| 1 |
dimitri |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_growth.F,v 1.162 2012/03/15 03:07:31 jmc Exp $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "SEAICE_OPTIONS.h" |
| 5 |
|
|
#ifdef ALLOW_EXF |
| 6 |
|
|
# include "EXF_OPTIONS.h" |
| 7 |
|
|
#endif |
| 8 |
|
|
|
| 9 |
|
|
CBOP |
| 10 |
|
|
C !ROUTINE: SEAICE_GROWTH |
| 11 |
|
|
C !INTERFACE: |
| 12 |
|
|
SUBROUTINE SEAICE_GROWTH( myTime, myIter, myThid ) |
| 13 |
|
|
C !DESCRIPTION: \bv |
| 14 |
|
|
C *==========================================================* |
| 15 |
|
|
C | SUBROUTINE seaice_growth |
| 16 |
|
|
C | o Updata ice thickness and snow depth |
| 17 |
|
|
C *==========================================================* |
| 18 |
|
|
C \ev |
| 19 |
|
|
|
| 20 |
|
|
C !USES: |
| 21 |
|
|
IMPLICIT NONE |
| 22 |
|
|
C === Global variables === |
| 23 |
|
|
#include "SIZE.h" |
| 24 |
|
|
#include "EEPARAMS.h" |
| 25 |
|
|
#include "PARAMS.h" |
| 26 |
|
|
#include "DYNVARS.h" |
| 27 |
|
|
#include "GRID.h" |
| 28 |
|
|
#include "FFIELDS.h" |
| 29 |
|
|
#include "SEAICE_SIZE.h" |
| 30 |
|
|
#include "SEAICE_PARAMS.h" |
| 31 |
|
|
#include "SEAICE.h" |
| 32 |
|
|
#include "SEAICE_TRACER.h" |
| 33 |
|
|
#ifdef ALLOW_EXF |
| 34 |
|
|
# include "EXF_PARAM.h" |
| 35 |
|
|
# include "EXF_FIELDS.h" |
| 36 |
|
|
#endif |
| 37 |
|
|
#ifdef ALLOW_SALT_PLUME |
| 38 |
|
|
# include "SALT_PLUME.h" |
| 39 |
|
|
#endif |
| 40 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 41 |
|
|
# include "tamc.h" |
| 42 |
|
|
#endif |
| 43 |
|
|
|
| 44 |
|
|
C !INPUT/OUTPUT PARAMETERS: |
| 45 |
|
|
C === Routine arguments === |
| 46 |
|
|
C myTime :: Simulation time |
| 47 |
|
|
C myIter :: Simulation timestep number |
| 48 |
|
|
C myThid :: Thread no. that called this routine. |
| 49 |
|
|
_RL myTime |
| 50 |
|
|
INTEGER myIter, myThid |
| 51 |
|
|
CEOP |
| 52 |
|
|
|
| 53 |
|
|
C !FUNCTIONS: |
| 54 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 55 |
|
|
LOGICAL DIAGNOSTICS_IS_ON |
| 56 |
|
|
EXTERNAL DIAGNOSTICS_IS_ON |
| 57 |
|
|
#endif |
| 58 |
|
|
|
| 59 |
|
|
C !LOCAL VARIABLES: |
| 60 |
|
|
C === Local variables === |
| 61 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
| 62 |
|
|
C msgBuf :: Informational/error message buffer |
| 63 |
|
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
| 64 |
|
|
c ToM>>> |
| 65 |
dimitri |
1.1 |
C |
| 66 |
|
|
C unit/sign convention: |
| 67 |
|
|
C Within the thermodynamic computation all stocks, except HSNOW, |
| 68 |
|
|
C are in 'effective ice meters' units, and >0 implies more ice. |
| 69 |
|
|
C This holds for stocks due to ocean and atmosphere heat, |
| 70 |
|
|
C at the outset of 'PART 2: determine heat fluxes/stocks' |
| 71 |
|
|
C and until 'PART 7: determine ocean model forcing' |
| 72 |
|
|
C This strategy minimizes the need for multiplications/divisions |
| 73 |
|
|
C by ice fraction, heat capacity, etc. The only conversions that |
| 74 |
|
|
C occurs are for the HSNOW (in effective snow meters) and |
| 75 |
|
|
C PRECIP (fresh water m/s). |
| 76 |
|
|
C |
| 77 |
|
|
C HEFF is effective Hice thickness (m3/m2) |
| 78 |
|
|
C HSNOW is Heffective snow thickness (m3/m2) |
| 79 |
|
|
C HSALT is Heffective salt content (g/m2) |
| 80 |
|
|
C AREA is the seaice cover fraction (0<=AREA<=1) |
| 81 |
|
|
C Q denotes heat stocks -- converted to ice stocks (m3/m2) early on |
| 82 |
|
|
C |
| 83 |
|
|
C For all other stocks/increments, such as d_HEFFbyATMonOCN |
| 84 |
|
|
C or a_QbyATM_cover, the naming convention is as follows: |
| 85 |
|
|
C The prefix 'a_' means available, the prefix 'd_' means delta |
| 86 |
|
|
C (i.e. increment), and the prefix 'r_' means residual. |
| 87 |
|
|
C The suffix '_cover' denotes a value for the ice covered fraction |
| 88 |
|
|
C of the grid cell, whereas '_open' is for the open water fraction. |
| 89 |
|
|
C The main part of the name states what ice/snow stock is concerned |
| 90 |
|
|
C (e.g. QbyATM or HEFF), and how it is affected (e.g. d_HEFFbyATMonOCN |
| 91 |
|
|
C is the increment of HEFF due to the ATMosphere extracting heat from the |
| 92 |
|
|
C OCeaN surface, or providing heat to the OCeaN surface). |
| 93 |
|
|
|
| 94 |
|
|
C i,j,bi,bj :: Loop counters |
| 95 |
|
|
INTEGER i, j, bi, bj |
| 96 |
|
|
C number of surface interface layer |
| 97 |
|
|
INTEGER kSurface |
| 98 |
|
|
C constants |
| 99 |
|
|
_RL tempFrz, ICE2SNOW, SNOW2ICE |
| 100 |
|
|
_RL QI, QS, recip_QI |
| 101 |
|
|
|
| 102 |
|
|
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
| 103 |
|
|
_RL TmixLoc (1:sNx,1:sNy) |
| 104 |
|
|
|
| 105 |
|
|
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
| 106 |
|
|
C the atmosphere and the ocean surface - for ice covered water |
| 107 |
|
|
C a_QbyATM_open :: same but for open water |
| 108 |
|
|
C r_QbyATM_cover :: residual of a_QbyATM_cover after freezing/melting processes |
| 109 |
|
|
C r_QbyATM_open :: same but for open water |
| 110 |
|
|
_RL a_QbyATM_cover (1:sNx,1:sNy) |
| 111 |
|
|
_RL a_QbyATM_open (1:sNx,1:sNy) |
| 112 |
|
|
_RL r_QbyATM_cover (1:sNx,1:sNy) |
| 113 |
|
|
_RL r_QbyATM_open (1:sNx,1:sNy) |
| 114 |
|
|
C a_QSWbyATM_open - short wave heat flux over ocean in W/m^2 |
| 115 |
|
|
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
| 116 |
|
|
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
| 117 |
|
|
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
| 118 |
|
|
C a_QbyOCN :: available heat (in in W/m^2) due to the |
| 119 |
|
|
C interaction of the ice pack and the ocean surface |
| 120 |
|
|
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
| 121 |
|
|
C processes have been accounted for |
| 122 |
|
|
_RL a_QbyOCN (1:sNx,1:sNy) |
| 123 |
|
|
_RL r_QbyOCN (1:sNx,1:sNy) |
| 124 |
|
|
|
| 125 |
|
|
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
| 126 |
|
|
_RL convertQ2HI, convertHI2Q |
| 127 |
|
|
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
| 128 |
|
|
_RL convertPRECIP2HI, convertHI2PRECIP |
| 129 |
|
|
|
| 130 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 131 |
|
|
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
| 132 |
|
|
_RL d_AREAbyATM (1:sNx,1:sNy) |
| 133 |
|
|
_RL d_AREAbyOCN (1:sNx,1:sNy) |
| 134 |
|
|
_RL d_AREAbyICE (1:sNx,1:sNy) |
| 135 |
|
|
#endif |
| 136 |
|
|
|
| 137 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
| 138 |
|
|
C ICE/SNOW stocks tendency associated with relaxation towards observation |
| 139 |
|
|
_RL d_AREAbyRLX (1:sNx,1:sNy) |
| 140 |
|
|
c The change of mean ice thickness due to relaxation |
| 141 |
|
|
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
| 142 |
|
|
#endif |
| 143 |
|
|
|
| 144 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 145 |
|
|
c The change of mean ice area due to out-of-bounds values following |
| 146 |
|
|
c sea ice dynamics |
| 147 |
|
|
_RL d_AREAbyNEG (1:sNx,1:sNy) |
| 148 |
|
|
#endif |
| 149 |
dimitri |
1.1 |
c The change of mean ice thickness due to out-of-bounds values following |
| 150 |
dimitri |
1.2 |
c sea ice dynamics |
| 151 |
dimitri |
1.1 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
| 152 |
|
|
|
| 153 |
|
|
c The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
| 154 |
|
|
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
| 155 |
|
|
|
| 156 |
|
|
c The sum of mean ice thickness increments due to atmospheric fluxes over the open water |
| 157 |
|
|
c fraction and ice-covered fractions of the grid cell |
| 158 |
|
|
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
| 159 |
|
|
c The change of mean ice thickness due to flooding by snow |
| 160 |
|
|
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
| 161 |
|
|
|
| 162 |
|
|
c The mean ice thickness increments due to atmospheric fluxes over the open water |
| 163 |
|
|
c fraction and ice-covered fractions of the grid cell, respectively |
| 164 |
|
|
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
| 165 |
|
|
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
| 166 |
|
|
|
| 167 |
|
|
_RL d_HSNWbyNEG (1:sNx,1:sNy) |
| 168 |
|
|
_RL d_HSNWbyATMonSNW (1:sNx,1:sNy) |
| 169 |
|
|
_RL d_HSNWbyOCNonSNW (1:sNx,1:sNy) |
| 170 |
|
|
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
| 171 |
|
|
|
| 172 |
|
|
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
| 173 |
|
|
C |
| 174 |
|
|
C a_FWbySublim :: fresh water flux implied by latent heat of |
| 175 |
|
|
C sublimation to atmosphere, same sign convention |
| 176 |
|
|
C as EVAP (positive upward) |
| 177 |
|
|
_RL a_FWbySublim (1:sNx,1:sNy) |
| 178 |
|
|
_RL r_FWbySublim (1:sNx,1:sNy) |
| 179 |
|
|
_RL d_HEFFbySublim (1:sNx,1:sNy) |
| 180 |
|
|
_RL d_HSNWbySublim (1:sNx,1:sNy) |
| 181 |
|
|
|
| 182 |
torge |
1.3 |
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
| 183 |
dimitri |
1.1 |
C The latent heat flux which will sublimate all snow and ice |
| 184 |
|
|
C over one time step |
| 185 |
|
|
_RL latentHeatFluxMax (1:sNx,1:sNy) |
| 186 |
|
|
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
| 187 |
|
|
#endif |
| 188 |
|
|
|
| 189 |
|
|
C actual ice thickness (with upper and lower limit) |
| 190 |
|
|
_RL heffActual (1:sNx,1:sNy) |
| 191 |
|
|
C actual snow thickness |
| 192 |
|
|
_RL hsnowActual (1:sNx,1:sNy) |
| 193 |
|
|
C actual ice thickness (with lower limit only) Reciprocal |
| 194 |
|
|
_RL recip_heffActual (1:sNx,1:sNy) |
| 195 |
|
|
C local value (=1/HO or 1/HO_south) |
| 196 |
|
|
_RL recip_HO |
| 197 |
|
|
C local value (=1/ice thickness) |
| 198 |
|
|
_RL recip_HH |
| 199 |
|
|
|
| 200 |
|
|
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
| 201 |
|
|
_RL AREApreTH (1:sNx,1:sNy) |
| 202 |
|
|
_RL HEFFpreTH (1:sNx,1:sNy) |
| 203 |
|
|
_RL HSNWpreTH (1:sNx,1:sNy) |
| 204 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 205 |
|
|
