction of each ITD category |
781 |
IF (AREA(I,J,bi,bj) .GT. ZERO) THEN |
782 |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
783 |
ELSE |
784 |
C if there is no ice, potential growth starts in 1st category |
785 |
IF (IT .EQ. 1) THEN |
786 |
areaFracFactor(I,J,IT)=ONE |
787 |
ELSE |
788 |
areaFracFactor(I,J,IT)=ZERO |
789 |
ENDIF |
790 |
ENDIF |
791 |
ENDDO |
792 |
ENDDO |
793 |
ENDDO |
794 |
#ifdef ALLOW_SITRACER |
795 |
C prepare SItrHEFF to be computed as cumulative sum |
796 |
DO iTr=2,5 |
797 |
DO J=1,sNy |
798 |
DO I=1,sNx |
799 |
SItrHEFF(I,J,bi,bj,iTr)=ZERO |
800 |
ENDDO |
801 |
ENDDO |
802 |
ENDDO |
803 |
C prepare SItrAREA to be computed as cumulative sum |
804 |
DO J=1,sNy |
805 |
DO I=1,sNx |
806 |
SItrAREA(I,J,bi,bj,3)=ZERO |
807 |
ENDDO |
808 |
ENDDO |
809 |
#endif |
810 |
#endif /* SEAICE_ITD */ |
811 |
|
812 |
C 4) treat sea ice salinity pathological cases |
813 |
#ifdef SEAICE_VARIABLE_SALINITY |
814 |
#ifdef ALLOW_AUTODIFF_TAMC |
815 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
816 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
817 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
818 |
DO J=1,sNy |
819 |
DO I=1,sNx |
820 |
IF ( (HSALT(I,J,bi,bj) .LT. 0.0).OR. |
821 |
& (HEFF(I,J,bi,bj) .EQ. 0.0) ) THEN |
822 |
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
823 |
& HSALT(I,J,bi,bj) * recip_deltaTtherm |
824 |
HSALT(I,J,bi,bj) = 0.0 _d 0 |
825 |
ENDIF |
826 |
ENDDO |
827 |
ENDDO |
828 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
829 |
|
830 |
#ifdef ALLOW_DIAGNOSTICS |
831 |
IF ( useDiagnostics ) THEN |
832 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIareaPR',0,1,3,bi,bj,myThid) |
833 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIareaPT',0,1,3,bi,bj,myThid) |
834 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIheffPT',0,1,3,bi,bj,myThid) |
835 |
CALL DIAGNOSTICS_FILL(DIAGarrayD,'SIhsnoPT',0,1,3,bi,bj,myThid) |
836 |
#ifdef ALLOW_SITRACER |
837 |
DO iTr = 1, SItrNumInUse |
838 |
WRITE(diagName,'(A4,I2.2,A2)') 'SItr',iTr,'PT' |
839 |
IF (SItrMate(iTr).EQ.'HEFF') THEN |
840 |
CALL DIAGNOSTICS_FRACT_FILL( |
841 |
I SItracer(1-OLx,1-OLy,bi,bj,iTr),HEFF(1-OLx,1-OLy,bi,bj), |
842 |
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
843 |
ELSE |
844 |
CALL DIAGNOSTICS_FRACT_FILL( |
845 |
I SItracer(1-OLx,1-OLy,bi,bj,iTr),AREA(1-OLx,1-OLy,bi,bj), |
846 |
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
847 |
ENDIF |
848 |
ENDDO |
849 |
#endif /* ALLOW_SITRACER */ |
850 |
ENDIF |
851 |
#endif /* ALLOW_DIAGNOSTICS */ |
852 |
|
853 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
854 |
Cgf no additional dependency of air-sea fluxes to ice |
855 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
856 |
DO J=1,sNy |
857 |
DO I=1,sNx |
858 |
HEFFpreTH(I,J) = 0. _d 0 |
859 |
HSNWpreTH(I,J) = 0. _d 0 |
860 |
AREApreTH(I,J) = 0. _d 0 |
861 |
ENDDO |
862 |
ENDDO |
863 |
#ifdef SEAICE_ITD |
864 |
DO IT=1,nITD |
865 |
DO J=1,sNy |
866 |
DO I=1,sNx |
867 |
HEFFITDpreTH(I,J,IT) = 0. _d 0 |
868 |
HSNWITDpreTH(I,J,IT) = 0. _d 0 |
869 |
AREAITDpreTH(I,J,IT) = 0. _d 0 |
870 |
ENDDO |
871 |
ENDDO |
872 |
ENDDO |
873 |
#endif |
874 |
ENDIF |
875 |
#endif |
876 |
|
877 |
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
878 |
DO J=1,sNy |
879 |
DO I=1,sNx |
880 |
AREAforAtmFW(I,J,bi,bj) = AREApreTH(I,J) |
881 |
ENDDO |
882 |
ENDDO |
883 |
#endif |
884 |
|
885 |
C 4) COMPUTE ACTUAL ICE/SNOW THICKNESS; USE MIN/MAX VALUES |
886 |
C TO REGULARIZE SEAICE_SOLVE4TEMP/d_AREA COMPUTATIONS |
887 |
|
888 |
#ifdef ALLOW_AUTODIFF_TAMC |
889 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
890 |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
891 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
892 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
893 |
#ifdef SEAICE_ITD |
894 |
DO IT=1,nITD |
895 |
#endif |
896 |
DO J=1,sNy |
897 |
DO I=1,sNx |
898 |
|
899 |
#ifdef SEAICE_ITD |
900 |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
901 |
cif regularize AREA with SEAICE_area_reg |
902 |
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
903 |
& + area_reg_sq) |
904 |
cif heffActual calculated with the regularized AREA |
905 |
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
906 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
907 |
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
908 |
& + hice_reg_sq) |
909 |
cif hsnowActual calculated with the regularized AREA |
910 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
911 |
cif regularize the inverse of heffActual by hice_reg |
912 |
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
913 |
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
914 |
& + hice_reg_sq) |
915 |
cif Do not regularize when HEFFpreTH = 0 |
916 |
ELSE |
917 |
heffActualMult(I,J,IT) = ZERO |
918 |
hsnowActualMult(I,J,IT) = ZERO |
919 |
recip_heffActualMult(I,J,IT) = ZERO |
920 |
ENDIF |
921 |
#else /* SEAICE_ITD */ |
922 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
923 |
Cif regularize AREA with SEAICE_area_reg |
924 |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
925 |
Cif heffActual calculated with the regularized AREA |
926 |
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
927 |
Cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
928 |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
929 |
Cif hsnowActual calculated with the regularized AREA |
930 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
931 |
Cif regularize the inverse of heffActual by hice_reg |
932 |
recip_heffActual(I,J) = AREApreTH(I,J) / |
933 |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
934 |
Cif Do not regularize when HEFFpreTH = 0 |
935 |
ELSE |
936 |
heffActual(I,J) = ZERO |
937 |
hsnowActual(I,J) = ZERO |
938 |
recip_heffActual(I,J) = ZERO |
939 |
ENDIF |
940 |
#endif /* SEAICE_ITD */ |
941 |
|
942 |
ENDDO |
943 |
ENDDO |
944 |
#ifdef SEAICE_ITD |
945 |
ENDDO |
946 |
#endif |
947 |
|
948 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
949 |
CALL ZERO_ADJ_1D( sNx*sNy, heffActual, myThid) |
950 |
CALL ZERO_ADJ_1D( sNx*sNy, hsnowActual, myThid) |
951 |
CALL ZERO_ADJ_1D( sNx*sNy, recip_heffActual, myThid) |
952 |
#endif |
953 |
|
954 |
#ifdef SEAICE_CAP_SUBLIM |
955 |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
956 |
C AND SNOW THICKNESS |
957 |
#ifdef SEAICE_ITD |
958 |
DO IT=1,nITD |
959 |
#endif |
960 |
DO J=1,sNy |
961 |
DO I=1,sNx |
962 |
C The latent heat flux over the sea ice which |
963 |
C will sublimate all of the snow and ice over one time |
964 |
C step (W/m^2) |
965 |
#ifdef SEAICE_ITD |
966 |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
967 |
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
968 |
& (HEFFITDpreTH(I,J,IT)*SEAICE_rhoIce + |
969 |
& HSNWITDpreTH(I,J,IT)*SEAICE_rhoSnow) |
970 |
& /AREAITDpreTH(I,J,IT) |
971 |
ELSE |
972 |
latentHeatFluxMaxMult(I,J,IT) = ZERO |
973 |
ENDIF |
974 |
#else |
975 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
976 |
latentHeatFluxMax(I,J) = lhSublim * recip_deltaTtherm * |
977 |
& (HEFFpreTH(I,J) * SEAICE_rhoIce + |
978 |
& HSNWpreTH(I,J) * SEAICE_rhoSnow)/AREApreTH(I,J) |
979 |
ELSE |
980 |
latentHeatFluxMax(I,J) = ZERO |
981 |
ENDIF |
982 |
#endif |
983 |
ENDDO |
984 |
ENDDO |
985 |
#ifdef SEAICE_ITD |
986 |
ENDDO |
987 |
#endif |
988 |
#endif /* SEAICE_CAP_SUBLIM */ |
989 |
|
990 |
C =================================================================== |
991 |
C ================PART 2: determine heat fluxes/stocks=============== |
992 |
C =================================================================== |
993 |
|
994 |
C determine available heat due to the atmosphere -- for open water |
995 |
C ================================================================ |
996 |
|
997 |
DO j=1,sNy |
998 |
DO i=1,sNx |
999 |
C ocean surface/mixed layer temperature |
1000 |
TmixLoc(i,j) = theta(i,j,kSurface,bi,bj)+celsius2K |
1001 |
C wind speed from exf |
1002 |
UG(I,J) = MAX(SEAICE_EPS,wspeed(I,J,bi,bj)) |
1003 |
ENDDO |
1004 |
ENDDO |
1005 |
|
1006 |
#ifdef ALLOW_AUTODIFF_TAMC |
1007 |
CADJ STORE qnet(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
1008 |
CADJ STORE qsw(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
1009 |
cCADJ STORE UG = comlev1_bibj, key = iicekey,byte=isbyte |
1010 |
cCADJ STORE TmixLoc = comlev1_bibj, key = iicekey,byte=isbyte |
1011 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1012 |
|
1013 |
CALL SEAICE_BUDGET_OCEAN( |
1014 |
I UG, |
1015 |
I TmixLoc, |
1016 |
O a_QbyATM_open, a_QSWbyATM_open, |
1017 |
I bi, bj, myTime, myIter, myThid ) |
1018 |
|
1019 |
C determine available heat due to the atmosphere -- for ice covered water |
1020 |
C ======================================================================= |
1021 |
|
1022 |
IF (useRelativeWind.AND.useAtmWind) THEN |
1023 |
C Compute relative wind speed over sea ice. |
1024 |
DO J=1,sNy |
1025 |
DO I=1,sNx |
1026 |
SPEED_SQ = |
1027 |
& (uWind(I,J,bi,bj) |
1028 |
& +0.5 _d 0*(uVel(i,j,kSurface,bi,bj) |
1029 |
& +uVel(i+1,j,kSurface,bi,bj)) |
1030 |
& -0.5 _d 0*(uice(i,j,bi,bj)+uice(i+1,j,bi,bj)))**2 |
1031 |
& +(vWind(I,J,bi,bj) |
1032 |
& +0.5 _d 0*(vVel(i,j,kSurface,bi,bj) |
1033 |
& +vVel(i,j+1,kSurface,bi,bj)) |
1034 |
& -0.5 _d 0*(vice(i,j,bi,bj)+vice(i,j+1,bi,bj)))**2 |
1035 |
IF ( SPEED_SQ .LE. SEAICE_EPS_SQ ) THEN |
1036 |
UG(I,J)=SEAICE_EPS |
1037 |
ELSE |
1038 |
UG(I,J)=SQRT(SPEED_SQ) |
1039 |
ENDIF |
1040 |
ENDDO |
1041 |
ENDDO |
1042 |
ENDIF |
1043 |
|
1044 |
#ifdef ALLOW_AUTODIFF_TAMC |
1045 |
CADJ STORE tice(:,:,bi,bj) |
1046 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1047 |
CADJ STORE hsnowActual = comlev1_bibj, key = iicekey, byte = isbyte |
1048 |
CADJ STORE heffActual = comlev1_bibj, key = iicekey, byte = isbyte |
1049 |
CADJ STORE UG = comlev1_bibj, key = iicekey, byte = isbyte |
1050 |
CADJ STORE tices(:,:,:,bi,bj) |
1051 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1052 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1053 |
CADJ & key = iicekey, byte = isbyte |
1054 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1055 |
|
1056 |
C-- Start loop over multi-categories |
1057 |
#ifdef SEAICE_ITD |
1058 |
DO IT=1,nITD |
1059 |
DO J=1,sNy |
1060 |
DO I=1,sNx |
1061 |
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
1062 |
C (instead of heffActual and latentHeatFluxMax) |
1063 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1064 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1065 |
TICE(I,J,bi,bj) = ZERO |
1066 |