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
| 206 |
|
|
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
| 207 |
|
|
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
| 208 |
|
|
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
| 209 |
|
|
_RL heffFracFactor (1:sNx,1:sNy,1:nITD) |
| 210 |
|
|
#endif |
| 211 |
dimitri |
1.1 |
|
| 212 |
|
|
C wind speed |
| 213 |
|
|
_RL UG (1:sNx,1:sNy) |
| 214 |
|
|
#ifdef ALLOW_ATM_WIND |
| 215 |
|
|
_RL SPEED_SQ |
| 216 |
|
|
#endif |
| 217 |
|
|
|
| 218 |
|
|
C Regularization values squared |
| 219 |
|
|
_RL area_reg_sq, hice_reg_sq |
| 220 |
|
|
|
| 221 |
|
|
C pathological cases thresholds |
| 222 |
|
|
_RL heffTooHeavy |
| 223 |
|
|
|
| 224 |
|
|
_RL lhSublim |
| 225 |
|
|
|
| 226 |
|
|
C temporary variables available for the various computations |
| 227 |
|
|
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
| 228 |
|
|
_RL tmparr1 (1:sNx,1:sNy) |
| 229 |
|
|
|
| 230 |
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
| 231 |
|
|
_RL saltFluxAdjust (1:sNx,1:sNy) |
| 232 |
|
|
#endif |
| 233 |
|
|
|
| 234 |
|
|
INTEGER ilockey |
| 235 |
torge |
1.3 |
INTEGER it |
| 236 |
|
|
#ifdef SEAICE_ITD |
| 237 |
|
|
INTEGER K |
| 238 |
|
|
#endif |
| 239 |
dimitri |
1.1 |
_RL pFac |
| 240 |
|
|
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
| 241 |
|
|
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
| 242 |
|
|
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
| 243 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 244 |
|
|
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
| 245 |
|
|
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
| 246 |
|
|
#endif |
| 247 |
dimitri |
1.1 |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
| 248 |
|
|
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
| 249 |
|
|
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
| 250 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 251 |
|
|
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
| 252 |
|
|
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
| 253 |
|
|
#endif |
| 254 |
dimitri |
1.1 |
C Helper variables: reciprocal of some constants |
| 255 |
|
|
_RL recip_multDim |
| 256 |
|
|
_RL recip_deltaTtherm |
| 257 |
|
|
_RL recip_rhoIce |
| 258 |
|
|
|
| 259 |
|
|
C Factor by which we increase the upper ocean friction velocity (u*) when |
| 260 |
|
|
C ice is absent in a grid cell (dimensionless) |
| 261 |
|
|
_RL MixedLayerTurbulenceFactor |
| 262 |
|
|
|
| 263 |
|
|
#ifdef ALLOW_SITRACER |
| 264 |
|
|
INTEGER iTr |
| 265 |
|
|
CHARACTER*8 diagName |
| 266 |
|
|
#endif |
| 267 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 268 |
|
|
c Helper variables for diagnostics |
| 269 |
|
|
_RL DIAGarrayA (1:sNx,1:sNy) |
| 270 |
|
|
_RL DIAGarrayB (1:sNx,1:sNy) |
| 271 |
|
|
_RL DIAGarrayC (1:sNx,1:sNy) |
| 272 |
|
|
_RL DIAGarrayD (1:sNx,1:sNy) |
| 273 |
|
|
#endif |
| 274 |
|
|
|
| 275 |
|
|
|
| 276 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 277 |
|
|
|
| 278 |
|
|
C =================================================================== |
| 279 |
|
|
C =================PART 0: constants and initializations============= |
| 280 |
|
|
C =================================================================== |
| 281 |
|
|
|
| 282 |
|
|
IF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN |
| 283 |
|
|
kSurface = Nr |
| 284 |
|
|
ELSE |
| 285 |
|
|
kSurface = 1 |
| 286 |
|
|
ENDIF |
| 287 |
|
|
|
| 288 |
|
|
C avoid unnecessary divisions in loops |
| 289 |
torge |
1.3 |
#ifdef SEAICE_ITD |
| 290 |
|
|
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
| 291 |
|
|
#endif |
| 292 |
dimitri |
1.1 |
recip_multDim = SEAICE_multDim |
| 293 |
|
|
recip_multDim = ONE / recip_multDim |
| 294 |
|
|
C above/below: double/single precision calculation of recip_multDim |
| 295 |
|
|
c recip_multDim = 1./float(SEAICE_multDim) |
| 296 |
|
|
recip_deltaTtherm = ONE / SEAICE_deltaTtherm |
| 297 |
|
|
recip_rhoIce = ONE / SEAICE_rhoIce |
| 298 |
|
|
|
| 299 |
|
|
C Cutoff for iceload |
| 300 |
|
|
heffTooHeavy=drF(kSurface) / 5. _d 0 |
| 301 |
|
|
|
| 302 |
|
|
C RATIO OF SEA ICE DENSITY to SNOW DENSITY |
| 303 |
|
|
ICE2SNOW = SEAICE_rhoIce/SEAICE_rhoSnow |
| 304 |
|
|
SNOW2ICE = ONE / ICE2SNOW |
| 305 |
|
|
|
| 306 |
|
|
C HEAT OF FUSION OF ICE (J/m^3) |
| 307 |
|
|
QI = SEAICE_rhoIce*SEAICE_lhFusion |
| 308 |
|
|
recip_QI = ONE / QI |
| 309 |
|
|
C HEAT OF FUSION OF SNOW (J/m^3) |
| 310 |
|
|
QS = SEAICE_rhoSnow*SEAICE_lhFusion |
| 311 |
|
|
|
| 312 |
|
|
C ICE LATENT HEAT CONSTANT |
| 313 |
|
|
lhSublim = SEAICE_lhEvap + SEAICE_lhFusion |
| 314 |
|
|
|
| 315 |
|
|
C regularization constants |
| 316 |
|
|
area_reg_sq = SEAICE_area_reg * SEAICE_area_reg |
| 317 |
|
|
hice_reg_sq = SEAICE_hice_reg * SEAICE_hice_reg |
| 318 |
|
|
|
| 319 |
|
|
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
| 320 |
|
|
convertQ2HI=SEAICE_deltaTtherm/QI |
| 321 |
|
|
convertHI2Q = ONE/convertQ2HI |
| 322 |
|
|
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
| 323 |
|
|
convertPRECIP2HI=SEAICE_deltaTtherm*rhoConstFresh/SEAICE_rhoIce |
| 324 |
|
|
convertHI2PRECIP = ONE/convertPRECIP2HI |
| 325 |
|
|
|
| 326 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 327 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 328 |
|
|
|
| 329 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 330 |
|
|
act1 = bi - myBxLo(myThid) |
| 331 |
|
|
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
| 332 |
|
|
act2 = bj - myByLo(myThid) |
| 333 |
|
|
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
| 334 |
|
|
act3 = myThid - 1 |
| 335 |
|
|
max3 = nTx*nTy |
| 336 |
|
|
act4 = ikey_dynamics - 1 |
| 337 |
|
|
iicekey = (act1 + 1) + act2*max1 |
| 338 |
|
|
& + act3*max1*max2 |
| 339 |
|
|
& + act4*max1*max2*max3 |
| 340 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 341 |
|
|
|
| 342 |
|
|
|
| 343 |
|
|
C array initializations |
| 344 |
|
|
C ===================== |
| 345 |
|
|
|
| 346 |
|
|
DO J=1,sNy |
| 347 |
|
|
DO I=1,sNx |
| 348 |
|
|
a_QbyATM_cover (I,J) = 0.0 _d 0 |
| 349 |
|
|
a_QbyATM_open(I,J) = 0.0 _d 0 |
| 350 |
|
|
r_QbyATM_cover (I,J) = 0.0 _d 0 |
| 351 |
|
|
r_QbyATM_open (I,J) = 0.0 _d 0 |
| 352 |
|
|
|
| 353 |
|
|
a_QSWbyATM_open (I,J) = 0.0 _d 0 |
| 354 |
|
|
a_QSWbyATM_cover (I,J) = 0.0 _d 0 |
| 355 |
|
|
|
| 356 |
|
|
a_QbyOCN (I,J) = 0.0 _d 0 |
| 357 |
|
|
r_QbyOCN (I,J) = 0.0 _d 0 |
| 358 |
|
|
|
| 359 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 360 |
|
|
d_AREAbyATM(I,J) = 0.0 _d 0 |
| 361 |
|
|
d_AREAbyICE(I,J) = 0.0 _d 0 |
| 362 |
|
|
d_AREAbyOCN(I,J) = 0.0 _d 0 |
| 363 |
|
|
#endif |
| 364 |
|
|
|
| 365 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
| 366 |
|
|
d_AREAbyRLX(I,J) = 0.0 _d 0 |
| 367 |
|
|
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
| 368 |
|
|
#endif |
| 369 |
|
|
|
| 370 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 371 |
|
|
d_AREAbyNEG(I,J) = 0.0 _d 0 |
| 372 |
|
|
#endif |
| 373 |
dimitri |
1.1 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
| 374 |
|
|
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
| 375 |
|
|
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
| 376 |
|
|
d_HEFFbyFLOODING(I,J) = 0.0 _d 0 |
| 377 |
|
|
|
| 378 |
|
|
d_HEFFbyATMonOCN_open(I,J) = 0.0 _d 0 |
| 379 |
|
|
d_HEFFbyATMonOCN_cover(I,J) = 0.0 _d 0 |
| 380 |
|
|
|
| 381 |
|
|
d_HSNWbyNEG(I,J) = 0.0 _d 0 |
| 382 |
|
|
d_HSNWbyATMonSNW(I,J) = 0.0 _d 0 |
| 383 |
|
|
d_HSNWbyOCNonSNW(I,J) = 0.0 _d 0 |
| 384 |
|
|
d_HSNWbyRAIN(I,J) = 0.0 _d 0 |
| 385 |
|
|
a_FWbySublim(I,J) = 0.0 _d 0 |
| 386 |
|
|
r_FWbySublim(I,J) = 0.0 _d 0 |
| 387 |
|
|
d_HEFFbySublim(I,J) = 0.0 _d 0 |
| 388 |
|
|
d_HSNWbySublim(I,J) = 0.0 _d 0 |
| 389 |
|
|
#ifdef SEAICE_CAP_SUBLIM |
| 390 |
|
|
latentHeatFluxMax(I,J) = 0.0 _d 0 |
| 391 |
|
|
#endif |
| 392 |
|
|
c |
| 393 |
|
|
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
| 394 |
|
|
|
| 395 |
|
|
tmparr1(I,J) = 0.0 _d 0 |
| 396 |
|
|
|
| 397 |
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
| 398 |
|
|
saltFluxAdjust(I,J) = 0.0 _d 0 |
| 399 |
|
|
#endif |
| 400 |
|
|
DO IT=1,SEAICE_multDim |
| 401 |
|
|
ticeInMult(I,J,IT) = 0.0 _d 0 |
| 402 |
|
|
ticeOutMult(I,J,IT) = 0.0 _d 0 |
| 403 |
|
|
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
| 404 |
|
|
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
| 405 |
|
|
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
| 406 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 407 |
|
|
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
| 408 |
|
|
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
| 409 |
|
|
#endif |
| 410 |
torge |
1.3 |
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
| 411 |
dimitri |
1.1 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
| 412 |
|
|
#endif |
| 413 |
|
|
ENDDO |
| 414 |
|
|
ENDDO |
| 415 |
|
|
ENDDO |
| 416 |
|
|
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
| 417 |
|
|
DO J=1-oLy,sNy+oLy |
| 418 |
|
|
DO I=1-oLx,sNx+oLx |
| 419 |
|
|
frWtrAtm(I,J,bi,bj) = 0.0 _d 0 |
| 420 |
|
|
ENDDO |
| 421 |
|
|
ENDDO |
| 422 |
|
|
#endif |
| 423 |
|
|
|
| 424 |
|
|
|
| 425 |
|
|
C ===================================================================== |
| 426 |
|
|
C ===========PART 1: treat pathological cases (post advdiff)=========== |
| 427 |
|
|
C ===================================================================== |
| 428 |
|
|
|
| 429 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
| 430 |
|
|
|
| 431 |
|
|
DO J=1,sNy |
| 432 |
|
|
DO I=1,sNx |
| 433 |
|
|
HEFFpreTH(I,J)=HEFFNM1(I,J,bi,bj) |
| 434 |
|
|
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
| 435 |
|
|
AREApreTH(I,J)=AREANM1(I,J,bi,bj) |
| 436 |
|
|
d_HEFFbyNEG(I,J)=0. _d 0 |
| 437 |
|
|
d_HSNWbyNEG(I,J)=0. _d 0 |
| 438 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 439 |
|
|
DIAGarrayA(I,J) = AREANM1(I,J,bi,bj) |
| 440 |
|
|
DIAGarrayB(I,J) = AREANM1(I,J,bi,bj) |
| 441 |
|
|
DIAGarrayC(I,J) = HEFFNM1(I,J,bi,bj) |
| 442 |
|
|
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
| 443 |
|
|
#endif |
| 444 |
|
|
ENDDO |
| 445 |
|
|
ENDDO |
| 446 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 447 |
|
|
DO K=1,nITD |
| 448 |
|
|
DO J=1,sNy |
| 449 |
|
|
DO I=1,sNx |
| 450 |
|
|
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
| 451 |
|
|
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
| 452 |
|
|
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
| 453 |
|
|
ENDDO |
| 454 |
|
|
ENDDO |
| 455 |
|
|
ENDDO |
| 456 |
|
|
#endif |
| 457 |
dimitri |
1.1 |
|
| 458 |
|
|
#else /* SEAICE_GROWTH_LEGACY */ |
| 459 |
|
|
|
| 460 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
| 461 |
|
|
Cgf no dependency through pathological cases treatment |
| 462 |
|
|
IF ( SEAICEadjMODE.EQ.0 ) THEN |
| 463 |
|
|
#endif |
| 464 |
|
|
|
| 465 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
| 466 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 467 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 468 |
|
|
C 0) relax sea ice concentration towards observation |
| 469 |
|
|
IF (SEAICE_tauAreaObsRelax .GT. 0.) THEN |
| 470 |
|
|
DO J=1,sNy |
| 471 |
|
|
DO I=1,sNx |
| 472 |
|
|
C d_AREAbyRLX(i,j) = 0. _d 0 |
| 473 |
|
|
C d_HEFFbyRLX(i,j) = 0. _d 0 |
| 474 |
|
|
IF ( obsSIce(I,J,bi,bj).GT.AREA(I,J,bi,bj)) THEN |
| 475 |
|
|
d_AREAbyRLX(i,j) = |
| 476 |
|
|
& SEAICE_deltaTtherm/SEAICE_tauAreaObsRelax |
| 477 |
|
|
& * (obsSIce(I,J,bi,bj) - AREA(I,J,bi,bj)) |
| 478 |
|
|
ENDIF |
| 479 |
|
|
IF ( obsSIce(I,J,bi,bj).GT.0. _d 0 .AND. |
| 480 |
|
|
& AREA(I,J,bi,bj).EQ.0. _d 0) THEN |
| 481 |
|
|
C d_HEFFbyRLX(i,j) = 1. _d 1 * siEps * d_AREAbyRLX(i,j) |
| 482 |
|
|
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
| 483 |
|
|
ENDIF |
| 484 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 485 |
|
|
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
| 486 |
|
|
& + d_AREAbyRLX(i,j) |
| 487 |
|
|
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
| 488 |
|
|
& + d_HEFFbyRLX(i,j) |
| 489 |
|
|
#endif |
| 490 |
dimitri |
1.1 |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj) + d_AREAbyRLX(i,j) |
| 491 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + d_HEFFbyRLX(i,j) |
| 492 |
|
|
ENDDO |
| 493 |
|
|
ENDDO |
| 494 |
|
|
ENDIF |
| 495 |
|
|
#endif /* SEAICE_ALLOW_AREA_RELAXATION */ |
| 496 |
|
|
|
| 497 |
|
|
C 1) treat the case of negative values: |
| 498 |
|
|
|
| 499 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 500 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 501 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 502 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 503 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 504 |
|
|
DO J=1,sNy |
| 505 |
|
|
DO I=1,sNx |
| 506 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 507 |
|
|
DO K=1,nITD |
| 508 |
torge |
1.3 |
tmpscal1=0. _d 0 |
| 509 |
dimitri |
1.2 |
tmpscal2=0. _d 0 |
| 510 |
|
|
tmpscal3=0. _d 0 |
| 511 |
|
|
tmpscal2=MAX(-HEFFITD(I,J,K,bi,bj),0. _d 0) |
| 512 |
|
|
HEFFITD(I,J,K,bi,bj)=HEFFITD(I,J,K,bi,bj)+tmpscal2 |
| 513 |
|
|
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
| 514 |
|
|
tmpscal3=MAX(-HSNOWITD(I,J,K,bi,bj),0. _d 0) |
| 515 |
|
|
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
| 516 |
|
|
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
| 517 |
torge |
1.3 |
tmpscal1=MAX(-AREAITD(I,J,K,bi,bj),0. _d 0) |
| 518 |
|
|
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj)+tmpscal1 |
| 519 |
|
|
d_AREAbyNEG(I,J)=d_AREAbyNEG(I,J)+tmpscal1 |
| 520 |
dimitri |
1.2 |
ENDDO |
| 521 |
torge |
1.3 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
| 522 |
|
|
C by calling SEAICE_ITD_SUM |
| 523 |
dimitri |
1.2 |
#else |
| 524 |
dimitri |
1.1 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
| 525 |
dimitri |
1.2 |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
| 526 |
|
|
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
| 527 |
dimitri |
1.1 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
| 528 |
|
|
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
| 529 |
torge |
1.3 |
#endif |
| 530 |
dimitri |
1.1 |
ENDDO |
| 531 |
|
|
ENDDO |
| 532 |
|
|
|
| 533 |
|
|
C 1.25) treat the case of very thin ice: |
| 534 |
|
|
|
| 535 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 536 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 537 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 538 |
|
|
DO J=1,sNy |
| 539 |
|
|
DO I=1,sNx |
| 540 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 541 |
|
|
DO K=1,nITD |
| 542 |
torge |
1.3 |
#endif |
| 543 |
|
|
tmpscal2=0. _d 0 |
| 544 |
|
|
tmpscal3=0. _d 0 |
| 545 |
|
|
#ifdef SEAICE_ITD |
| 546 |
dimitri |
1.2 |
IF (HEFFITD(I,J,K,bi,bj).LE.siEps) THEN |
| 547 |
|
|
tmpscal2=-HEFFITD(I,J,K,bi,bj) |
| 548 |
|
|
tmpscal3=-HSNOWITD(I,J,K,bi,bj) |
| 549 |
|
|
TICES(I,J,K,bi,bj)=celsius2K |
| 550 |
torge |
1.3 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
| 551 |
dimitri |
1.2 |
ENDIF |
| 552 |
torge |
1.3 |
HEFFITD(I,J,K,bi,bj) =HEFFITD(I,J,K,bi,bj) +tmpscal2 |
| 553 |
|
|
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
| 554 |
dimitri |
1.2 |
#else |
| 555 |
dimitri |
1.1 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
| 556 |
torge |
1.3 |
tmpscal2=-HEFF(I,J,bi,bj) |
| 557 |
|
|
tmpscal3=-HSNOW(I,J,bi,bj) |
| 558 |
|
|
TICE(I,J,bi,bj)=celsius2K |
| 559 |
|
|
DO IT=1,SEAICE_multDim |
| 560 |
|
|
TICES(I,J,IT,bi,bj)=celsius2K |
| 561 |
|
|
ENDDO |
| 562 |
dimitri |
1.1 |
ENDIF |
| 563 |
|
|
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+tmpscal2 |
| 564 |
torge |
1.3 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
| 565 |
|
|
#endif |
| 566 |
dimitri |
1.1 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
| 567 |
|
|
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
| 568 |
torge |
1.3 |
#ifdef SEAICE_ITD |
| 569 |
|
|
ENDDO |
| 570 |
dimitri |
1.2 |
#endif |
| 571 |
dimitri |
1.1 |
ENDDO |
| 572 |
|
|
ENDDO |
| 573 |
|
|
|
| 574 |
|
|
C 1.5) treat the case of area but no ice/snow: |
| 575 |
|
|
|
| 576 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 577 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 578 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 579 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 580 |
|
|
DO J=1,sNy |
| 581 |
|
|
DO I=1,sNx |
| 582 |
torge |
1.3 |
#ifdef SEAICE_ITD |
| 583 |
|
|
DO K=1,nITD |
| 584 |
|
|
IF ((HEFFITD(i,j,k,bi,bj).EQ.0. _d 0).AND. |
| 585 |
|
|
& (HSNOWITD(i,j,k,bi,bj).EQ.0. _d 0)) |
| 586 |
|
|
& AREAITD(I,J,K,bi,bj)=0. _d 0 |
| 587 |
|
|
ENDDO |
| 588 |
|
|
#else |
| 589 |
dimitri |
1.1 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
| 590 |
torge |
1.3 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
| 591 |
dimitri |
1.2 |
#endif |
| 592 |
dimitri |
1.1 |
ENDDO |
| 593 |
|
|
ENDDO |
| 594 |
|
|
|
| 595 |
|
|
C 2) treat the case of very small area: |
| 596 |
|
|
|
| 597 |
|
|
#ifndef DISABLE_AREA_FLOOR |
| 598 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 599 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 600 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 601 |
|
|
DO J=1,sNy |
| 602 |
|
|
DO I=1,sNx |
| 603 |
torge |
1.3 |
#ifdef SEAICE_ITD |
| 604 |
|
|
DO K=1,nITD |
| 605 |
|
|
IF ((HEFFITD(i,j,k,bi,bj).GT.0).OR. |
| 606 |
|
|
& (HSNOWITD(i,j,k,bi,bj).GT.0)) THEN |
| 607 |
|
|
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
| 608 |
|
|
C hence use SEAICE_area_floor devided by nITD |
| 609 |
|
|
C (or install a warning in e.g. seaice_readparms.F) |
| 610 |
|
|
AREAITD(I,J,K,bi,bj)= |
| 611 |
|
|
& MAX(AREAITD(I,J,K,bi,bj),SEAICE_area_floor/float(nITD)) |
| 612 |
|
|
ENDIF |
| 613 |
|
|
ENDDO |
| 614 |
|
|
#else |
| 615 |
dimitri |
1.1 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
| 616 |
|
|
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
| 617 |
torge |
1.3 |
ENDIF |
| 618 |
dimitri |
1.2 |
#endif |
| 619 |
dimitri |
1.1 |
ENDDO |
| 620 |
|
|
ENDDO |
| 621 |
|
|
#endif /* DISABLE_AREA_FLOOR */ |
| 622 |
|
|
|
| 623 |
|
|
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
| 624 |
|
|
|
| 625 |
torge |
1.3 |
CToM for SEAICE_ITD this case is treated in SEAICE_ITD_REDIST, |
| 626 |
|
|
C which is called at end of PART 1 below |
| 627 |
|
|
#ifndef SEAICE_ITD |
| 628 |
dimitri |
1.1 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 629 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 630 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 631 |
|
|
DO J=1,sNy |
| 632 |
|
|
DO I=1,sNx |
| 633 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 634 |
|
|
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
| 635 |
|
|
#endif |
| 636 |
|
|
#ifdef ALLOW_SITRACER |
| 637 |
|
|
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
| 638 |
|
|
#endif |
| 639 |
|
|
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
| 640 |
torge |
1.3 |
ENDDO |
| 641 |
|
|
ENDDO |
| 642 |
|
|
#endif /* SEAICE_ITD */ |
| 643 |
|
|
|
| 644 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 645 |
torge |
1.3 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
| 646 |
|
|
C first, update AREA and HEFF: |
| 647 |
|
|
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
| 648 |
|
|
C |
| 649 |
|
|
DO J=1,sNy |
| 650 |
|
|
DO I=1,sNx |
| 651 |
|
|
C TICES was changed above (item 1.25), now update TICE as ice volume |
| 652 |
|
|
C weighted average of TICES |
| 653 |
|
|
tmpscal1 = 0. _d 0 |
| 654 |
|
|
tmpscal2 = 0. _d 0 |
| 655 |
dimitri |
1.2 |
DO K=1,nITD |