TICES(I,J,IT,bi,bj) = ZERO |
1067 |
ENDDO |
1068 |
ENDDO |
1069 |
ENDDO |
1070 |
#else |
1071 |
DO IT=1,SEAICE_multDim |
1072 |
C homogeneous distribution between 0 and 2 x heffActual |
1073 |
pFac = (2.0 _d 0*IT - 1.0 _d 0)*recip_multDim |
1074 |
pFacSnow = 1. _d 0 |
1075 |
IF ( SEAICE_useMultDimSnow ) pFacSnow=pFac |
1076 |
DO J=1,sNy |
1077 |
DO I=1,sNx |
1078 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
1079 |
hsnowActualMult(I,J,IT)=hsnowActual(I,J)*pFacSnow |
1080 |
#ifdef SEAICE_CAP_SUBLIM |
1081 |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
1082 |
#endif |
1083 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1084 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1085 |
TICE(I,J,bi,bj) = ZERO |
1086 |
TICES(I,J,IT,bi,bj) = ZERO |
1087 |
ENDDO |
1088 |
ENDDO |
1089 |
ENDDO |
1090 |
#endif |
1091 |
|
1092 |
#ifdef ALLOW_AUTODIFF_TAMC |
1093 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1094 |
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1095 |
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
1096 |
# ifdef SEAICE_CAP_SUBLIM |
1097 |
CADJ STORE latentHeatFluxMaxMult |
1098 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1099 |
# endif |
1100 |
CADJ STORE a_QbyATMmult_cover = |
1101 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1102 |
CADJ STORE a_QSWbyATMmult_cover = |
1103 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1104 |
CADJ STORE a_FWbySublimMult = |
1105 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1106 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1107 |
|
1108 |
DO IT=1,SEAICE_multDim |
1109 |
CALL SEAICE_SOLVE4TEMP( |
1110 |
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
1111 |
#ifdef SEAICE_CAP_SUBLIM |
1112 |
I latentHeatFluxMaxMult(1,1,IT), |
1113 |
#endif |
1114 |
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
1115 |
O a_QbyATMmult_cover(1,1,IT), |
1116 |
O a_QSWbyATMmult_cover(1,1,IT), |
1117 |
O a_FWbySublimMult(1,1,IT), |
1118 |
I bi, bj, myTime, myIter, myThid ) |
1119 |
ENDDO |
1120 |
|
1121 |
#ifdef ALLOW_AUTODIFF_TAMC |
1122 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1123 |
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1124 |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
1125 |
# ifdef SEAICE_CAP_SUBLIM |
1126 |
CADJ STORE latentHeatFluxMaxMult |
1127 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1128 |
# endif |
1129 |
CADJ STORE a_QbyATMmult_cover = |
1130 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1131 |
CADJ STORE a_QSWbyATMmult_cover = |
1132 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1133 |
CADJ STORE a_FWbySublimMult = |
1134 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1135 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1136 |
|
1137 |
DO IT=1,SEAICE_multDim |
1138 |
DO J=1,sNy |
1139 |
DO I=1,sNx |
1140 |
C update TICE & TICES |
1141 |
#ifdef SEAICE_ITD |
1142 |
C calculate area weighted mean |
1143 |
C (although the ice temperature relates to its energy content |
1144 |
C and hence should be averaged weighted by ice volume, |
1145 |
C the temperature here is a result of the fluxes through the ice surface |
1146 |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1147 |
C and hence is averaged area weighted [areaFracFactor]) |
1148 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1149 |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
1150 |
#else |
1151 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1152 |
& + ticeOutMult(I,J,IT)*recip_multDim |
1153 |
#endif |
1154 |
TICES(I,J,IT,bi,bj) = ticeOutMult(I,J,IT) |
1155 |
C average over categories |
1156 |
#ifdef SEAICE_ITD |
1157 |
C calculate area weighted mean |
1158 |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
1159 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1160 |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1161 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1162 |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1163 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1164 |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,IT) |
1165 |
#else |
1166 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1167 |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1168 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1169 |
& + a_QSWbyATMmult_cover(I,J,IT)*recip_multDim |
1170 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1171 |
& + a_FWbySublimMult(I,J,IT)*recip_multDim |
1172 |
#endif |
1173 |
ENDDO |
1174 |
ENDDO |
1175 |
ENDDO |
1176 |
|
1177 |
#ifdef SEAICE_CAP_SUBLIM |
1178 |
# ifdef ALLOW_DIAGNOSTICS |
1179 |
DO J=1,sNy |
1180 |
DO I=1,sNx |
1181 |
C The actual latent heat flux realized by SOLVE4TEMP |
1182 |
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
1183 |
ENDDO |
1184 |
ENDDO |
1185 |
Cif The actual vs. maximum latent heat flux |
1186 |
IF ( useDiagnostics ) THEN |
1187 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
1188 |
& 'SIactLHF',0,1,3,bi,bj,myThid) |
1189 |
CALL DIAGNOSTICS_FILL(latentHeatFluxMax, |
1190 |
& 'SImaxLHF',0,1,3,bi,bj,myThid) |
1191 |
ENDIF |
1192 |
# endif /* ALLOW_DIAGNOSTICS */ |
1193 |
#endif /* SEAICE_CAP_SUBLIM */ |
1194 |
|
1195 |
#ifdef ALLOW_AUTODIFF_TAMC |
1196 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1197 |
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1198 |
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
1199 |
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1200 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1201 |
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1202 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1203 |
|
1204 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
1205 |
#ifdef SEAICE_ITD |
1206 |
DO IT=1,nITD |
1207 |
DO J=1,sNy |
1208 |
DO I=1,sNx |
1209 |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1210 |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1211 |
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
1212 |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1213 |
C and initialize r_QbyATMmult_cover |
1214 |
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
1215 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1216 |
C Negative sublimation is resublimation and will be added as snow. |
1217 |
#ifdef SEAICE_DISABLE_SUBLIM |
1218 |
a_FWbySublimMult(I,J,IT) = ZERO |
1219 |
#endif |
1220 |
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
1221 |
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
1222 |
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
1223 |
ENDDO |
1224 |
ENDDO |
1225 |
ENDDO |
1226 |
DO J=1,sNy |
1227 |
DO I=1,sNx |
1228 |
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1229 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1230 |
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1231 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1232 |
C and initialize r_QbyATM_open |
1233 |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1234 |
ENDDO |
1235 |
ENDDO |
1236 |
#else /* SEAICE_ITD */ |
1237 |
DO J=1,sNy |
1238 |
DO I=1,sNx |
1239 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J) |
1240 |
& * convertQ2HI * AREApreTH(I,J) |
1241 |
a_QSWbyATM_cover(I,J) = a_QSWbyATM_cover(I,J) |
1242 |
& * convertQ2HI * AREApreTH(I,J) |
1243 |
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1244 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1245 |
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1246 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1247 |
C and initialize r_QbyATM_cover/r_QbyATM_open |
1248 |
r_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
1249 |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1250 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1251 |
C Negative sublimation is resublimation and will be added as snow. |
1252 |
#ifdef SEAICE_DISABLE_SUBLIM |
1253 |
Cgf just for those who may need to omit this term to reproduce old results |
1254 |
a_FWbySublim(I,J) = ZERO |
1255 |
#endif /* SEAICE_DISABLE_SUBLIM */ |
1256 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
1257 |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
1258 |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
1259 |
ENDDO |
1260 |
ENDDO |
1261 |
#endif /* SEAICE_ITD */ |
1262 |
|
1263 |
#ifdef ALLOW_AUTODIFF_TAMC |
1264 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1265 |
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1266 |
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
1267 |
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1268 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1269 |
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1270 |
CADJ STORE r_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1271 |
CADJ STORE r_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1272 |
CADJ STORE r_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1273 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1274 |
|
1275 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1276 |
Cgf no additional dependency through ice cover |
1277 |
IF ( SEAICEadjMODE.GE.3 ) THEN |
1278 |
#ifdef SEAICE_ITD |
1279 |
DO IT=1,nITD |
1280 |
DO J=1,sNy |
1281 |
DO I=1,sNx |
1282 |
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1283 |
r_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1284 |
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
1285 |
ENDDO |
1286 |
ENDDO |
1287 |
ENDDO |
1288 |
#else |
1289 |
DO J=1,sNy |
1290 |
DO I=1,sNx |
1291 |
a_QbyATM_cover(I,J) = 0. _d 0 |
1292 |
r_QbyATM_cover(I,J) = 0. _d 0 |
1293 |
a_QSWbyATM_cover(I,J) = 0. _d 0 |
1294 |
ENDDO |
1295 |
ENDDO |
1296 |
#endif |
1297 |
ENDIF |
1298 |
#endif |
1299 |
|
1300 |
C determine available heat due to the ice pack tying the |
1301 |
C underlying surface water temperature to freezing point |
1302 |
C ====================================================== |
1303 |
|
1304 |
#ifdef ALLOW_AUTODIFF_TAMC |
1305 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
1306 |
CADJ & key = iicekey, byte = isbyte |
1307 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1308 |
CADJ & key = iicekey, byte = isbyte |
1309 |
#endif |
1310 |
|
1311 |
DO J=1,sNy |
1312 |
DO I=1,sNx |
1313 |
C FREEZING TEMP. OF SEA WATER (deg C) |
1314 |
tempFrz = SEAICE_tempFrz0 + |
1315 |
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
1316 |
C efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
1317 |
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
1318 |
tmpscal1 = SEAICE_mcPheePiston |
1319 |
ELSE |
1320 |
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
1321 |
ENDIF |
1322 |
C efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
1323 |
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1324 |
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
1325 |
MixedLayerTurbulenceFactor = ONE - |
1326 |
& SEAICE_mcPheeTaper * AREApreTH(I,J) |
1327 |
ELSEIF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1328 |
& (SEAICE_mcPheeStepFunc) ) THEN |
1329 |
MixedLayerTurbulenceFactor = ONE - SEAICE_mcPheeTaper |
1330 |
ELSE |
1331 |
MixedLayerTurbulenceFactor = ONE |
1332 |
ENDIF |
1333 |
C maximum turbulent flux, in ice meters |
1334 |
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
1335 |
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
1336 |
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
1337 |
C available turbulent flux |
1338 |
a_QbyOCN(i,j) = |
1339 |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
1340 |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
1341 |
ENDDO |
1342 |
ENDDO |
1343 |
|
1344 |
#ifdef SEAICE_ITD |
1345 |
C determine lateral melt rate at floe edges based on an |
1346 |
C average floe diameter or a floe size distribution |
1347 |
C following Steele (1992, Tab. 2) |
1348 |
C ====================================================== |
1349 |
DO J=1,sNy |
1350 |
DO I=1,sNx |
1351 |
tmpscal1=(theta(I,J,kSurface,bi,bj)-tempFrz) |
1352 |
tmpscal2=sqrt(0.87 + 0.067*UG(i,j)) * UG(i,j) |
1353 |
c |
1354 |
c variable floe diameter following Luepkes et al. (2012, JGR, Equ. 26) with beta=1 |
1355 |
tmpscal3=ONE/(ONE-(floeDiameterMin/floeDiameterMax)) |
1356 |
floeDiameter = floeDiameterMin |
1357 |
& * (tmpscal3 / (tmpscal3-AREApreTH(I,J))) |
1358 |
DO IT=1,nITD |
1359 |
C following the idea of SEAICE_areaLossFormula == 1: |
1360 |
IF (a_QbyATMmult_cover(i,j,it).LT.ZERO .OR. |
1361 |
& a_QbyATM_open(i,j) .LT.ZERO .OR. |
1362 |
& a_QbyOCN(i,j) .LT.ZERO) THEN |
1363 |
c lateral melt rate as suggested by Perovich, 1983 (PhD thesis) |
1364 |
latMeltRate(i,j,it) = 1.6 _d -6 * tmpscal1**1.36 |
1365 |
c lateral melt rate as suggested by Maykut and Perovich, 1987 (JGR 92(C7)), Equ. 24 |
1366 |
c latMeltRate(i,j,it) = 13.5 _d -6 * tmpscal2 * tmpscal1**1.3 |
1367 |
c further suggestion by Maykut and Perovich to avoid latMeltRate -> 0 for UG -> 0 |
1368 |
c latMeltRate(i,j,it) = (1.6 _d -6 + 13.5 _d -6 * tmpscal2) |
1369 |
c & * tmpscal1**1.3 |
1370 |
c factor determining fraction of area and ice volume reduction |
1371 |
c due to lateral melt |
1372 |
latMeltFrac(i,j,it) = |
1373 |
& latMeltRate(i,j,it)*SEAICE_deltaTtherm*PI / |
1374 |
& (floeAlpha * floeDiameter) |
1375 |
latMeltFrac(i,j,it)=max(ZERO, min(latMeltFrac(i,j,it),ONE)) |
1376 |
c if (i.eq.i_dbOut.and.j.eq.j_dbOut) then |
1377 |
c print*,'latMelt',it,tmpscal1,latMeltRate(i,j,it), |
1378 |
c & areaitd(i,j,it,bi,bj),latMeltFrac(i,j,it) |
1379 |
c endif |
1380 |
ELSE |
1381 |
latMeltRate(i,j,it)=0.0 _d 0 |
1382 |
latMeltFrac(i,j,it)=0.0 _d 0 |
1383 |
c if (i.eq.i_dbOut.and.j.eq.j_dbOut) then |
1384 |
c print*,'latMelt',it,' 0.0 0.0 ', |
1385 |
c & areaitd(i,j,it,bi,bj),latMeltFrac(i,j,it) |
1386 |
c endif |
1387 |
ENDIF |
1388 |
ENDDO |
1389 |
ENDDO |
1390 |
ENDDO |
1391 |
#endif |
1392 |
|
1393 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1394 |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
1395 |
#endif |
1396 |
|
1397 |
C =================================================================== |
1398 |
C =========PART 3: determine effective thicknesses increments======== |
1399 |
C =================================================================== |
1400 |
|
1401 |
C compute snow/ice tendency due to sublimation |
1402 |
C ============================================ |
1403 |
|
1404 |
#ifdef ALLOW_AUTODIFF_TAMC |
1405 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1406 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1407 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1408 |
#ifdef SEAICE_ITD |
1409 |
DO IT=1,nITD |
1410 |
#endif |
1411 |
DO J=1,sNy |
1412 |
DO I=1,sNx |
1413 |
C First sublimate/deposite snow |
1414 |
tmpscal2 = |
1415 |
#ifdef SEAICE_ITD |
1416 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1417 |
& *SNOW2ICE),ZERO) |
1418 |
d_HSNWbySublim_ITD(I,J,IT) = - tmpscal2 * ICE2SNOW |
1419 |
C accumulate change over ITD categories |
1420 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1421 |
& *ICE2SNOW |
1422 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
1423 |
#else |
1424 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1425 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1426 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) - tmpscal2*ICE2SNOW |
1427 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1428 |
#endif |
1429 |
ENDDO |
1430 |
ENDDO |
1431 |
#ifdef ALLOW_AUTODIFF_TAMC |
1432 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1433 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1434 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1435 |
DO J=1,sNy |
1436 |
DO I=1,sNx |
1437 |
C If anything is left, sublimate ice |
1438 |
tmpscal2 = |
1439 |
#ifdef SEAICE_ITD |
1440 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1441 |
d_HEFFbySublim_ITD(I,J,IT) = - tmpscal2 |
1442 |
C accumulate change over ITD categories |
1443 |
d_HEFFbySublim(I,J) = d_HEFFbySublim(I,J) - tmpscal2 |
1444 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
1445 |
#else |
1446 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1447 |
d_HEFFbySublim(I,J) = - tmpscal2 |
1448 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) - tmpscal2 |
1449 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1450 |
#endif |
1451 |
ENDDO |
1452 |
ENDDO |
1453 |
DO J=1,sNy |
1454 |
DO I=1,sNx |
1455 |
C If anything is left, it will be evaporated from the ocean rather than sublimated. |
1456 |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1457 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1458 |
#ifdef SEAICE_ITD |
1459 |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1460 |
& - r_FWbySublimMult(I,J,IT) |
1461 |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1462 |
& - r_FWbySublimMult(I,J,IT) |
1463 |
#else |
1464 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1465 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1466 |
#endif |
1467 |
ENDDO |
1468 |
ENDDO |
1469 |
#ifdef SEAICE_ITD |
1470 |
C end IT loop |
1471 |
ENDDO |
1472 |
#endif |
1473 |
#ifdef SEAICE_DEBUG |
1474 |
c ToM<<< debug seaice_growth |
1475 |
WRITE(msgBuf,msgBufForm) |
1476 |
& ' SEAICE_GROWTH: Hsnow increments 1, d_HSNWySublim = ', |
1477 |
#ifdef SEAICE_ITD |
1478 |
& d_HSNWbySublim_ITD(i_dbOut,j_dbOut,:) |
1479 |
#else |
1480 |
& d_HSNWbySublim(i_dbOut,j_dbOut) |
1481 |
#endif |
1482 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1483 |
& SQUEEZE_RIGHT , myThid) |
1484 |
WRITE(msgBuf,msgBufForm) |
1485 |
& ' SEAICE_GROWTH: Heff increments 1, d_HEFFbySublim = ', |
1486 |
#ifdef SEAICE_ITD |
1487 |
& d_HEFFbySublim_ITD(i_dbOut,j_dbOut,:) |
1488 |
#else |
1489 |
& d_HEFFbySublim(i_dbOut,j_dbOut) |
1490 |
#endif |
1491 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1492 |
& SQUEEZE_RIGHT , myThid) |
1493 |
c ToM>>> |
1494 |
#endif /* SEAICE_DEBUG */ |
1495 |
|
1496 |
C compute ice thickness tendency due to ice-ocean interaction |
1497 |
C =========================================================== |
1498 |
|
1499 |
#ifdef ALLOW_AUTODIFF_TAMC |
1500 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1501 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1502 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1503 |
|
1504 |
#ifdef SEAICE_ITD |
1505 |
DO IT=1,nITD |
1506 |
DO J=1,sNy |
1507 |
DO I=1,sNx |
1508 |
C ice growth/melt due to ocean heat r_QbyOCN (W/m^2) is |
1509 |
C equally distributed under the ice and hence weighted by |
1510 |
C fractional area of each thickness category |
1511 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1512 |
& -HEFFITD(I,J,IT,bi,bj)) |
1513 |
d_HEFFbyOCNonICE_ITD(I,J,IT)=tmpscal1 |
1514 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1515 |
ENDDO |
1516 |
ENDDO |
1517 |
ENDDO |
1518 |
#ifdef ALLOW_SITRACER |
1519 |
DO J=1,sNy |
1520 |
DO I=1,sNx |
1521 |
SItrHEFF(I,J,bi,bj,2) = HEFFpreTH(I,J) |
1522 |
& + d_HEFFbySublim(I,J) |
1523 |
& + d_HEFFbyOCNonICE(I,J) |
1524 |
ENDDO |
1525 |
ENDDO |
1526 |
#endif |
1527 |
DO J=1,sNy |
1528 |
DO I=1,sNx |
1529 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1530 |
ENDDO |
1531 |
ENDDO |
1532 |
#else /* SEAICE_ITD */ |
1533 |
DO J=1,sNy |
1534 |
DO I=1,sNx |
1535 |
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
1536 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1537 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj) + d_HEFFbyOCNonICE(I,J) |
1538 |
#ifdef ALLOW_SITRACER |
1539 |
SItrHEFF(I,J,bi,bj,2)=HEFF(I,J,bi,bj) |
1540 |
#endif |
1541 |
ENDDO |
1542 |
ENDDO |
1543 |
#endif /* SEAICE_ITD */ |
1544 |
#ifdef SEAICE_DEBUG |
1545 |
c ToM<<< debug seaice_growth |
1546 |
WRITE(msgBuf,msgBufForm) |
1547 |
& ' SEAICE_GROWTH: Heff increments 2, d_HEFFbyOCNonICE = ', |
1548 |
#ifdef SEAICE_ITD |
1549 |
& d_HEFFbyOCNonICE_ITD(i_dbOut,j_dbOut,:) |
1550 |
#else |
1551 |
& d_HEFFbyOCNonICE(i_dbOut,j_dbOut) |
1552 |
#endif |
1553 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1554 |
& SQUEEZE_RIGHT , myThid) |
1555 |
c ToM>>> |
1556 |
#endif /* SEAICE_DEBUG */ |
1557 |
|
1558 |
C compute snow melt tendency due to snow-atmosphere interaction |
1559 |
C ================================================================== |
1560 |
|
1561 |
#ifdef ALLOW_AUTODIFF_TAMC |
1562 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1563 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1564 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1565 |
|
1566 |
#ifdef SEAICE_ITD |
1567 |
DO IT=1,nITD |
1568 |
DO J=1,sNy |
1569 |
DO I=1,sNx |
1570 |
C Convert to standard units (meters of ice) rather than to meters |
1571 |
C of snow. This appears to be more robust. |
1572 |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,IT), |
1573 |
& -HSNOWITD(I,J,IT,bi,bj)*SNOW2ICE) |
1574 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1575 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1576 |
Cgf no additional dependency through snow |
1577 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1578 |
#endif |
1579 |
d_HSNWbyATMonSNW_ITD(I,J,IT) = tmpscal2*ICE2SNOW |
1580 |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1581 |