| 656 |
torge |
1.3 |
tmpscal1=tmpscal1 + TICES(I,J,K,bi,bj)*HEFFITD(I,J,K,bi,bj) |
| 657 |
|
|
tmpscal2=tmpscal2 + HEFFITD(I,J,K,bi,bj) |
| 658 |
dimitri |
1.2 |
ENDDO |
| 659 |
torge |
1.3 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
| 660 |
|
|
C lines of item 2.5 that were omitted: |
| 661 |
|
|
C in 2.5 these lines are executed before "ridging" is applied to AREA |
| 662 |
|
|
C hence we execute them here before SEAICE_ITD_REDIST is called |
| 663 |
|
|
C although this means that AREA has not been completely regularized |
| 664 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 665 |
|
|
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
| 666 |
|
|
#endif |
| 667 |
|
|
#ifdef ALLOW_SITRACER |
| 668 |
|
|
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
| 669 |
dimitri |
1.2 |
#endif |
| 670 |
dimitri |
1.1 |
ENDDO |
| 671 |
|
|
ENDDO |
| 672 |
|
|
|
| 673 |
torge |
1.3 |
CToM finally make sure that all categories meet their thickness limits |
| 674 |
|
|
C which includes ridging as in item 2.5 |
| 675 |
|
|
C and update AREA, HEFF, and HSNOW |
| 676 |
|
|
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
| 677 |
|
|
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
| 678 |
|
|
|
| 679 |
dimitri |
1.2 |
#endif |
| 680 |
dimitri |
1.1 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
| 681 |
torge |
1.3 |
C ENDIF SEAICEadjMODE.EQ.0 |
| 682 |
dimitri |
1.1 |
ENDIF |
| 683 |
|
|
#endif |
| 684 |
|
|
|
| 685 |
|
|
C 3) store regularized values of heff, hsnow, area at the onset of thermo. |
| 686 |
|
|
DO J=1,sNy |
| 687 |
|
|
DO I=1,sNx |
| 688 |
|
|
HEFFpreTH(I,J)=HEFF(I,J,bi,bj) |
| 689 |
|
|
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
| 690 |
|
|
AREApreTH(I,J)=AREA(I,J,bi,bj) |
| 691 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 692 |
|
|
DIAGarrayB(I,J) = AREA(I,J,bi,bj) |
| 693 |
|
|
DIAGarrayC(I,J) = HEFF(I,J,bi,bj) |
| 694 |
|
|
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
| 695 |
|
|
#endif |
| 696 |
|
|
#ifdef ALLOW_SITRACER |
| 697 |
|
|
SItrHEFF(I,J,bi,bj,1)=HEFF(I,J,bi,bj) |
| 698 |
|
|
SItrAREA(I,J,bi,bj,2)=AREA(I,J,bi,bj) |
| 699 |
|
|
#endif |
| 700 |
|
|
ENDDO |
| 701 |
|
|
ENDDO |
| 702 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 703 |
|
|
DO K=1,nITD |
| 704 |
|
|
DO J=1,sNy |
| 705 |
|
|
DO I=1,sNx |
| 706 |
|
|
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
| 707 |
|
|
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
| 708 |
|
|
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
| 709 |
torge |
1.3 |
|
| 710 |
|
|
C memorize areal and volume fraction of each ITD category |
| 711 |
|
|
IF (AREA(I,J,bi,bj).GT.0) THEN |
| 712 |
|
|
areaFracFactor(I,J,K)=AREAITD(I,J,K,bi,bj)/AREA(I,J,bi,bj) |
| 713 |
|
|
ELSE |
| 714 |
|
|
areaFracFactor(I,J,K)=ZERO |
| 715 |
|
|
ENDIF |
| 716 |
|
|
IF (HEFF(I,J,bi,bj).GT.0) THEN |
| 717 |
|
|
heffFracFactor(I,J,K)=HEFFITD(I,J,K,bi,bj)/HEFF(I,J,bi,bj) |
| 718 |
|
|
ELSE |
| 719 |
|
|
heffFracFactor(I,J,K)=ZERO |
| 720 |
|
|
ENDIF |
| 721 |
|
|
ENDDO |
| 722 |
|
|
ENDDO |
| 723 |
|
|
ENDDO |
| 724 |
|
|
C prepare SItrHEFF to be computed as cumulative sum |
| 725 |
|
|
DO K=2,5 |
| 726 |
|
|
DO J=1,sNy |
| 727 |
|
|
DO I=1,sNx |
| 728 |
|
|
SItrHEFF(I,J,bi,bj,K)=ZERO |
| 729 |
dimitri |
1.2 |
ENDDO |
| 730 |
|
|
ENDDO |
| 731 |
|
|
ENDDO |
| 732 |
torge |
1.3 |
C prepare SItrAREA to be computed as cumulative sum |
| 733 |
|
|
DO J=1,sNy |
| 734 |
|
|
DO I=1,sNx |
| 735 |
|
|
SItrAREA(I,J,bi,bj,3)=ZERO |
| 736 |
|
|
ENDDO |
| 737 |
|
|
ENDDO |
| 738 |
dimitri |
1.2 |
#endif |
| 739 |
dimitri |
1.1 |
|
| 740 |
|
|
C 4) treat sea ice salinity pathological cases |
| 741 |
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
| 742 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 743 |
|
|
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 744 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 745 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 746 |
|
|
DO J=1,sNy |
| 747 |
|
|
DO I=1,sNx |
| 748 |
|
|
IF ( (HSALT(I,J,bi,bj) .LT. 0.0).OR. |
| 749 |
|
|
& (HEFF(I,J,bi,bj) .EQ. 0.0) ) THEN |
| 750 |
|
|
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
| 751 |
|
|
& HSALT(I,J,bi,bj) * recip_deltaTtherm |
| 752 |
|
|
HSALT(I,J,bi,bj) = 0.0 _d 0 |
| 753 |
|
|
ENDIF |
| 754 |
|
|
ENDDO |
| 755 |
|
|
ENDDO |
| 756 |
|
|
#endif /* SEAICE_VARIABLE_SALINITY */ |
| 757 |
|
|
|
| 758 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
| 759 |
|
|
|
| 760 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 761 |
|
|
IF ( useDiagnostics ) THEN |
| 762 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIareaPR',0,1,3,bi,bj,myThid) |
| 763 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIareaPT',0,1,3,bi,bj,myThid) |
| 764 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIheffPT',0,1,3,bi,bj,myThid) |
| 765 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayD,'SIhsnoPT',0,1,3,bi,bj,myThid) |
| 766 |
|
|
#ifdef ALLOW_SITRACER |
| 767 |
|
|
DO iTr = 1, SItrNumInUse |
| 768 |
|
|
WRITE(diagName,'(A4,I2.2,A2)') 'SItr',iTr,'PT' |
| 769 |
|
|
IF (SItrMate(iTr).EQ.'HEFF') THEN |
| 770 |
|
|
CALL DIAGNOSTICS_FRACT_FILL( |
| 771 |
|
|
I SItracer(1-OLx,1-OLy,bi,bj,iTr),HEFF(1-OLx,1-OLy,bi,bj), |
| 772 |
|
|
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
| 773 |
|
|
ELSE |
| 774 |
|
|
CALL DIAGNOSTICS_FRACT_FILL( |
| 775 |
|
|
I SItracer(1-OLx,1-OLy,bi,bj,iTr),AREA(1-OLx,1-OLy,bi,bj), |
| 776 |
|
|
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
| 777 |
|
|
ENDIF |
| 778 |
|
|
ENDDO |
| 779 |
|
|
#endif /* ALLOW_SITRACER */ |
| 780 |
|
|
ENDIF |
| 781 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
| 782 |
|
|
|
| 783 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
| 784 |
|
|
Cgf no additional dependency of air-sea fluxes to ice |
| 785 |
|
|
IF ( SEAICEadjMODE.GE.1 ) THEN |
| 786 |
|
|
DO J=1,sNy |
| 787 |
|
|
DO I=1,sNx |
| 788 |
|
|
HEFFpreTH(I,J) = 0. _d 0 |
| 789 |
|
|
HSNWpreTH(I,J) = 0. _d 0 |
| 790 |
|
|
AREApreTH(I,J) = 0. _d 0 |
| 791 |
|
|
ENDDO |
| 792 |
|
|
ENDDO |
| 793 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 794 |
|
|
DO K=1,nITD |
| 795 |
|
|
DO J=1,sNy |
| 796 |
|
|
DO I=1,sNx |
| 797 |
|
|
HEFFITDpreTH(I,J,K) = 0. _d 0 |
| 798 |
|
|
HSNWITDpreTH(I,J,K) = 0. _d 0 |
| 799 |
|
|
AREAITDpreTH(I,J,K) = 0. _d 0 |
| 800 |
|
|
ENDDO |
| 801 |
|
|
ENDDO |
| 802 |
|
|
ENDDO |
| 803 |
|
|
#endif |
| 804 |
dimitri |
1.1 |
ENDIF |
| 805 |
|
|
#endif |
| 806 |
|
|
|
| 807 |
|
|
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
| 808 |
|
|
DO J=1,sNy |
| 809 |
|
|
DO I=1,sNx |
| 810 |
|
|
AREAforAtmFW(I,J,bi,bj) = AREApreTH(I,J) |
| 811 |
|
|
ENDDO |
| 812 |
|
|
ENDDO |
| 813 |
|
|
#endif |
| 814 |
|
|
|
| 815 |
|
|
C 4) COMPUTE ACTUAL ICE/SNOW THICKNESS; USE MIN/MAX VALUES |
| 816 |
|
|
C TO REGULARIZE SEAICE_SOLVE4TEMP/d_AREA COMPUTATIONS |
| 817 |
|
|
|
| 818 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 819 |
|
|
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
| 820 |
|
|
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
| 821 |
|
|
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
| 822 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 823 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 824 |
|
|
DO K=1,nITD |
| 825 |
|
|
#endif |
| 826 |
dimitri |
1.1 |
DO J=1,sNy |
| 827 |
|
|
DO I=1,sNx |
| 828 |
|
|
|
| 829 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 830 |
|
|
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
| 831 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
| 832 |
torge |
1.3 |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
| 833 |
|
|
& AREAITDpreTH(I,J,K)) |
| 834 |
dimitri |
1.2 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K)/tmpscal1 |
| 835 |
|
|
tmpscal2 = HEFFITDpreTH(I,J,K)/tmpscal1 |
| 836 |
|
|
heffActualMult(I,J,K) = MAX(tmpscal2,SEAICE_hice_reg) |
| 837 |
|
|
#else /* SEAICE_GROWTH_LEGACY */ |
| 838 |
|
|
cif regularize AREA with SEAICE_area_reg |
| 839 |
|
|
tmpscal1 = SQRT(AREAITDpreTH(I,J,K) * AREAITDpreTH(I,J,K) |
| 840 |
|
|
& + area_reg_sq) |
| 841 |
|
|
cif heffActual calculated with the regularized AREA |
| 842 |
|
|
tmpscal2 = HEFFITDpreTH(I,J,K) / tmpscal1 |
| 843 |
|
|
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
| 844 |
|
|
heffActualMult(I,J,K) = SQRT(tmpscal2 * tmpscal2 |
| 845 |
|
|
& + hice_reg_sq) |
| 846 |
|
|
cif hsnowActual calculated with the regularized AREA |
| 847 |
|
|
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K) / tmpscal1 |
| 848 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
| 849 |
|
|
cif regularize the inverse of heffActual by hice_reg |
| 850 |
|
|
recip_heffActualMult(I,J,K) = AREAITDpreTH(I,J,K) / |
| 851 |
|
|
& sqrt(HEFFITDpreTH(I,J,K) * HEFFITDpreTH(I,J,K) |
| 852 |
|
|
& + hice_reg_sq) |
| 853 |
|
|
cif Do not regularize when HEFFpreTH = 0 |
| 854 |
|
|
ELSE |
| 855 |
|
|
heffActualMult(I,J,K) = ZERO |
| 856 |
|
|
hsnowActualMult(I,J,K) = ZERO |
| 857 |
|
|
recip_heffActualMult(I,J,K) = ZERO |
| 858 |
|
|
ENDIF |
| 859 |
torge |
1.3 |
#else /* SEAICE_ITD */ |
| 860 |
dimitri |
1.1 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
| 861 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
| 862 |
|
|
tmpscal1 = MAX(SEAICE_area_reg,AREApreTH(I,J)) |
| 863 |
|
|
hsnowActual(I,J) = HSNWpreTH(I,J)/tmpscal1 |
| 864 |
|
|
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
| 865 |
|
|
heffActual(I,J) = MAX(tmpscal2,SEAICE_hice_reg) |
| 866 |
|
|
#else /* SEAICE_GROWTH_LEGACY */ |
| 867 |
|
|
cif regularize AREA with SEAICE_area_reg |
| 868 |
|
|
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
| 869 |
|
|
cif heffActual calculated with the regularized AREA |
| 870 |
|
|