& + tmpscal2*ICE2SNOW |
1582 |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1583 |
& - tmpscal2 |
1584 |
ENDDO |
1585 |
ENDDO |
1586 |
ENDDO |
1587 |
#else /* SEAICE_ITD */ |
1588 |
DO J=1,sNy |
1589 |
DO I=1,sNx |
1590 |
C Convert to standard units (meters of ice) rather than to meters |
1591 |
C of snow. This appears to be more robust. |
1592 |
tmpscal1=MAX(r_QbyATM_cover(I,J),-HSNOW(I,J,bi,bj)*SNOW2ICE) |
1593 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1594 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1595 |
Cgf no additional dependency through snow |
1596 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1597 |
#endif |
1598 |
d_HSNWbyATMonSNW(I,J)= tmpscal2*ICE2SNOW |
1599 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + tmpscal2*ICE2SNOW |
1600 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1601 |
ENDDO |
1602 |
ENDDO |
1603 |
#endif /* SEAICE_ITD */ |
1604 |
#ifdef SEAICE_DEBUG |
1605 |
c ToM<<< debug seaice_growth |
1606 |
WRITE(msgBuf,msgBufForm) |
1607 |
& ' SEAICE_GROWTH: Hsnow increments 3, d_HSNWbyATMonSNW = ', |
1608 |
#ifdef SEAICE_ITD |
1609 |
& d_HSNWbyATMonSNW_ITD(i_dbOut,j_dbOut,:) |
1610 |
#else |
1611 |
& d_HSNWbyATMonSNW(i_dbOut,j_dbOut) |
1612 |
#endif |
1613 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1614 |
& SQUEEZE_RIGHT , myThid) |
1615 |
c ToM>>> |
1616 |
#endif /* SEAICE_DEBUG */ |
1617 |
|
1618 |
C compute ice thickness tendency due to the atmosphere |
1619 |
C ==================================================== |
1620 |
|
1621 |
#ifdef ALLOW_AUTODIFF_TAMC |
1622 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1623 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1624 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1625 |
|
1626 |
Cgf note: this block is not actually tested by lab_sea |
1627 |
Cgf where all experiments start in January. So even though |
1628 |
Cgf the v1.81=>v1.82 revision would change results in |
1629 |
Cgf warming conditions, the lab_sea results were not changed. |
1630 |
|
1631 |
#ifdef SEAICE_ITD |
1632 |
DO IT=1,nITD |
1633 |
DO J=1,sNy |
1634 |
DO I=1,sNx |
1635 |
tmpscal1 = HEFFITDpreTH(I,J,IT) |
1636 |
& + d_HEFFbySublim_ITD(I,J,IT) |
1637 |
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1638 |
tmpscal2 = MAX(-tmpscal1, |
1639 |
& r_QbyATMmult_cover(I,J,IT) |
1640 |
c Limit ice growth by potential melt by ocean |
1641 |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1642 |
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = tmpscal2 |
1643 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1644 |
& + tmpscal2 |
1645 |
d_HEFFbyATMonOCN_ITD(I,J,IT) = d_HEFFbyATMonOCN_ITD(I,J,IT) |
1646 |
& + tmpscal2 |
1647 |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1648 |
& + tmpscal2 |
1649 |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1650 |
& - tmpscal2 |
1651 |
ENDDO |
1652 |
ENDDO |
1653 |
ENDDO |
1654 |
#ifdef ALLOW_SITRACER |
1655 |
DO J=1,sNy |
1656 |
DO I=1,sNx |
1657 |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,2) |
1658 |
& + d_HEFFbyATMonOCN_cover(I,J) |
1659 |
ENDDO |
1660 |
ENDDO |
1661 |
#endif |
1662 |
#else /* SEAICE_ITD */ |
1663 |
DO J=1,sNy |
1664 |
DO I=1,sNx |
1665 |
|
1666 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
1667 |
C Limit ice growth by potential melt by ocean |
1668 |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
1669 |
|
1670 |
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
1671 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
1672 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J)-tmpscal2 |
1673 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal2 |
1674 |
|
1675 |
#ifdef ALLOW_SITRACER |
1676 |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
1677 |
#endif |
1678 |
ENDDO |
1679 |
ENDDO |
1680 |
#endif /* SEAICE_ITD */ |
1681 |
#ifdef SEAICE_DEBUG |
1682 |
c ToM<<< debug seaice_growth |
1683 |
WRITE(msgBuf,msgBufForm) |
1684 |
& ' SEAICE_GROWTH: Heff increments 4, d_HEFFbyATMonOCN_cover = ', |
1685 |
#ifdef SEAICE_ITD |
1686 |
& d_HEFFbyATMonOCN_cover_ITD(i_dbOut,j_dbOut,:) |
1687 |
#else |
1688 |
& d_HEFFbyATMonOCN_cover(i_dbOut,j_dbOut) |
1689 |
#endif |
1690 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1691 |
& SQUEEZE_RIGHT , myThid) |
1692 |
WRITE(msgBuf,msgBufForm) |
1693 |
& ' SEAICE_GROWTH: Heff increments 4, d_HEFFbyATMonOCN = ', |
1694 |
#ifdef SEAICE_ITD |
1695 |
& d_HEFFbyATMonOCN_ITD(i_dbOut,j_dbOut,:) |
1696 |
#else |
1697 |
& d_HEFFbyATMonOCN(i_dbOut,j_dbOut) |
1698 |
#endif |
1699 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1700 |
& SQUEEZE_RIGHT , myThid) |
1701 |
c ToM>>> |
1702 |
#endif /* SEAICE_DEBUG */ |
1703 |
|
1704 |
C add snow precipitation to HSNOW. |
1705 |
C ================================================= |
1706 |
#ifdef ALLOW_ATM_TEMP |
1707 |
# ifdef ALLOW_AUTODIFF_TAMC |
1708 |
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1709 |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1710 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1711 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
1712 |
IF ( snowPrecipFile .NE. ' ' ) THEN |
1713 |
C add snowPrecip to HSNOW |
1714 |
DO J=1,sNy |
1715 |
DO I=1,sNx |
1716 |
d_HSNWbyRAIN(I,J) = convertPRECIP2HI * ICE2SNOW * |
1717 |
& snowPrecip(i,j,bi,bj) * AREApreTH(I,J) |
1718 |
d_HFRWbyRAIN(I,J) = -convertPRECIP2HI * |
1719 |
& ( PRECIP(I,J,bi,bj) - snowPrecip(I,J,bi,bj) ) * |
1720 |
& AREApreTH(I,J) |
1721 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1722 |
ENDDO |
1723 |
ENDDO |
1724 |
ELSE |
1725 |
C attribute precip to fresh water or snow stock, |
1726 |
C depending on atmospheric conditions. |
1727 |
DO J=1,sNy |
1728 |
DO I=1,sNx |
1729 |
C possible alternatives to the a_QbyATM_cover criterium |
1730 |
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
1731 |
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
1732 |
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
1733 |
C add precip as snow |
1734 |
d_HFRWbyRAIN(I,J)=0. _d 0 |
1735 |
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
1736 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1737 |
ELSE |
1738 |
C add precip to the fresh water bucket |
1739 |
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
1740 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1741 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
1742 |
ENDIF |
1743 |
ENDDO |
1744 |
ENDDO |
1745 |
#ifdef SEAICE_ITD |
1746 |
DO IT=1,nITD |
1747 |
DO J=1,sNy |
1748 |
DO I=1,sNx |
1749 |
d_HSNWbyRAIN_ITD(I,J,IT) |
1750 |
& = d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1751 |
ENDDO |
1752 |
ENDDO |
1753 |
ENDDO |
1754 |
#else |
1755 |
DO J=1,sNy |
1756 |
DO I=1,sNx |
1757 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1758 |
ENDDO |
1759 |
ENDDO |
1760 |
#endif |
1761 |
Cgf note: this does not affect air-sea heat flux, |
1762 |
Cgf since the implied air heat gain to turn |
1763 |
Cgf rain to snow is not a surface process. |
1764 |
C end of IF statement snowPrecipFile: |
1765 |
ENDIF |
1766 |
#endif /* ALLOW_ATM_TEMP */ |
1767 |
#ifdef SEAICE_DEBUG |
1768 |
c ToM<<< debug seaice_growth |
1769 |
WRITE(msgBuf,msgBufForm) |
1770 |
& ' SEAICE_GROWTH: Hsnow increments 5, d_HSNWbyRAIN = ', |
1771 |
#ifdef SEAICE_ITD |
1772 |
& d_HSNWbyRAIN_ITD(i_dbOut,j_dbOut,:) |
1773 |
#else |
1774 |
& d_HSNWbyRAIN(i_dbOut,j_dbOut) |
1775 |
#endif |
1776 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1777 |
& SQUEEZE_RIGHT , myThid) |
1778 |
c ToM>>> |
1779 |
#endif /* SEAICE_DEBUG */ |
1780 |
|
1781 |
C compute snow melt due to heat available from ocean. |
1782 |
C ================================================================= |
1783 |
|
1784 |
Cgf do we need to keep this comment and cpp bracket? |
1785 |
Cph( very sensitive bit here by JZ |
1786 |
#ifndef SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING |
1787 |
#ifdef ALLOW_AUTODIFF_TAMC |
1788 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1789 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1790 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1791 |
|
1792 |
#ifdef SEAICE_ITD |
1793 |
DO IT=1,nITD |
1794 |
DO J=1,sNy |
1795 |
DO I=1,sNx |
1796 |
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1797 |
& + d_HSNWbySublim_ITD(I,J,IT) |
1798 |
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1799 |
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1800 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1801 |
& -tmpscal4) |
1802 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1803 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1804 |
Cgf no additional dependency through snow |
1805 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1806 |
#endif |
1807 |
d_HSNWbyOCNonSNW_ITD(I,J,IT) = tmpscal2 |
1808 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1809 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
1810 |
ENDDO |
1811 |
ENDDO |
1812 |
ENDDO |
1813 |
#else /* SEAICE_ITD */ |
1814 |
DO J=1,sNy |
1815 |
DO I=1,sNx |
1816 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
1817 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1818 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1819 |
Cgf no additional dependency through snow |
1820 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1821 |
#endif |
1822 |
d_HSNWbyOCNonSNW(I,J) = tmpscal2 |
1823 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) |
1824 |
& -d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
1825 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
1826 |
ENDDO |
1827 |
ENDDO |
1828 |
#endif /* SEAICE_ITD */ |
1829 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1830 |
Cph) |
1831 |
#ifdef SEAICE_DEBUG |
1832 |
c ToM<<< debug seaice_growth |
1833 |
WRITE(msgBuf,msgBufForm) |
1834 |
& ' SEAICE_GROWTH: Hsnow increments 6, d_HSNWbyOCNonSNW = ', |
1835 |
#ifdef SEAICE_ITD |
1836 |
& d_HSNWbyOCNonSNW_ITD(i_dbOut,j_dbOut,:) |
1837 |
#else |
1838 |
& d_HSNWbyOCNonSNW(i_dbOut,j_dbOut) |
1839 |
#endif |
1840 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1841 |
& SQUEEZE_RIGHT , myThid) |
1842 |
c ToM>>> |
1843 |
#endif /* SEAICE_DEBUG */ |
1844 |
|
1845 |
C gain of new ice over open water |
1846 |
C =============================== |
1847 |
#ifdef ALLOW_AUTODIFF_TAMC |
1848 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1849 |
CADJ STORE r_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1850 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1851 |
CADJ STORE a_QSWbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1852 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1853 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1854 |
|
1855 |
DO J=1,sNy |
1856 |
DO I=1,sNx |
1857 |
#ifdef SEAICE_ITD |
1858 |
C HEFF will be updated at the end of PART 3, |
1859 |
C hence sum of tendencies so far is needed |
1860 |
tmpscal4 = HEFFpreTH(I,J) |
1861 |
& + d_HEFFbySublim(I,J) |
1862 |
& + d_HEFFbyOCNonICE(I,J) |
1863 |
& + d_HEFFbyATMonOCN(I,J) |
1864 |
#else |
1865 |
C HEFF is updated step by step throughout seaice_growth |
1866 |
tmpscal4 = HEFF(I,J,bi,bj) |
1867 |
#endif |
1868 |
C Initial ice growth is triggered by open water |
1869 |
C heat flux overcoming potential melt by ocean |
1870 |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
1871 |
& (1.0 _d 0 - AREApreTH(I,J)) |
1872 |
C Penetrative shortwave flux beyond first layer |
1873 |
C that is therefore not available to ice growth/melt |
1874 |
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
1875 |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
1876 |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1877 |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
1878 |
& -tmpscal4*facOpenMelt)*HEFFM(I,J,bi,bj) |
1879 |
#ifdef SEAICE_ITD |
1880 |
C ice growth in open water adds to first category |
1881 |
d_HEFFbyATMonOCN_open_ITD(I,J,1)=tmpscal3 |
1882 |
d_HEFFbyATMonOCN_ITD(I,J,1) =d_HEFFbyATMonOCN_ITD(I,J,1) |
1883 |
& +tmpscal3 |
1884 |
#endif |
1885 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1886 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1887 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
1888 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
1889 |
ENDDO |
1890 |
ENDDO |
1891 |
|
1892 |
#ifdef ALLOW_SITRACER |
1893 |
DO J=1,sNy |
1894 |
DO I=1,sNx |
1895 |
C needs to be here to allow use also with LEGACY branch |
1896 |
#ifdef SEAICE_ITD |
1897 |
SItrHEFF(I,J,bi,bj,4)=SItrHEFF(I,J,bi,bj,3) |
1898 |
& +d_HEFFbyATMonOCN_open(I,J) |
1899 |
#else |
1900 |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1901 |
#endif |
1902 |
ENDDO |
1903 |
ENDDO |
1904 |
#endif /* ALLOW_SITRACER */ |
1905 |
#ifdef SEAICE_DEBUG |
1906 |
c ToM<<< debug seaice_growth |
1907 |
WRITE(msgBuf,msgBufForm) |
1908 |
& ' SEAICE_GROWTH: Heff increments 7, d_HEFFbyATMonOCN_open = ', |
1909 |
#ifdef SEAICE_ITD |
1910 |
& d_HEFFbyATMonOCN_open_ITD(i_dbOut,j_dbOut,:) |
1911 |
#else |
1912 |
& d_HEFFbyATMonOCN_open(i_dbOut,j_dbOut) |
1913 |
#endif |
1914 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1915 |
& SQUEEZE_RIGHT , myThid) |
1916 |
WRITE(msgBuf,msgBufForm) |
1917 |
& ' SEAICE_GROWTH: Heff increments 7, d_HEFFbyATMonOCN = ', |
1918 |
#ifdef SEAICE_ITD |
1919 |
& d_HEFFbyATMonOCN_ITD(i_dbOut,j_dbOut,:) |
1920 |
#else |
1921 |
& d_HEFFbyATMonOCN(i_dbOut,j_dbOut) |
1922 |
#endif |
1923 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1924 |
& SQUEEZE_RIGHT , myThid) |
1925 |
c ToM>>> |
1926 |
#endif /* SEAICE_DEBUG */ |
1927 |
|
1928 |
C convert snow to ice if submerged. |
1929 |
C ================================= |
1930 |
|
1931 |
C note: in legacy, this process is done at the end |
1932 |
#ifdef ALLOW_AUTODIFF_TAMC |
1933 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1934 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1935 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1936 |
IF ( SEAICEuseFlooding ) THEN |
1937 |
#ifdef SEAICE_ITD |
1938 |
DO IT=1,nITD |
1939 |
DO J=1,sNy |
1940 |
DO I=1,sNx |
1941 |
tmpscal3 = HEFFITDpreTH(I,J,IT) |
1942 |
& + d_HEFFbySublim_ITD(I,J,IT) |
1943 |
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1944 |
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1945 |
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1946 |
& + d_HSNWbySublim_ITD(I,J,IT) |
1947 |
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1948 |
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1949 |
tmpscal0 = (tmpscal4*SEAICE_rhoSnow |
1950 |
& + tmpscal3*SEAICE_rhoIce) |
1951 |
& * recip_rhoConst |
1952 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - tmpscal3) |
1953 |
d_HEFFbyFLOODING_ITD(I,J,IT) = tmpscal1 |
1954 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1955 |
ENDDO |
1956 |
ENDDO |
1957 |
ENDDO |
1958 |
#else |
1959 |
DO J=1,sNy |
1960 |
DO I=1,sNx |
1961 |
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1962 |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
1963 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
1964 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
1965 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1966 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1967 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1968 |
ENDDO |
1969 |
ENDDO |
1970 |
#endif |
1971 |
ENDIF |
1972 |
|
1973 |
#ifdef SEAICE_DEBUG |
1974 |
c ToM<<< debug seaice_growth |
1975 |
WRITE(msgBuf,msgBufForm) |
1976 |
& ' SEAICE_GROWTH: Heff increments 8, d_HEFFbyFLOODING = ', |
1977 |
#ifdef SEAICE_ITD |
1978 |
& d_HEFFbyFLOODING_ITD(i_dbOut,j_dbOut,:) |
1979 |
#else |
1980 |
& d_HEFFbyFLOODING(i_dbOut,j_dbOut) |
1981 |
#endif |
1982 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1983 |
& SQUEEZE_RIGHT , myThid) |
1984 |
c ToM>>> |
1985 |
#endif /* SEAICE_DEBUG */ |
1986 |
#ifdef SEAICE_ITD |
1987 |
C apply ice and snow thickness changes |
1988 |
C ================================================================= |
1989 |
DO IT=1,nITD |
1990 |
DO J=1,sNy |
1991 |
DO I=1,sNx |
1992 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) |
1993 |
& + d_HEFFbySublim_ITD(I,J,IT) |
1994 |
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1995 |
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1996 |
& + d_HEFFbyFLOODING_ITD(I,J,IT) |
1997 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1998 |
& + d_HSNWbySublim_ITD(I,J,IT) |
1999 |
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
2000 |
& + d_HSNWbyRAIN_ITD(I,J,IT) |
2001 |
& + d_HSNWbyOCNonSNW_ITD(I,J,IT) |
2002 |
& - d_HEFFbyFLOODING_ITD(I,J,IT) |
2003 |
& * ICE2SNOW |
2004 |
ENDDO |
2005 |
ENDDO |
2006 |
ENDDO |
2007 |
#endif |
2008 |
#ifdef SEAICE_DEBUG |
2009 |
c ToM<<< debug seaice_growth |
2010 |
WRITE(msgBuf,msgBufForm) |
2011 |
& ' SEAICE_GROWTH: Heff increments 9, HEFF = ', |
2012 |
#ifdef SEAICE_ITD |
2013 |
& HEFFITD(i_dbOut,j_dbOut,:,bi,bj) |
2014 |
#else |
2015 |
& HEFF(i_dbOut,j_dbOut,bi,bj) |
2016 |
#endif |
2017 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2018 |
& SQUEEZE_RIGHT , myThid) |
2019 |
WRITE(msgBuf,msgBufForm) |
2020 |
& ' SEAICE_GROWTH: Area increments 9, AREA = ', |
2021 |
#ifdef SEAICE_ITD |
2022 |
& AREAITD(i_dbOut,j_dbOut,:,bi,bj) |
2023 |
#else |
2024 |
& AREA(i_dbOut,j_dbOut,bi,bj) |
2025 |
#endif |
2026 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2027 |
& SQUEEZE_RIGHT , myThid) |
2028 |
c ToM>>> |
2029 |
#endif /* SEAICE_DEBUG */ |
2030 |
|
2031 |
C =================================================================== |
2032 |
C ==========PART 4: determine ice cover fraction increments=========- |
2033 |
C =================================================================== |
2034 |
|
2035 |
#ifdef ALLOW_AUTODIFF_TAMC |
2036 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
2037 |
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
2038 |
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
2039 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
2040 |
CADJ STORE recip_heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
2041 |
CADJ STORE d_hsnwbyatmonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
2042 |
cph( |
2043 |
cphCADJ STORE d_AREAbyATM = comlev1_bibj,key=iicekey,byte=isbyte |
2044 |
cphCADJ STORE d_AREAbyICE = comlev1_bibj,key=iicekey,byte=isbyte |
2045 |
cphCADJ STORE d_AREAbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
2046 |
cph) |
2047 |
CADJ STORE a_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
2048 |
CADJ STORE heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
2049 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
2050 |
CADJ STORE HEFF(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2051 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2052 |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2053 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2054 |
|
2055 |
#ifdef SEAICE_ITD |
2056 |
C-- account for lateral ice growth and melt only in thinnest category |
2057 |
C-- use HEFF, ARE, HSNOW, etc. temporarily for 1st category |
2058 |
C (this way we can use same code for ITD and non-ITD case) |
2059 |
DO J=1,sNy |
2060 |
DO I=1,sNx |
2061 |
HEFF(I,J,bi,bj)=HEFFITD(I,J,1,bi,bj) |
2062 |
AREA(I,J,bi,bj)=AREAITD(I,J,1,bi,bj) |
2063 |
HSNOW(I,J,bi,bj)=HSNOWITD(I,J,1,bi,bj) |
2064 |
HEFFpreTH(I,J)=HEFFITDpreTH(I,J,1) |
2065 |
AREApreTH(I,J)=AREAITDpreTH(I,J,1) |
2066 |
recip_heffActual(I,J)=recip_heffActualMult(I,J,1) |
2067 |
ENDDO |
2068 |
ENDDO |
2069 |
C all other categories only experience basal growth or melt, |
2070 |
C i.e. change sin AREA only occur when all ice in a category is melted |
2071 |
IF (nITD .gt. 1) THEN |
2072 |
DO IT=2,nITD |
2073 |
DO J=1,sNy |
2074 |
DO I=1,sNx |
2075 |
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
2076 |
AREAITD(I,J,IT,bi,bj)=ZERO |
2077 |
ELSE |
2078 |
c actual ice thickness from previous time step |
2079 |
c (actual ice thickness not to increase because of lateral melt!) |
2080 |
tmpscal1=HEFFITDpreTH(I,J,IT)/AREAITDpreTH(I,J,IT) |
2081 |
c melt ice laterally based on an average floe sice |
2082 |
c following Steele (1992) |
2083 |
AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
2084 |
& * (ONE - latMeltFrac(I,J,IT)) |
2085 |
AREAITD(I,J,IT,bi,bj) = max(ZERO,AREAITD(I,J,IT,bi,bj)) |
2086 |
c limit area reduction so that actual ice thickness does not increase |
2087 |
AREAITD(I,J,IT,bi,bj) = max(AREAITD(I,J,IT,bi,bj), |
2088 |
& HEFFITD(I,J,IT,bi,bj)/tmpscal1) |
2089 |
ENDIF |
2090 |
ENDDO |
2091 |
ENDDO |
2092 |
ENDDO |
2093 |
ENDIF |
2094 |
#endif |
2095 |
DO J=1,sNy |
2096 |
DO I=1,sNx |
2097 |
|
2098 |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
2099 |
recip_HO=1. _d 0 / HO_south |
2100 |
ELSE |
2101 |
recip_HO=1. _d 0 / HO |
2102 |
ENDIF |
2103 |
recip_HH = recip_heffActual(I,J) |
2104 |
|
2105 |
C gain of ice over open water : computed from |
2106 |
C (SEAICE_areaGainFormula.EQ.1) from growth by ATM |
2107 |
C (SEAICE_areaGainFormula.EQ.2) from predicted growth by ATM |
2108 |
IF (SEAICE_areaGainFormula.EQ.1) THEN |
2109 |