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
| 871 |
|
|
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
| 872 |
|
|
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
| 873 |
|
|
cif hsnowActual calculated with the regularized AREA |
| 874 |
|
|
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
| 875 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
| 876 |
|
|
cif regularize the inverse of heffActual by hice_reg |
| 877 |
|
|
recip_heffActual(I,J) = AREApreTH(I,J) / |
| 878 |
|
|
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
| 879 |
|
|
cif Do not regularize when HEFFpreTH = 0 |
| 880 |
|
|
ELSE |
| 881 |
|
|
heffActual(I,J) = ZERO |
| 882 |
|
|
hsnowActual(I,J) = ZERO |
| 883 |
|
|
recip_heffActual(I,J) = ZERO |
| 884 |
|
|
ENDIF |
| 885 |
torge |
1.3 |
#endif /* SEAICE_ITD */ |
| 886 |
dimitri |
1.1 |
|
| 887 |
|
|
ENDDO |
| 888 |
|
|
ENDDO |
| 889 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 890 |
|
|
ENDDO |
| 891 |
|
|
#endif |
| 892 |
dimitri |
1.1 |
|
| 893 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
| 894 |
|
|
CALL ZERO_ADJ_1D( sNx*sNy, heffActual, myThid) |
| 895 |
|
|
CALL ZERO_ADJ_1D( sNx*sNy, hsnowActual, myThid) |
| 896 |
|
|
CALL ZERO_ADJ_1D( sNx*sNy, recip_heffActual, myThid) |
| 897 |
|
|
#endif |
| 898 |
|
|
|
| 899 |
|
|
#ifdef SEAICE_CAP_SUBLIM |
| 900 |
|
|
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
| 901 |
|
|
C AND SNOW THICKNESS |
| 902 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 903 |
|
|
DO K=1,nITD |
| 904 |
|
|
#endif |
| 905 |
dimitri |
1.1 |
DO J=1,sNy |
| 906 |
|
|
DO I=1,sNx |
| 907 |
|
|
c The latent heat flux over the sea ice which |
| 908 |
|
|
c will sublimate all of the snow and ice over one time |
| 909 |
|
|
c step (W/m^2) |
| 910 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 911 |
|
|
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
| 912 |
|
|
latentHeatFluxMaxMult(I,J,K) = lhSublim*recip_deltaTtherm * |
| 913 |
|
|
& (HEFFITDpreTH(I,J,K)*SEAICE_rhoIce + |
| 914 |
|
|
& HSNWITDpreTH(I,J,K)*SEAICE_rhoSnow)/AREAITDpreTH(I,J,K) |
| 915 |
|
|
ELSE |
| 916 |
|
|
latentHeatFluxMaxMult(I,J,K) = ZERO |
| 917 |
|
|
ENDIF |
| 918 |
|
|
#else |
| 919 |
dimitri |
1.1 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
| 920 |
|
|
latentHeatFluxMax(I,J) = lhSublim * recip_deltaTtherm * |
| 921 |
|
|
& (HEFFpreTH(I,J) * SEAICE_rhoIce + |
| 922 |
|
|
& HSNWpreTH(I,J) * SEAICE_rhoSnow)/AREApreTH(I,J) |
| 923 |
|
|
ELSE |
| 924 |
|
|
latentHeatFluxMax(I,J) = ZERO |
| 925 |
|
|
ENDIF |
| 926 |
dimitri |
1.2 |
#endif |
| 927 |
dimitri |
1.1 |
ENDDO |
| 928 |
|
|
ENDDO |
| 929 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 930 |
|
|
ENDDO |
| 931 |
|
|
#endif |
| 932 |
dimitri |
1.1 |
#endif /* SEAICE_CAP_SUBLIM */ |
| 933 |
|
|
|
| 934 |
|
|
C =================================================================== |
| 935 |
|
|
C ================PART 2: determine heat fluxes/stocks=============== |
| 936 |
|
|
C =================================================================== |
| 937 |
|
|
|
| 938 |
|
|
C determine available heat due to the atmosphere -- for open water |
| 939 |
|
|
C ================================================================ |
| 940 |
|
|
|
| 941 |
|
|
DO j=1,sNy |
| 942 |
|
|
DO i=1,sNx |
| 943 |
|
|
C ocean surface/mixed layer temperature |
| 944 |
|
|
TmixLoc(i,j) = theta(i,j,kSurface,bi,bj)+celsius2K |
| 945 |
|
|
C wind speed from exf |
| 946 |
|
|
UG(I,J) = MAX(SEAICE_EPS,wspeed(I,J,bi,bj)) |
| 947 |
|
|
ENDDO |
| 948 |
|
|
ENDDO |
| 949 |
|
|
|
| 950 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 951 |
|
|
CADJ STORE qnet(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 952 |
|
|
CADJ STORE qsw(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
| 953 |
|
|
cCADJ STORE UG = comlev1_bibj, key = iicekey,byte=isbyte |
| 954 |
|
|
cCADJ STORE TmixLoc = comlev1_bibj, key = iicekey,byte=isbyte |
| 955 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 956 |
|
|
|
| 957 |
|
|
CALL SEAICE_BUDGET_OCEAN( |
| 958 |
|
|
I UG, |
| 959 |
|
|
I TmixLoc, |
| 960 |
|
|
O a_QbyATM_open, a_QSWbyATM_open, |
| 961 |
|
|
I bi, bj, myTime, myIter, myThid ) |
| 962 |
|
|
|
| 963 |
|
|
C determine available heat due to the atmosphere -- for ice covered water |
| 964 |
|
|
C ======================================================================= |
| 965 |
|
|
|
| 966 |
|
|
#ifdef ALLOW_ATM_WIND |
| 967 |
|
|
IF (useRelativeWind) THEN |
| 968 |
|
|
C Compute relative wind speed over sea ice. |
| 969 |
|
|
DO J=1,sNy |
| 970 |
|
|
DO I=1,sNx |
| 971 |
|
|
SPEED_SQ = |
| 972 |
|
|
& (uWind(I,J,bi,bj) |
| 973 |
|
|
& +0.5 _d 0*(uVel(i,j,kSurface,bi,bj) |
| 974 |
|
|
& +uVel(i+1,j,kSurface,bi,bj)) |
| 975 |
|
|
& -0.5 _d 0*(uice(i,j,bi,bj)+uice(i+1,j,bi,bj)))**2 |
| 976 |
|
|
& +(vWind(I,J,bi,bj) |
| 977 |
|
|
& +0.5 _d 0*(vVel(i,j,kSurface,bi,bj) |
| 978 |
|
|
& +vVel(i,j+1,kSurface,bi,bj)) |
| 979 |
|
|
& -0.5 _d 0*(vice(i,j,bi,bj)+vice(i,j+1,bi,bj)))**2 |
| 980 |
|
|
IF ( SPEED_SQ .LE. SEAICE_EPS_SQ ) THEN |
| 981 |
|
|
UG(I,J)=SEAICE_EPS |
| 982 |
|
|
ELSE |
| 983 |
|
|
UG(I,J)=SQRT(SPEED_SQ) |
| 984 |
|
|
ENDIF |
| 985 |
|
|
ENDDO |
| 986 |
|
|
ENDDO |
| 987 |
|
|
ENDIF |
| 988 |
|
|
#endif /* ALLOW_ATM_WIND */ |
| 989 |
|
|
|
| 990 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 991 |
|
|
CADJ STORE tice(:,:,bi,bj) |
| 992 |
|
|
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
| 993 |
|
|
CADJ STORE hsnowActual = comlev1_bibj, key = iicekey, byte = isbyte |
| 994 |
|
|
CADJ STORE heffActual = comlev1_bibj, key = iicekey, byte = isbyte |
| 995 |
|
|
CADJ STORE UG = comlev1_bibj, key = iicekey, byte = isbyte |
| 996 |
|
|
CADJ STORE tices(:,:,:,bi,bj) |
| 997 |
|
|
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
| 998 |
|
|
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
| 999 |
|
|
CADJ & key = iicekey, byte = isbyte |
| 1000 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1001 |
|
|
|
| 1002 |
|
|
C-- Start loop over multi-categories |
| 1003 |
torge |
1.3 |
#ifdef SEAICE_ITD |
| 1004 |
|
|
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
| 1005 |
|
|
#endif |
| 1006 |
dimitri |
1.1 |
DO IT=1,SEAICE_multDim |
| 1007 |
|
|
c homogeneous distribution between 0 and 2 x heffActual |
| 1008 |
dimitri |
1.2 |
#ifndef SEAICE_ITD |
| 1009 |
dimitri |
1.1 |
pFac = (2.0 _d 0*real(IT)-1.0 _d 0)*recip_multDim |
| 1010 |
dimitri |
1.2 |
#endif |
| 1011 |
dimitri |
1.1 |
DO J=1,sNy |
| 1012 |
|
|
DO I=1,sNx |
| 1013 |
dimitri |
1.2 |
#ifndef SEAICE_ITD |
| 1014 |
|
|
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
| 1015 |
|
|
C (instead of heffActual and latentHeatFluxMax) |
| 1016 |
dimitri |
1.1 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
| 1017 |
|
|
#ifdef SEAICE_CAP_SUBLIM |
| 1018 |
|
|
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
| 1019 |
|
|
#endif |
| 1020 |
dimitri |
1.2 |
#endif |
| 1021 |
dimitri |
1.1 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
| 1022 |
|
|
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
| 1023 |
|
|
TICE(I,J,bi,bj) = ZERO |
| 1024 |
|
|
TICES(I,J,IT,bi,bj) = ZERO |
| 1025 |
|
|
ENDDO |
| 1026 |
|
|
ENDDO |
| 1027 |
|
|
ENDDO |
| 1028 |
|
|
|
| 1029 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1030 |
|
|
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
| 1031 |
|
|
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
| 1032 |
|
|
# ifdef SEAICE_CAP_SUBLIM |
| 1033 |
|
|
CADJ STORE latentHeatFluxMaxMult |
| 1034 |
|
|
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
| 1035 |
|
|
# endif |
| 1036 |
|
|
CADJ STORE a_QbyATMmult_cover = |
| 1037 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
| 1038 |
|
|
CADJ STORE a_QSWbyATMmult_cover = |
| 1039 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
| 1040 |
|
|
CADJ STORE a_FWbySublimMult = |
| 1041 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
| 1042 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1043 |
|
|
|
| 1044 |
|
|
DO IT=1,SEAICE_multDim |
| 1045 |
|
|
CALL SEAICE_SOLVE4TEMP( |
| 1046 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1047 |
|
|
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
| 1048 |
|
|
#else |
| 1049 |
dimitri |
1.1 |
I UG, heffActualMult(1,1,IT), hsnowActual, |
| 1050 |
dimitri |
1.2 |
#endif |
| 1051 |
dimitri |
1.1 |
#ifdef SEAICE_CAP_SUBLIM |
| 1052 |
|
|
I latentHeatFluxMaxMult(1,1,IT), |
| 1053 |
|
|
#endif |
| 1054 |
|
|
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
| 1055 |
|
|
O a_QbyATMmult_cover(1,1,IT), a_QSWbyATMmult_cover(1,1,IT), |
| 1056 |
|
|
O a_FWbySublimMult(1,1,IT), |
| 1057 |
|
|
I bi, bj, myTime, myIter, myThid ) |
| 1058 |
|
|
ENDDO |
| 1059 |
|
|
|
| 1060 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1061 |
|
|
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
| 1062 |
|
|
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
| 1063 |
|
|
# ifdef SEAICE_CAP_SUBLIM |
| 1064 |
|
|
CADJ STORE latentHeatFluxMaxMult |
| 1065 |
|
|
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
| 1066 |
|
|
# endif |
| 1067 |
|
|
CADJ STORE a_QbyATMmult_cover = |
| 1068 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
| 1069 |
|
|
CADJ STORE a_QSWbyATMmult_cover = |
| 1070 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
| 1071 |
|
|
CADJ STORE a_FWbySublimMult = |
| 1072 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
| 1073 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1074 |
|
|
|
| 1075 |
|
|
DO IT=1,SEAICE_multDim |
| 1076 |
|
|
DO J=1,sNy |
| 1077 |
|
|
DO I=1,sNx |
| 1078 |
|
|
C update TICE & TICES |
| 1079 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1080 |
|
|
C calculate area weighted mean |
| 1081 |
torge |
1.3 |