tmpscal4 = MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
2110 |
ELSE |
2111 |
tmpscal4=MAX(ZERO,a_QbyATM_open(I,J)) |
2112 |
ENDIF |
2113 |
|
2114 |
C loss of ice cover by melting : computed from |
2115 |
C (SEAICE_areaLossFormula.EQ.1) from all but only melt conributions by ATM and OCN |
2116 |
C (SEAICE_areaLossFormula.EQ.2) from net melt-growth>0 by ATM and OCN |
2117 |
C (SEAICE_areaLossFormula.EQ.3) from predicted melt by ATM |
2118 |
IF (SEAICE_areaLossFormula.EQ.1) THEN |
2119 |
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) ) |
2120 |
& + MIN( 0. _d 0 , d_HEFFbyATMonOCN_open(I,J) ) |
2121 |
& + MIN( 0. _d 0 , d_HEFFbyOCNonICE(I,J) ) |
2122 |
ELSEIF (SEAICE_areaLossFormula.EQ.2) THEN |
2123 |
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) |
2124 |
& + d_HEFFbyATMonOCN_open(I,J) + d_HEFFbyOCNonICE(I,J) ) |
2125 |
ELSE |
2126 |
C compute heff after ice melt by ocn: |
2127 |
tmpscal0=HEFF(I,J,bi,bj) - d_HEFFbyATMonOCN(I,J) |
2128 |
C compute available heat left after snow melt by atm: |
2129 |
tmpscal1= a_QbyATM_open(I,J)+a_QbyATM_cover(I,J) |
2130 |
& - d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2131 |
C could not melt more than all the ice |
2132 |
tmpscal2 = MAX(-tmpscal0,tmpscal1) |
2133 |
tmpscal3 = MIN(ZERO,tmpscal2) |
2134 |
ENDIF |
2135 |
|
2136 |
C apply tendency |
2137 |
IF ( (HEFF(i,j,bi,bj).GT.0. _d 0).OR. |
2138 |
& (HSNOW(i,j,bi,bj).GT.0. _d 0) ) THEN |
2139 |
AREA(I,J,bi,bj)=MAX(0. _d 0, |
2140 |
& MIN( SEAICE_area_max, AREA(I,J,bi,bj) |
2141 |
& + recip_HO*tmpscal4+HALF*recip_HH*tmpscal3 )) |
2142 |
ELSE |
2143 |
AREA(I,J,bi,bj)=0. _d 0 |
2144 |
ENDIF |
2145 |
#ifdef ALLOW_SITRACER |
2146 |
SItrAREA(I,J,bi,bj,3)=AREA(I,J,bi,bj) |
2147 |
#endif /* ALLOW_SITRACER */ |
2148 |
#ifdef ALLOW_DIAGNOSTICS |
2149 |
d_AREAbyATM(I,J)= |
2150 |
& recip_HO*MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
2151 |
& +HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_open(I,J)) |
2152 |
d_AREAbyICE(I,J)= |
2153 |
& HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_cover(I,J)) |
2154 |
d_AREAbyOCN(I,J)= |
2155 |
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
2156 |
#endif /* ALLOW_DIAGNOSTICS */ |
2157 |
ENDDO |
2158 |
ENDDO |
2159 |
#ifdef SEAICE_ITD |
2160 |
C transfer 1st category values back into ITD variables |
2161 |
DO J=1,sNy |
2162 |
DO I=1,sNx |
2163 |
HEFFITD(I,J,1,bi,bj)=HEFF(I,J,bi,bj) |
2164 |
AREAITD(I,J,1,bi,bj)=AREA(I,J,bi,bj) |
2165 |
HSNOWITD(I,J,1,bi,bj)=HSNOW(I,J,bi,bj) |
2166 |
ENDDO |
2167 |
ENDDO |
2168 |
#endif |
2169 |
|
2170 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
2171 |
Cgf 'bulk' linearization of area=f(HEFF) |
2172 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
2173 |
#ifdef SEAICE_ITD |
2174 |
DO IT=1,nITD |
2175 |
DO J=1,sNy |
2176 |
DO I=1,sNx |
2177 |
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
2178 |
& ( HEFFITD(I,J,IT,bi,bj) - HEFFITDpreTH(I,J,IT) ) |
2179 |
ENDDO |
2180 |
ENDDO |
2181 |
ENDDO |
2182 |
#else |
2183 |
DO J=1,sNy |
2184 |
DO I=1,sNx |
2185 |
C AREA(I,J,bi,bj) = 0.1 _d 0 * HEFF(I,J,bi,bj) |
2186 |
AREA(I,J,bi,bj) = AREApreTH(I,J) + 0.1 _d 0 * |
2187 |
& ( HEFF(I,J,bi,bj) - HEFFpreTH(I,J) ) |
2188 |
ENDDO |
2189 |
ENDDO |
2190 |
#endif |
2191 |
ENDIF |
2192 |
#endif |
2193 |
#ifdef SEAICE_ITD |
2194 |
C check categories for consistency with limits after growth/melt |
2195 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime,myIter,myThid) |
2196 |
C finally update total AREA, HEFF, HSNOW |
2197 |
CALL SEAICE_ITD_SUM(bi, bj, myTime,myIter,myThid) |
2198 |
#endif |
2199 |
|
2200 |
C =================================================================== |
2201 |
C =============PART 5: determine ice salinity increments============= |
2202 |
C =================================================================== |
2203 |
|
2204 |
#ifndef SEAICE_VARIABLE_SALINITY |
2205 |
# if (defined ALLOW_AUTODIFF_TAMC && defined ALLOW_SALT_PLUME) |
2206 |
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2207 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
2208 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
2209 |
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
2210 |
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
2211 |
CADJ STORE d_HEFFbyFLOODING = comlev1_bibj,key=iicekey,byte=isbyte |
2212 |
CADJ STORE d_HEFFbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
2213 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
2214 |
CADJ & key = iicekey, byte = isbyte |
2215 |
# endif /* ALLOW_AUTODIFF_TAMC and ALLOW_SALT_PLUME */ |
2216 |
DO J=1,sNy |
2217 |
DO I=1,sNx |
2218 |
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
2219 |
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
2220 |
& + d_HEFFbySublim(I,J) |
2221 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2222 |
& + d_HEFFbyRLX(I,J) |
2223 |
#endif |
2224 |
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
2225 |
& * recip_deltaTtherm * SEAICE_rhoIce |
2226 |
saltFlux(I,J,bi,bj) = tmpscal2 |
2227 |
#ifdef ALLOW_SALT_PLUME |
2228 |
tmpscal3 = tmpscal1*salt(I,J,kSurface,bi,bj)*HEFFM(I,J,bi,bj) |
2229 |
& * recip_deltaTtherm * SEAICE_rhoIce |
2230 |
saltPlumeFlux(I,J,bi,bj) = MAX( tmpscal3-tmpscal2 , 0. _d 0) |
2231 |
& *SPsalFRAC |
2232 |
#endif /* ALLOW_SALT_PLUME */ |
2233 |
ENDDO |
2234 |
ENDDO |
2235 |
#endif /* ndef SEAICE_VARIABLE_SALINITY */ |
2236 |
|
2237 |
#ifdef SEAICE_VARIABLE_SALINITY |
2238 |
|
2239 |
#ifdef ALLOW_AUTODIFF_TAMC |
2240 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2241 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2242 |
|
2243 |
DO J=1,sNy |
2244 |
DO I=1,sNx |
2245 |
C sum up the terms that affect the salt content of the ice pack |
2246 |
tmpscal1=d_HEFFbyOCNonICE(I,J)+d_HEFFbyATMonOCN(I,J) |
2247 |
|
2248 |
C recompute HEFF before thermodynamic updates (which is not AREApreTH in legacy code) |
2249 |
tmpscal2=HEFF(I,J,bi,bj)-tmpscal1-d_HEFFbyFLOODING(I,J) |
2250 |
C tmpscal1 > 0 : m of sea ice that is created |
2251 |
IF ( tmpscal1 .GE. 0.0 ) THEN |
2252 |
saltFlux(I,J,bi,bj) = |
2253 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2254 |
& *SEAICE_saltFrac*salt(I,J,kSurface,bi,bj) |
2255 |
& *tmpscal1*SEAICE_rhoIce |
2256 |
#ifdef ALLOW_SALT_PLUME |
2257 |
C saltPlumeFlux is defined only during freezing: |
2258 |
saltPlumeFlux(I,J,bi,bj)= |
2259 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2260 |
& *(ONE-SEAICE_saltFrac)*salt(I,J,kSurface,bi,bj) |
2261 |
& *tmpscal1*SEAICE_rhoIce |
2262 |
& *SPsalFRAC |
2263 |
C if SaltPlumeSouthernOcean=.FALSE. turn off salt plume in Southern Ocean |
2264 |
IF ( .NOT. SaltPlumeSouthernOcean ) THEN |
2265 |
IF ( YC(I,J,bi,bj) .LT. 0.0 _d 0 ) |
2266 |
& saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2267 |
ENDIF |
2268 |
#endif /* ALLOW_SALT_PLUME */ |
2269 |
|
2270 |
C tmpscal1 < 0 : m of sea ice that is melted |
2271 |
ELSE |
2272 |
saltFlux(I,J,bi,bj) = |
2273 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2274 |
& *HSALT(I,J,bi,bj) |
2275 |
& *tmpscal1/tmpscal2 |
2276 |
#ifdef ALLOW_SALT_PLUME |
2277 |
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2278 |
#endif /* ALLOW_SALT_PLUME */ |
2279 |
ENDIF |
2280 |
C update HSALT based on surface saltFlux |
2281 |
HSALT(I,J,bi,bj) = HSALT(I,J,bi,bj) + |
2282 |
& saltFlux(I,J,bi,bj) * SEAICE_deltaTtherm |
2283 |
saltFlux(I,J,bi,bj) = |
2284 |
& saltFlux(I,J,bi,bj) + saltFluxAdjust(I,J) |
2285 |
ENDDO |
2286 |
ENDDO |
2287 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
2288 |
|
2289 |
#ifdef ALLOW_SITRACER |
2290 |
DO J=1,sNy |
2291 |
DO I=1,sNx |
2292 |
C needs to be here to allow use also with LEGACY branch |
2293 |
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
2294 |
ENDDO |
2295 |
ENDDO |
2296 |
#endif /* ALLOW_SITRACER */ |
2297 |
|
2298 |
C =================================================================== |
2299 |
C ==============PART 7: determine ocean model forcing================ |
2300 |
C =================================================================== |
2301 |
|
2302 |
C compute net heat flux leaving/entering the ocean, |
2303 |
C accounting for the part used in melt/freeze processes |
2304 |
C ===================================================== |
2305 |
|
2306 |
#ifdef SEAICE_ITD |
2307 |
C compute total of "mult" fluxes for ocean forcing |
2308 |
DO J=1,sNy |
2309 |
DO I=1,sNx |
2310 |
a_QbyATM_cover(I,J) = 0.0 _d 0 |
2311 |
r_QbyATM_cover(I,J) = 0.0 _d 0 |
2312 |
a_QSWbyATM_cover(I,J) = 0.0 _d 0 |
2313 |
r_FWbySublim(I,J) = 0.0 _d 0 |
2314 |
ENDDO |
2315 |
ENDDO |
2316 |
DO IT=1,nITD |
2317 |
DO J=1,sNy |
2318 |
DO I=1,sNx |
2319 |
cToM if fluxes in W/m^2 then |
2320 |
c a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2321 |
c & + a_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2322 |
c r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2323 |
c & + r_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2324 |
c a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2325 |
c & + a_QSWbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2326 |
c r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2327 |
c & + r_FWbySublimMult(I,J,IT) * areaFracFactor(I,J,IT) |
2328 |
cToM if fluxes in effective ice meters, i.e. ice volume per area, then |
2329 |
a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2330 |
& + a_QbyATMmult_cover(I,J,IT) |
2331 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2332 |
& + r_QbyATMmult_cover(I,J,IT) |
2333 |
a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2334 |
& + a_QSWbyATMmult_cover(I,J,IT) |
2335 |
r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2336 |
& + r_FWbySublimMult(I,J,IT) |
2337 |
ENDDO |
2338 |
ENDDO |
2339 |
ENDDO |
2340 |
#endif |
2341 |
|
2342 |
#ifdef ALLOW_AUTODIFF_TAMC |
2343 |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
2344 |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
2345 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2346 |
|
2347 |
DO J=1,sNy |
2348 |
DO I=1,sNx |
2349 |
QNET(I,J,bi,bj) = r_QbyATM_cover(I,J) + r_QbyATM_open(I,J) |
2350 |
& + a_QSWbyATM_cover(I,J) |
2351 |
& - ( d_HEFFbyOCNonICE(I,J) |
2352 |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2353 |
& + d_HEFFbyNEG(I,J) |
2354 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2355 |
& + d_HEFFbyRLX(I,J) |
2356 |
#endif |
2357 |
& + d_HSNWbyNEG(I,J)*SNOW2ICE |
2358 |
& - convertPRECIP2HI * |
2359 |
& snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) |
2360 |
& ) * maskC(I,J,kSurface,bi,bj) |
2361 |
ENDDO |
2362 |
ENDDO |
2363 |
DO J=1,sNy |
2364 |
DO I=1,sNx |
2365 |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
2366 |
ENDDO |
2367 |
ENDDO |
2368 |
|
2369 |
C switch heat fluxes from 'effective' ice meters to W/m2 |
2370 |
C ====================================================== |
2371 |
|
2372 |
DO J=1,sNy |
2373 |
DO I=1,sNx |
2374 |
QNET(I,J,bi,bj) = QNET(I,J,bi,bj)*convertHI2Q |
2375 |
QSW(I,J,bi,bj) = QSW(I,J,bi,bj)*convertHI2Q |
2376 |
ENDDO |
2377 |
ENDDO |
2378 |
|
2379 |
#ifndef SEAICE_DISABLE_HEATCONSFIX |
2380 |
C treat advective heat flux by ocean to ice water exchange (at 0decC) |
2381 |
C =================================================================== |
2382 |
# ifdef ALLOW_AUTODIFF_TAMC |
2383 |
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2384 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
2385 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
2386 |
CADJ STORE d_HSNWbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2387 |
CADJ STORE d_HSNWbyOCNonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
2388 |
CADJ STORE d_HSNWbyATMonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
2389 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
2390 |
CADJ & key = iicekey, byte = isbyte |
2391 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2392 |
cgf Unlike for evap and precip, the temperature of gained/lost |
2393 |
C ocean liquid water due to melt/freeze of solid water cannot be chosen |
2394 |
C arbitrarily to be e.g. the ocean SST. Indeed the present seaice model |
2395 |
C implies a constant ice temperature of 0degC. If melt/freeze water is exchanged |
2396 |
C at a different temperature, it leads to a loss of conservation in the |
2397 |
C ocean+ice system. While this is mostly a serious issue in the |
2398 |
C real fresh water + non linear free surface framework, a mismatch |
2399 |
C between ice and ocean boundary condition can result in all cases. |
2400 |
C Below we therefore anticipate on external_forcing_surf.F |
2401 |
C to diagnoze and/or apply the correction to QNET. |
2402 |
DO J=1,sNy |
2403 |
DO I=1,sNx |
2404 |
C ocean water going to ice/snow, in precip units |
2405 |
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)*( |
2406 |
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2407 |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2408 |
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
2409 |
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
2410 |
& * convertHI2PRECIP |
2411 |
& - snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) ) |
2412 |
C factor in the heat content as done in external_forcing_surf.F |
2413 |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND.useRealFreshWaterFlux |
2414 |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2415 |
tmpscal1 = - tmpscal3* |
2416 |
& HeatCapacity_Cp * temp_EvPrRn |
2417 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND.useRealFreshWaterFlux |
2418 |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2419 |
tmpscal1 = - tmpscal3* |
2420 |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2421 |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2422 |
tmpscal1 = - tmpscal3*HeatCapacity_Cp* |
2423 |
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2424 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2425 |
tmpscal1 = ZERO |
2426 |
ENDIF |
2427 |
#ifdef ALLOW_DIAGNOSTICS |
2428 |
C in all cases, diagnoze the boundary condition mismatch to SIaaflux |
2429 |
DIAGarrayA(I,J)=tmpscal1 |
2430 |
#endif |
2431 |
C remove the mismatch when real fresh water is exchanged (at 0degC here) |
2432 |
IF ( useRealFreshWaterFlux.AND.(nonlinFreeSurf.GT.0).AND. |
2433 |
& SEAICEheatConsFix ) QNET(I,J,bi,bj)=QNET(I,J,bi,bj)+tmpscal1 |
2434 |
ENDDO |
2435 |
ENDDO |
2436 |
#ifdef ALLOW_DIAGNOSTICS |
2437 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2438 |
& 'SIaaflux',0,1,3,bi,bj,myThid) |
2439 |
#endif |
2440 |
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
2441 |
|
2442 |
C compute the net heat flux, incl. adv. by water, entering ocean+ice |
2443 |
C =================================================================== |
2444 |
DO J=1,sNy |
2445 |
DO I=1,sNx |
2446 |
cgf 1) SIatmQnt (analogous to qnet; excl. adv. by water exch.) |
2447 |
CML If I consider the atmosphere above the ice, the surface flux |
2448 |
CML which is relevant for the air temperature dT/dt Eq |
2449 |
CML accounts for sensible and radiation (with different treatment |
2450 |
CML according to wave-length) fluxes but not for "latent heat flux", |
2451 |
CML since it does not contribute to heating the air. |
2452 |
CML So this diagnostic is only good for heat budget calculations within |
2453 |
CML the ice-ocean system. |
2454 |
SIatmQnt(I,J,bi,bj) = |
2455 |
& maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
2456 |
& a_QSWbyATM_cover(I,J) + |
2457 |
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
2458 |
cgf 2) SItflux (analogous to tflux; includes advection by water |
2459 |
C exchanged between atmosphere and ocean+ice) |
2460 |
C solid water going to atm, in precip units |
2461 |
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
2462 |
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
2463 |
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
2464 |
C liquid water going to atm, in precip units |
2465 |
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
2466 |
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2467 |
& * ( ONE - AREApreTH(I,J) ) |
2468 |
#ifdef ALLOW_RUNOFF |
2469 |
& - RUNOFF(I,J,bi,bj) |
2470 |
#endif /* ALLOW_RUNOFF */ |
2471 |
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
2472 |
& *convertHI2PRECIP ) |
2473 |
C In real fresh water flux + nonlinFS, we factor in the advected specific |
2474 |
C energy (referenced to 0 for 0deC liquid water). In virtual salt flux or |
2475 |
C linFS, rain/evap get a special treatment (see external_forcing_surf.F). |
2476 |
tmpscal1= - tmpscal1* |
2477 |
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
2478 |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND.useRealFreshWaterFlux |
2479 |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2480 |
tmpscal2= - tmpscal2* |
2481 |
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2482 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND.useRealFreshWaterFlux |
2483 |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2484 |
tmpscal2= - tmpscal2* |
2485 |
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2486 |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2487 |
tmpscal2= - tmpscal2*HeatCapacity_Cp* |
2488 |
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2489 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2490 |
tmpscal2= ZERO |
2491 |
ENDIF |
2492 |
SItflux(I,J,bi,bj)= |
2493 |
& SIatmQnt(I,J,bi,bj)-tmpscal1-tmpscal2 |
2494 |
ENDDO |
2495 |
ENDDO |
2496 |
|
2497 |
C compute net fresh water flux leaving/entering |
2498 |
C the ocean, accounting for fresh/salt water stocks. |
2499 |
C ================================================== |
2500 |
|
2501 |
#ifdef ALLOW_ATM_TEMP |
2502 |
DO J=1,sNy |
2503 |
DO I=1,sNx |
2504 |
tmpscal1= d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2505 |
& +d_HFRWbyRAIN(I,J) |
2506 |
& +d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2507 |
& +d_HEFFbyOCNonICE(I,J) |
2508 |
& +d_HEFFbyATMonOCN(I,J) |
2509 |
& +d_HEFFbyNEG(I,J) |
2510 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2511 |
& +d_HEFFbyRLX(I,J) |
2512 |
#endif |
2513 |
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
2514 |
C If r_FWbySublim>0, then it is evaporated from ocean. |
2515 |
& +r_FWbySublim(I,J) |
2516 |
EmPmR(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2517 |
& ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2518 |
& * ( ONE - AREApreTH(I,J) ) |
2519 |
#ifdef ALLOW_RUNOFF |
2520 |
& - RUNOFF(I,J,bi,bj) |
2521 |
#endif /* ALLOW_RUNOFF */ |
2522 |
& + tmpscal1*convertHI2PRECIP |
2523 |
& )*rhoConstFresh |
2524 |
c and the flux leaving/entering the ocean+ice |
2525 |
SIatmFW(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2526 |
& EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2527 |
& - PRECIP(I,J,bi,bj) |
2528 |
#ifdef ALLOW_RUNOFF |
2529 |
& - RUNOFF(I,J,bi,bj) |
2530 |
#endif /* ALLOW_RUNOFF */ |
2531 |
& )*rhoConstFresh |
2532 |
& + a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2533 |
|
2534 |
ENDDO |
2535 |
ENDDO |
2536 |
|
2537 |
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
2538 |
C-- |
2539 |
DO J=1,sNy |
2540 |
DO I=1,sNx |
2541 |
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2542 |
& PRECIP(I,J,bi,bj) |
2543 |
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2544 |
# ifdef ALLOW_RUNOFF |
2545 |
& + RUNOFF(I,J,bi,bj) |
2546 |
# endif /* ALLOW_RUNOFF */ |
2547 |
& )*rhoConstFresh |
2548 |
# ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
2549 |
& - a_FWbySublim(I,J)*AREApreTH(I,J) |
2550 |
# endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
2551 |
ENDDO |
2552 |
ENDDO |
2553 |
C-- |
2554 |
#else /* ndef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
2555 |
C-- |
2556 |
# ifdef ALLOW_MEAN_SFLUX_COST_CONTRIBUTION |
2557 |
DO J=1,sNy |
2558 |
DO I=1,sNx |
2559 |
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2560 |
& PRECIP(I,J,bi,bj) |
2561 |
& - EVAP(I,J,bi,bj) |
2562 |
& *( ONE - AREApreTH(I,J) ) |
2563 |
# ifdef ALLOW_RUNOFF |
2564 |
& + RUNOFF(I,J,bi,bj) |
2565 |
# endif /* ALLOW_RUNOFF */ |
2566 |
& )*rhoConstFresh |
2567 |
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2568 |
ENDDO |
2569 |
ENDDO |
2570 |
# endif |
2571 |
C-- |
2572 |
#endif /* ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
2573 |
|
2574 |
#endif /* ALLOW_ATM_TEMP */ |
2575 |
|
2576 |
#ifdef SEAICE_DEBUG |
2577 |
CALL PLOT_FIELD_XYRL( QSW,'Current QSW ', myIter, myThid ) |
2578 |
CALL PLOT_FIELD_XYRL( QNET,'Current QNET ', myIter, myThid ) |
2579 |
CALL PLOT_FIELD_XYRL( EmPmR,'Current EmPmR ', myIter, myThid ) |
2580 |
#endif /* SEAICE_DEBUG */ |
2581 |
|
2582 |
C Sea Ice Load on the sea surface. |
2583 |
C ================================= |
2584 |
|
2585 |
#ifdef ALLOW_AUTODIFF_TAMC |
2586 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2587 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2588 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2589 |
|
2590 |
IF ( useRealFreshWaterFlux ) THEN |
2591 |
DO J=1,sNy |
2592 |
DO I=1,sNx |
2593 |
#ifdef SEAICE_CAP_ICELOAD |
2594 |