C (although the ice's temperature relates to its energy content |
| 1082 |
|
|
C and hence should be averaged weighted by ice volume [heffFracFactor], |
| 1083 |
|
|
C the temperature here is a result of the fluxes through the ice surface |
| 1084 |
|
|
C computed individually for each single category in SEAICE_SOLVE4TEMP |
| 1085 |
|
|
C and hence is averaged area weighted [areaFracFactor]) |
| 1086 |
dimitri |
1.2 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
| 1087 |
|
|
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,K) |
| 1088 |
|
|
#else |
| 1089 |
dimitri |
1.1 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
| 1090 |
|
|
& + ticeOutMult(I,J,IT)*recip_multDim |
| 1091 |
dimitri |
1.2 |
#endif |
| 1092 |
dimitri |
1.1 |
TICES(I,J,IT,bi,bj) = ticeOutMult(I,J,IT) |
| 1093 |
|
|
C average over categories |
| 1094 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1095 |
|
|
C calculate area weighted mean |
| 1096 |
torge |
1.3 |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
| 1097 |
dimitri |
1.2 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
| 1098 |
|
|
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
| 1099 |
|
|
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
| 1100 |
|
|
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
| 1101 |
|
|
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
| 1102 |
|
|
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,K) |
| 1103 |
|
|
#else |
| 1104 |
dimitri |
1.1 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
| 1105 |
|
|
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
| 1106 |
|
|
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
| 1107 |
|
|
& + a_QSWbyATMmult_cover(I,J,IT)*recip_multDim |
| 1108 |
|
|
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
| 1109 |
|
|
& + a_FWbySublimMult(I,J,IT)*recip_multDim |
| 1110 |
dimitri |
1.2 |
#endif |
| 1111 |
dimitri |
1.1 |
ENDDO |
| 1112 |
|
|
ENDDO |
| 1113 |
|
|
ENDDO |
| 1114 |
|
|
|
| 1115 |
|
|
#ifdef SEAICE_CAP_SUBLIM |
| 1116 |
|
|
# ifdef ALLOW_DIAGNOSTICS |
| 1117 |
|
|
DO J=1,sNy |
| 1118 |
|
|
DO I=1,sNx |
| 1119 |
|
|
c The actual latent heat flux realized by SOLVE4TEMP |
| 1120 |
|
|
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
| 1121 |
|
|
ENDDO |
| 1122 |
|
|
ENDDO |
| 1123 |
|
|
cif The actual vs. maximum latent heat flux |
| 1124 |
|
|
IF ( useDiagnostics ) THEN |
| 1125 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
| 1126 |
|
|
& 'SIactLHF',0,1,3,bi,bj,myThid) |
| 1127 |
|
|
CALL DIAGNOSTICS_FILL(latentHeatFluxMax, |
| 1128 |
|
|
& 'SImaxLHF',0,1,3,bi,bj,myThid) |
| 1129 |
|
|
ENDIF |
| 1130 |
|
|
# endif /* ALLOW_DIAGNOSTICS */ |
| 1131 |
|
|
#endif /* SEAICE_CAP_SUBLIM */ |
| 1132 |
|
|
|
| 1133 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1134 |
|
|
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
| 1135 |
|
|
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
| 1136 |
|
|
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
| 1137 |
|
|
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
| 1138 |
|
|
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
| 1139 |
|
|
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
| 1140 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1141 |
|
|
|
| 1142 |
|
|
C switch heat fluxes from W/m2 to 'effective' ice meters |
| 1143 |
torge |
1.3 |
#ifdef SEAICE_ITD |
| 1144 |
|
|
DO K=1,nITD |
| 1145 |
|
|
DO J=1,sNy |
| 1146 |
|
|
DO I=1,sNx |
| 1147 |
|
|
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
| 1148 |
|
|
& * convertQ2HI * AREAITDpreTH(I,J,K) |
| 1149 |
|
|
a_QSWbyATMmult_cover(I,J,K) = a_QSWbyATMmult_cover(I,J,K) |
| 1150 |
|
|
& * convertQ2HI * AREAITDpreTH(I,J,K) |
| 1151 |
|
|
C and initialize r_QbyATM_cover |
| 1152 |
|
|
r_QbyATMmult_cover(I,J,K)=a_QbyATMmult_cover(I,J,K) |
| 1153 |
|
|
C Convert fresh water flux by sublimation to 'effective' ice meters. |
| 1154 |
|
|
C Negative sublimation is resublimation and will be added as snow. |
| 1155 |
|
|
#ifdef SEAICE_DISABLE_SUBLIM |
| 1156 |
|
|
a_FWbySublimMult(I,J,K) = ZERO |
| 1157 |
|
|
#endif |
| 1158 |
|
|
a_FWbySublimMult(I,J,K) = SEAICE_deltaTtherm*recip_rhoIce |
| 1159 |
|
|
& * a_FWbySublimMult(I,J,K)*AREAITDpreTH(I,J,K) |
| 1160 |
|
|
r_FWbySublimMult(I,J,K)=a_FWbySublimMult(I,J,K) |
| 1161 |
|
|
ENDDO |
| 1162 |
|
|
ENDDO |
| 1163 |
|
|
ENDDO |
| 1164 |
|
|
DO J=1,sNy |
| 1165 |
|
|
DO I=1,sNx |
| 1166 |
|
|
C and initialize r_QbyATM_open |
| 1167 |
|
|
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
| 1168 |
|
|
ENDDO |
| 1169 |
|
|
ENDDO |
| 1170 |
|
|
#else /* SEAICE_ITD */ |
| 1171 |
dimitri |
1.1 |
DO J=1,sNy |
| 1172 |
|
|
DO I=1,sNx |
| 1173 |
|
|
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J) |
| 1174 |
|
|
& * convertQ2HI * AREApreTH(I,J) |
| 1175 |
|
|
a_QSWbyATM_cover(I,J) = a_QSWbyATM_cover(I,J) |
| 1176 |
|
|
& * convertQ2HI * AREApreTH(I,J) |
| 1177 |
|
|
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
| 1178 |
|
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
| 1179 |
|
|
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
| 1180 |
|
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
| 1181 |
|
|
C and initialize r_QbyATM_cover/r_QbyATM_open |
| 1182 |
|
|
r_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
| 1183 |
|
|
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
| 1184 |
|
|
C Convert fresh water flux by sublimation to 'effective' ice meters. |
| 1185 |
|
|
C Negative sublimation is resublimation and will be added as snow. |
| 1186 |
|
|
#ifdef SEAICE_DISABLE_SUBLIM |
| 1187 |
|
|
cgf just for those who may need to omit this term to reproduce old results |
| 1188 |
|
|
a_FWbySublim(I,J) = ZERO |
| 1189 |
dimitri |
1.2 |
#endif |
| 1190 |
dimitri |
1.1 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
| 1191 |
|
|
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
| 1192 |
|
|
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
| 1193 |
|
|
ENDDO |
| 1194 |
|
|
ENDDO |
| 1195 |
torge |
1.3 |
#endif /* SEAICE_ITD */ |
| 1196 |
dimitri |
1.1 |
|
| 1197 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1198 |
|
|
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
| 1199 |
|
|
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
| 1200 |
|
|
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
| 1201 |
|
|
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
| 1202 |
|
|
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
| 1203 |
|
|
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
| 1204 |
|
|
CADJ STORE r_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
| 1205 |
|
|
CADJ STORE r_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
| 1206 |
|
|
CADJ STORE r_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
| 1207 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1208 |
|
|
|
| 1209 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
| 1210 |
|
|
Cgf no additional dependency through ice cover |
| 1211 |
|
|
IF ( SEAICEadjMODE.GE.3 ) THEN |
| 1212 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1213 |
|
|
DO K=1,nITD |
| 1214 |
|
|
DO J=1,sNy |
| 1215 |
|
|
DO I=1,sNx |
| 1216 |
|
|
a_QbyATMmult_cover(I,J,K) = 0. _d 0 |
| 1217 |
|
|
r_QbyATMmult_cover(I,J,K) = 0. _d 0 |
| 1218 |
|
|
a_QSWbyATMmult_cover(I,J,K) = 0. _d 0 |
| 1219 |
|
|
ENDDO |
| 1220 |
|
|
ENDDO |
| 1221 |
|
|
ENDDO |
| 1222 |
torge |
1.3 |
#else |
| 1223 |
|
|
DO J=1,sNy |
| 1224 |
|
|
DO I=1,sNx |
| 1225 |
|
|
a_QbyATM_cover(I,J) = 0. _d 0 |
| 1226 |
|
|
r_QbyATM_cover(I,J) = 0. _d 0 |
| 1227 |
|
|
a_QSWbyATM_cover(I,J) = 0. _d 0 |
| 1228 |
|
|
ENDDO |
| 1229 |
|
|
ENDDO |
| 1230 |
dimitri |
1.2 |
#endif |
| 1231 |
dimitri |
1.1 |
ENDIF |
| 1232 |
|
|
#endif |
| 1233 |
|
|
|
| 1234 |
|
|
C determine available heat due to the ice pack tying the |
| 1235 |
|
|
C underlying surface water temperature to freezing point |
| 1236 |
|
|
C ====================================================== |
| 1237 |
|
|
|
| 1238 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1239 |
|
|
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
| 1240 |
|
|
CADJ & key = iicekey, byte = isbyte |
| 1241 |
|
|
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
| 1242 |
|
|
CADJ & key = iicekey, byte = isbyte |
| 1243 |
|
|
#endif |
| 1244 |
|
|
|
| 1245 |
|
|
DO J=1,sNy |
| 1246 |
|
|
DO I=1,sNx |
| 1247 |
|
|
c FREEZING TEMP. OF SEA WATER (deg C) |
| 1248 |
|
|
tempFrz = SEAICE_tempFrz0 + |
| 1249 |
|
|
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
| 1250 |
|
|
c efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
| 1251 |
|
|
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
| 1252 |
|
|
tmpscal1 = SEAICE_mcPheePiston |
| 1253 |
|
|
ELSE |
| 1254 |
|
|
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
| 1255 |
|
|
ENDIF |
| 1256 |
|
|
c efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
| 1257 |
|
|
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
| 1258 |
|
|
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
| 1259 |
|
|
MixedLayerTurbulenceFactor = ONE - |
| 1260 |
|
|
& SEAICE_mcPheeTaper * AREApreTH(I,J) |
| 1261 |
|
|
ELSEIF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
| 1262 |
|
|
& (SEAICE_mcPheeStepFunc) ) THEN |
| 1263 |
|
|
MixedLayerTurbulenceFactor = ONE - SEAICE_mcPheeTaper |
| 1264 |
|
|
ELSE |
| 1265 |
|
|
MixedLayerTurbulenceFactor = ONE |
| 1266 |
|
|
ENDIF |
| 1267 |
|
|
c maximum turbulent flux, in ice meters |
| 1268 |
|
|
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
| 1269 |
|
|
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
| 1270 |
|
|
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
| 1271 |
|
|
c available turbulent flux |
| 1272 |
|
|
a_QbyOCN(i,j) = |
| 1273 |
|
|