tmpscal1 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
2595 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2596 |
tmpscal2 = MIN(tmpscal1,heffTooHeavy*rhoConst) |
2597 |
#else |
2598 |
tmpscal2 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
2599 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2600 |
#endif |
2601 |
sIceLoad(i,j,bi,bj) = tmpscal2 |
2602 |
ENDDO |
2603 |
ENDDO |
2604 |
ENDIF |
2605 |
|
2606 |
#ifdef ALLOW_BALANCE_FLUXES |
2607 |
C Compute tile integrals of heat/fresh water fluxes to/from atm. |
2608 |
C ============================================================== |
2609 |
FWFsiTile(bi,bj) = 0. _d 0 |
2610 |
IF ( balanceEmPmR ) THEN |
2611 |
DO j=1,sNy |
2612 |
DO i=1,sNx |
2613 |
FWFsiTile(bi,bj) = |
2614 |
& FWFsiTile(bi,bj) + SIatmFW(i,j,bi,bj) |
2615 |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2616 |
ENDDO |
2617 |
ENDDO |
2618 |
ENDIF |
2619 |
c to translate global mean FWF adjustements (see below) we may need : |
2620 |
FWF2HFsiTile(bi,bj) = 0. _d 0 |
2621 |
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2622 |
DO j=1,sNy |
2623 |
DO i=1,sNx |
2624 |
FWF2HFsiTile(bi,bj) = FWF2HFsiTile(bi,bj) + |
2625 |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2626 |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2627 |
ENDDO |
2628 |
ENDDO |
2629 |
ENDIF |
2630 |
HFsiTile(bi,bj) = 0. _d 0 |
2631 |
IF ( balanceQnet ) THEN |
2632 |
DO j=1,sNy |
2633 |
DO i=1,sNx |
2634 |
HFsiTile(bi,bj) = |
2635 |
& HFsiTile(bi,bj) + SItflux(i,j,bi,bj) |
2636 |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2637 |
ENDDO |
2638 |
ENDDO |
2639 |
ENDIF |
2640 |
#endif |
2641 |
|
2642 |
C =================================================================== |
2643 |
C ======================PART 8: diagnostics========================== |
2644 |
C =================================================================== |
2645 |
|
2646 |
#ifdef ALLOW_DIAGNOSTICS |
2647 |
IF ( useDiagnostics ) THEN |
2648 |
tmpscal1=1. _d 0 * recip_deltaTtherm |
2649 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_cover, |
2650 |
& tmpscal1,1,'SIaQbATC',0,1,3,bi,bj,myThid) |
2651 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_open, |
2652 |
& tmpscal1,1,'SIaQbATO',0,1,3,bi,bj,myThid) |
2653 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyOCN, |
2654 |
& tmpscal1,1,'SIaQbOCN',0,1,3,bi,bj,myThid) |
2655 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyOCNonICE, |
2656 |
& tmpscal1,1,'SIdHbOCN',0,1,3,bi,bj,myThid) |
2657 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_cover, |
2658 |
& tmpscal1,1,'SIdHbATC',0,1,3,bi,bj,myThid) |
2659 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_open, |
2660 |
& tmpscal1,1,'SIdHbATO',0,1,3,bi,bj,myThid) |
2661 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyFLOODING, |
2662 |
& tmpscal1,1,'SIdHbFLO',0,1,3,bi,bj,myThid) |
2663 |
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyOCNonSNW, |
2664 |
& tmpscal1,1,'SIdSbOCN',0,1,3,bi,bj,myThid) |
2665 |
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyATMonSNW, |
2666 |
& tmpscal1,1,'SIdSbATC',0,1,3,bi,bj,myThid) |
2667 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyATM, |
2668 |
& tmpscal1,1,'SIdAbATO',0,1,3,bi,bj,myThid) |
2669 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyICE, |
2670 |
& tmpscal1,1,'SIdAbATC',0,1,3,bi,bj,myThid) |
2671 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyOCN, |
2672 |
& tmpscal1,1,'SIdAbOCN',0,1,3,bi,bj,myThid) |
2673 |
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_open, |
2674 |
& convertHI2Q,1, 'SIqneto ',0,1,3,bi,bj,myThid) |
2675 |
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_cover, |
2676 |
& convertHI2Q,1, 'SIqneti ',0,1,3,bi,bj,myThid) |
2677 |
C three that actually need intermediate storage |
2678 |
DO J=1,sNy |
2679 |
DO I=1,sNx |
2680 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2681 |
& * d_HSNWbyRAIN(I,J)*SEAICE_rhoSnow*recip_deltaTtherm |
2682 |
DIAGarrayB(I,J) = AREA(I,J,bi,bj)-AREApreTH(I,J) |
2683 |
ENDDO |
2684 |
ENDDO |
2685 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2686 |
& 'SIsnPrcp',0,1,3,bi,bj,myThid) |
2687 |
CALL DIAGNOSTICS_SCALE_FILL(DIAGarrayB, |
2688 |
& tmpscal1,1,'SIdA ',0,1,3,bi,bj,myThid) |
2689 |
#ifdef ALLOW_ATM_TEMP |
2690 |
DO J=1,sNy |
2691 |
DO I=1,sNx |
2692 |
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
2693 |
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2694 |
ENDDO |
2695 |
ENDDO |
2696 |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
2697 |
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
2698 |
C |
2699 |
DO J=1,sNy |
2700 |
DO I=1,sNx |
2701 |
C the actual Freshwater flux of sublimated ice, >0 decreases ice |
2702 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2703 |
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
2704 |
& * SEAICE_rhoIce * recip_deltaTtherm |
2705 |
C the residual Freshwater flux of sublimated ice |
2706 |
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
2707 |
& * r_FWbySublim(I,J) |
2708 |
& * SEAICE_rhoIce * recip_deltaTtherm |
2709 |
C the latent heat flux |
2710 |
tmpscal1= EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2711 |
& + r_FWbySublim(I,J)*convertHI2PRECIP |
2712 |
tmpscal2= ( a_FWbySublim(I,J)-r_FWbySublim(I,J) ) |
2713 |
& * convertHI2PRECIP |
2714 |
tmpscal3= SEAICE_lhEvap+SEAICE_lhFusion |
2715 |
DIAGarrayB(I,J) = -maskC(I,J,kSurface,bi,bj)*rhoConstFresh |
2716 |
& * ( tmpscal1*SEAICE_lhEvap + tmpscal2*tmpscal3 ) |
2717 |
ENDDO |
2718 |
ENDDO |
2719 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
2720 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
2721 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
2722 |
#endif /* ALLOW_ATM_TEMP */ |
2723 |
|
2724 |
ENDIF |
2725 |
#endif /* ALLOW_DIAGNOSTICS */ |
2726 |
|
2727 |
C close bi,bj loops |
2728 |
ENDDO |
2729 |
ENDDO |
2730 |
|
2731 |
|
2732 |
C =================================================================== |
2733 |
C =========PART 9: HF/FWF global integrals and balancing============= |
2734 |
C =================================================================== |
2735 |
|
2736 |
#ifdef ALLOW_BALANCE_FLUXES |
2737 |
|
2738 |
c 1) global sums |
2739 |
# ifdef ALLOW_AUTODIFF_TAMC |
2740 |
CADJ STORE FWFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2741 |
CADJ STORE HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2742 |
CADJ STORE FWF2HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2743 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2744 |
FWFsiGlob=0. _d 0 |
2745 |
IF ( balanceEmPmR ) |
2746 |
& CALL GLOBAL_SUM_TILE_RL( FWFsiTile, FWFsiGlob, myThid ) |
2747 |
FWF2HFsiGlob=0. _d 0 |
2748 |
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2749 |
CALL GLOBAL_SUM_TILE_RL(FWF2HFsiTile, FWF2HFsiGlob, myThid) |
2750 |
ELSEIF ( balanceEmPmR ) THEN |
2751 |
FWF2HFsiGlob=HeatCapacity_Cp * temp_EvPrRn * globalArea |
2752 |
ENDIF |
2753 |
HFsiGlob=0. _d 0 |
2754 |
IF ( balanceQnet ) |
2755 |
& CALL GLOBAL_SUM_TILE_RL( HFsiTile, HFsiGlob, myThid ) |
2756 |
|
2757 |
c 2) global means |
2758 |
c mean SIatmFW |
2759 |
tmpscal0=FWFsiGlob / globalArea |
2760 |
c corresponding mean advection by atm to ocean+ice water exchange |
2761 |
c (if mean SIatmFW was removed uniformely from ocean) |
2762 |
tmpscal1=FWFsiGlob / globalArea * FWF2HFsiGlob / globalArea |
2763 |
c mean SItflux (before potential adjustement due to SIatmFW) |
2764 |
tmpscal2=HFsiGlob / globalArea |
2765 |
c mean SItflux (after potential adjustement due to SIatmFW) |
2766 |
IF ( balanceEmPmR ) tmpscal2=tmpscal2-tmpscal1 |
2767 |
|
2768 |
c 3) balancing adjustments |
2769 |
IF ( balanceEmPmR ) THEN |
2770 |
DO bj=myByLo(myThid),myByHi(myThid) |
2771 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
2772 |
DO j=1-OLy,sNy+OLy |
2773 |
DO i=1-OLx,sNx+OLx |
2774 |
empmr(i,j,bi,bj) = empmr(i,j,bi,bj) - tmpscal0 |
2775 |
SIatmFW(i,j,bi,bj) = SIatmFW(i,j,bi,bj) - tmpscal0 |
2776 |
c adjust SItflux consistently |
2777 |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND. |
2778 |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2779 |
tmpscal1= |
2780 |
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2781 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND. |
2782 |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2783 |
tmpscal1= |
2784 |
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2785 |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2786 |
tmpscal1= |
2787 |
& HeatCapacity_Cp*(temp_EvPrRn - theta(I,J,kSurface,bi,bj)) |
2788 |
ELSE |
2789 |
tmpscal1=ZERO |
2790 |
ENDIF |
2791 |
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal0*tmpscal1 |
2792 |
c no qnet or tflux adjustement is needed |
2793 |
ENDDO |
2794 |
ENDDO |
2795 |
ENDDO |
2796 |
ENDDO |
2797 |
IF ( balancePrintMean ) THEN |
2798 |
_BEGIN_MASTER( myThid ) |
2799 |
WRITE(msgBuf,'(a,a,e24.17)') 'rm Global mean of ', |
2800 |
& 'SIatmFW = ', tmpscal0 |
2801 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2802 |
& SQUEEZE_RIGHT , myThid) |
2803 |
_END_MASTER( myThid ) |
2804 |
ENDIF |
2805 |
ENDIF |
2806 |
IF ( balanceQnet ) THEN |
2807 |
DO bj=myByLo(myThid),myByHi(myThid) |
2808 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
2809 |
DO j=1-OLy,sNy+OLy |
2810 |
DO i=1-OLx,sNx+OLx |
2811 |
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal2 |
2812 |
qnet(i,j,bi,bj) = qnet(i,j,bi,bj) - tmpscal2 |
2813 |
SIatmQnt(i,j,bi,bj) = SIatmQnt(i,j,bi,bj) - tmpscal2 |
2814 |
ENDDO |
2815 |
ENDDO |
2816 |
ENDDO |
2817 |
ENDDO |
2818 |
IF ( balancePrintMean ) THEN |
2819 |
_BEGIN_MASTER( myThid ) |
2820 |
WRITE(msgBuf,'(a,a,e24.17)') 'rm Global mean of ', |
2821 |
& 'SItflux = ', tmpscal2 |
2822 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2823 |
& SQUEEZE_RIGHT , myThid) |
2824 |
_END_MASTER( myThid ) |
2825 |
ENDIF |
2826 |
ENDIF |
2827 |
#endif /* ALLOW_BALANCE_FLUXES */ |
2828 |
|
2829 |
#ifdef ALLOW_DIAGNOSTICS |
2830 |
c these diags need to be done outside of the bi,bj loop so that |
2831 |
c we may do potential global mean adjustement to them consistently. |
2832 |
CALL DIAGNOSTICS_FILL(SItflux, |
2833 |
& 'SItflux ',0,1,0,1,1,myThid) |
2834 |
CALL DIAGNOSTICS_FILL(SIatmQnt, |
2835 |
& 'SIatmQnt',0,1,0,1,1,myThid) |
2836 |
c SIatmFW follows the same convention as empmr -- SIatmFW diag does not |
2837 |
tmpscal1= - 1. _d 0 |
2838 |
CALL DIAGNOSTICS_SCALE_FILL(SIatmFW, |
2839 |
& tmpscal1,1,'SIatmFW ',0,1,0,1,1,myThid) |
2840 |
#endif /* ALLOW_DIAGNOSTICS */ |
2841 |
|
2842 |
RETURN |
2843 |
END |