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
| 1274 |
|
|
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
| 1275 |
torge |
1.3 |
ctm |
| 1276 |
|
|
if (i.eq.20 .and. j.eq.20) then |
| 1277 |
|
|
print *, HeatCapacity_Cp |
| 1278 |
|
|
print *, rhoConst |
| 1279 |
|
|
print *, recip_QI |
| 1280 |
|
|
print *, theta(20,20,kSurface,bi,bj) |
| 1281 |
|
|
print *, tempFrz |
| 1282 |
|
|
print *, SEAICE_deltaTtherm |
| 1283 |
|
|
print *, maskC(20,20,kSurface,bi,bj) |
| 1284 |
|
|
print *, tmpscal2 |
| 1285 |
|
|
print *, a_QbyOCN(20,20) |
| 1286 |
|
|
endif |
| 1287 |
|
|
ctm |
| 1288 |
dimitri |
1.1 |
ENDDO |
| 1289 |
|
|
ENDDO |
| 1290 |
|
|
|
| 1291 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
| 1292 |
|
|
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
| 1293 |
|
|
#endif |
| 1294 |
|
|
|
| 1295 |
|
|
|
| 1296 |
|
|
C =================================================================== |
| 1297 |
|
|
C =========PART 3: determine effective thicknesses increments======== |
| 1298 |
|
|
C =================================================================== |
| 1299 |
|
|
|
| 1300 |
|
|
C compute snow/ice tendency due to sublimation |
| 1301 |
|
|
C ============================================ |
| 1302 |
|
|
|
| 1303 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1304 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1305 |
|
|
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
| 1306 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1307 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1308 |
|
|
DO K=1,nITD |
| 1309 |
|
|
#endif |
| 1310 |
dimitri |
1.1 |
DO J=1,sNy |
| 1311 |
|
|
DO I=1,sNx |
| 1312 |
|
|
C First sublimate/deposite snow |
| 1313 |
|
|
tmpscal2 = |
| 1314 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1315 |
|
|
& MAX(MIN(r_FWbySublimMult(I,J,K),HSNOWITD(I,J,K,bi,bj) |
| 1316 |
|
|
& *SNOW2ICE),ZERO) |
| 1317 |
|
|
C accumulate change over ITD categories |
| 1318 |
|
|
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
| 1319 |
|
|
& *ICE2SNOW |
| 1320 |
|
|
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal2 |
| 1321 |
|
|
& *ICE2SNOW |
| 1322 |
|
|
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
| 1323 |
|
|
C keep total up to date, too |
| 1324 |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
| 1325 |
|
|
#else |
| 1326 |
dimitri |
1.1 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
| 1327 |
|
|
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
| 1328 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) - tmpscal2*ICE2SNOW |
| 1329 |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
| 1330 |
dimitri |
1.2 |
#endif |
| 1331 |
dimitri |
1.1 |
ENDDO |
| 1332 |
|
|
ENDDO |
| 1333 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1334 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1335 |
|
|
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
| 1336 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1337 |
|
|
DO J=1,sNy |
| 1338 |
|
|
DO I=1,sNx |
| 1339 |
|
|
C If anything is left, sublimate ice |
| 1340 |
|
|
tmpscal2 = |
| 1341 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1342 |
|
|
& MAX(MIN(r_FWbySublimMult(I,J,K),HEFFITD(I,J,K,bi,bj)),ZERO) |
| 1343 |
torge |
1.3 |
C accumulate change over ITD categories |
| 1344 |
dimitri |
1.2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
| 1345 |
|
|
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) - tmpscal2 |
| 1346 |
|
|
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
| 1347 |
|
|
C keep total up to date, too |
| 1348 |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
| 1349 |
|
|
#else |
| 1350 |
dimitri |
1.1 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
| 1351 |
|
|
d_HEFFbySublim(I,J) = - tmpscal2 |
| 1352 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) - tmpscal2 |
| 1353 |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
| 1354 |
dimitri |
1.2 |
#endif |
| 1355 |
dimitri |
1.1 |
ENDDO |
| 1356 |
|
|
ENDDO |
| 1357 |
|
|
DO J=1,sNy |
| 1358 |
|
|
DO I=1,sNx |
| 1359 |
|
|
C If anything is left, it will be evaporated from the ocean rather than sublimated. |
| 1360 |
dimitri |
1.2 |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
| 1361 |
dimitri |
1.1 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
| 1362 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1363 |
|
|
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
| 1364 |
|
|
& - r_FWbySublimMult(I,J,K) |
| 1365 |
|
|
r_QbyATMmult_cover(I,J,K) = r_QbyATMmult_cover(I,J,K) |
| 1366 |
|
|
& - r_FWbySublimMult(I,J,K) |
| 1367 |
|
|
ENDDO |
| 1368 |
|
|
ENDDO |
| 1369 |
|
|
C end K loop |
| 1370 |
|
|
ENDDO |
| 1371 |
|
|
C then update totals |
| 1372 |
|
|
DO J=1,sNy |
| 1373 |
|
|
DO I=1,sNx |
| 1374 |
|
|
#endif |
| 1375 |
dimitri |
1.1 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
| 1376 |
|
|
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
| 1377 |
|
|
ENDDO |
| 1378 |
|
|
ENDDO |
| 1379 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
| 1380 |
|
|
WRITE(msgBuf,'(A,7F6.2)') |
| 1381 |
|
|
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
| 1382 |
|
|
& HEFFITD(20,20,:,bi,bj) |
| 1383 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 1384 |
|
|
& SQUEEZE_RIGHT , myThid) |
| 1385 |
|
|
c ToM>>> |
| 1386 |
dimitri |
1.1 |
|
| 1387 |
|
|
C compute ice thickness tendency due to ice-ocean interaction |
| 1388 |
|
|
C =========================================================== |
| 1389 |
|
|
|
| 1390 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1391 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1392 |
|
|
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
| 1393 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1394 |
|
|
|
| 1395 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1396 |
|
|
DO K=1,nITD |
| 1397 |
|
|
DO J=1,sNy |
| 1398 |
|
|
DO I=1,sNx |
| 1399 |
|
|
C ice growth/melt due to ocean heat is equally distributed under the ice |
| 1400 |
|
|
C and hence weighted by fractional area of each thickness category |
| 1401 |
|
|
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,K), |
| 1402 |
|
|
& -HEFFITD(I,J,K,bi,bj)) |
| 1403 |
torge |
1.3 |
d_HEFFbyOCNonICE(I,J)= d_HEFFbyOCNonICE(I,J) + tmpscal1 |
| 1404 |
|
|
r_QbyOCN(I,J) = r_QbyOCN(I,J) - tmpscal1 |
| 1405 |
|
|
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
| 1406 |
|
|
#ifdef ALLOW_SITRACER |
| 1407 |
|
|
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
| 1408 |
|
|
& + HEFFITD(I,J,K,bi,bj) |
| 1409 |
|
|
#endif |
| 1410 |
dimitri |
1.2 |
ENDDO |
| 1411 |
|
|
ENDDO |
| 1412 |
|
|
ENDDO |
| 1413 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
| 1414 |
|
|
WRITE(msgBuf,'(A,7F9.6)') |
| 1415 |
|
|
& ' SEAICE_GROWTH: d_HEFFbyOCNonICE w/ITD: ', |
| 1416 |
|
|
& d_HEFFbyOCNonICE(20,20) |
| 1417 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 1418 |
|
|
& SQUEEZE_RIGHT , myThid) |
| 1419 |
|
|
c ToM>>> |
| 1420 |
|
|
#else /* SEAICE_ITD */ |
| 1421 |
dimitri |
1.1 |
DO J=1,sNy |
| 1422 |
|
|
DO I=1,sNx |
| 1423 |
|
|
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
| 1424 |
|
|
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
| 1425 |
|
|
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj) + d_HEFFbyOCNonICE(I,J) |
| 1426 |
|
|
#ifdef ALLOW_SITRACER |
| 1427 |
|
|
SItrHEFF(I,J,bi,bj,2)=HEFF(I,J,bi,bj) |
| 1428 |
|
|
#endif |
| 1429 |
|
|
ENDDO |
| 1430 |
|
|
ENDDO |
| 1431 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
| 1432 |
|
|
WRITE(msgBuf,'(A,7F9.6)') |
| 1433 |
|
|
& ' SEAICE_GROWTH: d_HEFFbyOCNonICE w/o ITD: ', |
| 1434 |
|
|
& d_HEFFbyOCNonICE(20,20) |
| 1435 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 1436 |
|
|
& SQUEEZE_RIGHT , myThid) |
| 1437 |
|
|
c ToM>>> |
| 1438 |
|
|
#endif /* SEAICE_ITD */ |
| 1439 |
|
|
c ToM<<< debug seaice_growth |
| 1440 |
|
|
WRITE(msgBuf,'(A,7F6.2)') |
| 1441 |
|
|
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
| 1442 |
|
|
& HEFFITD(20,20,:,bi,bj) |
| 1443 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 1444 |
|
|
& SQUEEZE_RIGHT , myThid) |
| 1445 |
|
|
c ToM>>> |
| 1446 |
dimitri |
1.1 |
|
| 1447 |
|
|
C compute snow melt tendency due to snow-atmosphere interaction |
| 1448 |
|
|
C ================================================================== |
| 1449 |
|
|
|
| 1450 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1451 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1452 |
|
|
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
| 1453 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1454 |
|
|
|
| 1455 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1456 |
|
|
DO K=1,nITD |
| 1457 |
|
|
DO J=1,sNy |
| 1458 |
|
|
DO I=1,sNx |
| 1459 |
|
|
C Convert to standard units (meters of ice) rather than to meters |
| 1460 |
|
|
C of snow. This appears to be more robust. |
| 1461 |
|
|
tmpscal1=MAX(r_QbyATMmult_cover(I,J,K),-HSNOWITD(I,J,K,bi,bj) |
| 1462 |
|
|
& *SNOW2ICE) |
| 1463 |
|
|
tmpscal2=MIN(tmpscal1,0. _d 0) |
| 1464 |
|
|
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
| 1465 |
|
|
Cgf no additional dependency through snow |
| 1466 |
|
|
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
| 1467 |
|
|
#endif |
| 1468 |
|
|
d_HSNWbyATMonSNW(I,J)=d_HSNWbyATMonSNW(I,J)+tmpscal2*ICE2SNOW |
| 1469 |
torge |
1.3 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal2*ICE2SNOW |
| 1470 |
dimitri |
1.2 |
r_QbyATMmult_cover(I,J,K)=r_QbyATMmult_cover(I,J,K) - tmpscal2 |
| 1471 |
|
|
C keep the total up to date, too |
| 1472 |
|
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
| 1473 |
|
|
ENDDO |
| 1474 |
|
|
ENDDO |
| 1475 |
|
|
ENDDO |
| 1476 |
torge |
1.3 |
#else /* SEAICE_ITD */ |
| 1477 |
dimitri |
1.1 |
DO J=1,sNy |
| 1478 |
|
|
DO I=1,sNx |
| 1479 |
|
|
C Convert to standard units (meters of ice) rather than to meters |
| 1480 |
|
|
C of snow. This appears to be more robust. |
| 1481 |
|
|
tmpscal1=MAX(r_QbyATM_cover(I,J),-HSNOW(I,J,bi,bj)*SNOW2ICE) |
| 1482 |
|
|
tmpscal2=MIN(tmpscal1,0. _d 0) |
| 1483 |
|
|
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
| 1484 |
|
|
Cgf no additional dependency through snow |
| 1485 |
|
|
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
| 1486 |
|
|
#endif |
| 1487 |
|
|
d_HSNWbyATMonSNW(I,J)= tmpscal2*ICE2SNOW |
| 1488 |
torge |
1.3 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + tmpscal2*ICE2SNOW |
| 1489 |
dimitri |
1.1 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
| 1490 |
|
|
ENDDO |
| 1491 |
|
|
ENDDO |
| 1492 |
dimitri |
1.2 |
#endif /* SEAICE_ITD */ |
| 1493 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
| 1494 |
|
|
WRITE(msgBuf,'(A,7F6.2)') |
| 1495 |
|
|
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
| 1496 |
|
|
& HEFFITD(20,20,:,bi,bj) |
| 1497 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 1498 |
|
|
& SQUEEZE_RIGHT , myThid) |
| 1499 |
|
|
c ToM>>> |
| 1500 |
dimitri |
1.1 |
|
| 1501 |
|
|
C compute ice thickness tendency due to the atmosphere |
| 1502 |
|
|
C ==================================================== |
| 1503 |
|
|
|
| 1504 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1505 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1506 |
|
|
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
| 1507 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1508 |
|
|
|
| 1509 |
|
|
Cgf note: this block is not actually tested by lab_sea |
| 1510 |
|
|
Cgf where all experiments start in January. So even though |
| 1511 |
|
|
Cgf the v1.81=>v1.82 revision would change results in |
| 1512 |
|
|
Cgf warming conditions, the lab_sea results were not changed. |
| 1513 |
|
|
|
| 1514 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1515 |
|
|
DO K=1,nITD |
| 1516 |
|
|
DO J=1,sNy |
| 1517 |
|
|
DO I=1,sNx |
| 1518 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
| 1519 |
|
|
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K)) |
| 1520 |
|
|
#else |
| 1521 |
|
|
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K) |
| 1522 |
|
|
c Limit ice growth by potential melt by ocean |
| 1523 |
torge |
1.3 |
& + AREAITDpreTH(I,J,K) * r_QbyOCN(I,J)) |
| 1524 |
dimitri |
1.2 |
#endif /* SEAICE_GROWTH_LEGACY */ |
| 1525 |
|
|
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
| 1526 |
|
|
& + tmpscal2 |
| 1527 |
|
|
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
| 1528 |
|
|
& + tmpscal2 |
| 1529 |
|
|
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
| 1530 |
|
|
& - tmpscal2 |
| 1531 |
|
|
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal2 |
| 1532 |
torge |
1.3 |
|
| 1533 |
|
|
#ifdef ALLOW_SITRACER |
| 1534 |
|
|
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
| 1535 |
|
|
& + HEFFITD(I,J,K,bi,bj) |
| 1536 |
|
|
#endif |
| 1537 |
dimitri |
1.2 |
ENDDO |
| 1538 |
|
|
ENDDO |
| 1539 |
|
|
ENDDO |
| 1540 |
torge |
1.3 |
#else /* SEAICE_ITD */ |
| 1541 |
dimitri |
1.1 |
DO J=1,sNy |
| 1542 |
|
|
DO I=1,sNx |
| 1543 |
|
|
|
| 1544 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
| 1545 |
|
|
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
| 1546 |
|
|
#else |
| 1547 |
|
|
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
| 1548 |
|
|
c Limit ice growth by potential melt by ocean |
| 1549 |
|
|
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
| 1550 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
| 1551 |
|
|
|
| 1552 |
|
|
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
| 1553 |
|
|
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
| 1554 |
|
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J)-tmpscal2 |
| 1555 |
torge |
1.3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal2 |
| 1556 |
dimitri |
1.1 |
|
| 1557 |
|
|
#ifdef ALLOW_SITRACER |
| 1558 |
|
|
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
| 1559 |
|
|
#endif |
| 1560 |
torge |
1.3 |
ENDDO |
| 1561 |
|
|
ENDDO |
| 1562 |
|
|
#endif /* SEAICE_ITD */ |
| 1563 |
|
|
c ToM<<< debug seaice_growth |
| 1564 |
|
|
WRITE(msgBuf,'(A,7F6.2)') |
| 1565 |
|
|
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
| 1566 |
|
|
& HEFFITD(20,20,:,bi,bj) |
| 1567 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 1568 |
|
|
& SQUEEZE_RIGHT , myThid) |
| 1569 |
|
|
c ToM>>> |
| 1570 |
dimitri |
1.1 |
|
| 1571 |
|
|
C attribute precip to fresh water or snow stock, |
| 1572 |
|
|
C depending on atmospheric conditions. |
| 1573 |
|
|
C ================================================= |
| 1574 |
|
|
#ifdef ALLOW_ATM_TEMP |
| 1575 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1576 |
|
|
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
| 1577 |
|
|
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1578 |
|
|
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
| 1579 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1580 |
|
|
DO J=1,sNy |
| 1581 |
|
|
DO I=1,sNx |
| 1582 |
|
|
C possible alternatives to the a_QbyATM_cover criterium |
| 1583 |
|
|
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
| 1584 |
|
|
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
| 1585 |
|
|
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
| 1586 |
|
|
C add precip as snow |
| 1587 |
|
|
d_HFRWbyRAIN(I,J)=0. _d 0 |
| 1588 |
|
|
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
| 1589 |
|
|
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
| 1590 |
|
|
ELSE |
| 1591 |
|
|
C add precip to the fresh water bucket |
| 1592 |
|
|
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
| 1593 |
|
|
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
| 1594 |
|
|
d_HSNWbyRAIN(I,J)=0. _d 0 |
| 1595 |
|
|
ENDIF |
| 1596 |
|
|
ENDDO |
| 1597 |
|
|
ENDDO |
| 1598 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1599 |
|
|
DO K=1,nITD |
| 1600 |
|
|
DO J=1,sNy |
| 1601 |
|
|
DO I=1,sNx |
| 1602 |
|
|
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) |
| 1603 |
|
|
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,K) |
| 1604 |
|
|
ENDDO |
| 1605 |
|
|
ENDDO |
| 1606 |
|
|
ENDDO |
| 1607 |
torge |
1.3 |
#else |
| 1608 |
|
|
DO J=1,sNy |
| 1609 |
|
|
DO I=1,sNx |
| 1610 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
| 1611 |
|
|
ENDDO |
| 1612 |
|
|
ENDDO |
| 1613 |
dimitri |
1.2 |
#endif |
| 1614 |
dimitri |
1.1 |
Cgf note: this does not affect air-sea heat flux, |
| 1615 |
|
|
Cgf since the implied air heat gain to turn |
| 1616 |
|
|
Cgf rain to snow is not a surface process. |
| 1617 |
|
|
#endif /* ALLOW_ATM_TEMP */ |
| 1618 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
| 1619 |
|
|
WRITE(msgBuf,'(A,7F6.2)') |
| 1620 |
|
|
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
| 1621 |
|
|
& HEFFITD(20,20,:,bi,bj) |
| 1622 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 1623 |
|
|
& SQUEEZE_RIGHT , myThid) |
| 1624 |
|
|
c ToM>>> |
| 1625 |
dimitri |
1.1 |
|
| 1626 |
|
|
C compute snow melt due to heat available from ocean. |
| 1627 |
|
|
C ================================================================= |
| 1628 |
|
|
|
| 1629 |
|
|
Cgf do we need to keep this comment and cpp bracket? |
| 1630 |
|
|
Cph( very sensitive bit here by JZ |
| 1631 |
|
|
#ifndef SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING |
| 1632 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1633 |
|
|
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1634 |
|
|
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
| 1635 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1636 |
dimitri |
1.2 |
|
| 1637 |
|
|
#ifdef SEAICE_ITD |
| 1638 |
|
|
DO K=1,nITD |
| 1639 |
|
|
DO J=1,sNy |
| 1640 |
|
|
DO I=1,sNx |
| 1641 |
|
|
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,K), |
| 1642 |
torge |
1.3 |
& -HSNOWITD(I,J,K,bi,bj)) |
| 1643 |
dimitri |
1.2 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
| 1644 |
|
|
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
| 1645 |
|
|
Cgf no additional dependency through snow |
| 1646 |
|
|
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
| 1647 |
|
|
#endif |
| 1648 |
torge |
1.3 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
| 1649 |
|
|
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
| 1650 |
dimitri |
1.2 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) + tmpscal2 |
| 1651 |
|
|
ENDDO |
| 1652 |
|
|
ENDDO |
| 1653 |
|
|
ENDDO |
| 1654 |
torge |
1.3 |
#else /* SEAICE_ITD */ |
| 1655 |
dimitri |
1.1 |
DO J=1,sNy |
| 1656 |
|
|
DO I=1,sNx |
| 1657 |
|
|
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
| 1658 |
|
|
tmpscal2=MIN(tmpscal1,0. _d 0) |
| 1659 |
|
|
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
| 1660 |
|
|
Cgf no additional dependency through snow |
| 1661 |
|
|
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
| 1662 |
|
|
#endif |
| 1663 |
|
|
d_HSNWbyOCNonSNW(I,J) = tmpscal2 |
| 1664 |
|
|
r_QbyOCN(I,J)=r_QbyOCN(I,J) |
| 1665 |
|
|
& -d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
| 1666 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
| 1667 |
|
|
ENDDO |
| 1668 |
|
|
ENDDO |
| 1669 |
torge |
1.3 |
#endif /* SEAICE_ITD */ |
| 1670 |
dimitri |
1.1 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
| 1671 |
|
|
Cph) |
| 1672 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
| 1673 |
|
|
WRITE(msgBuf,'(A,7F6.2)') |
| 1674 |
|
|
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
| 1675 |
|
|
& HEFFITD(20,20,:,bi,bj) |
| 1676 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 1677 |
|
|
& SQUEEZE_RIGHT , myThid) |
| 1678 |
|
|
c ToM>>> |
| 1679 |
dimitri |
1.1 |
|
| 1680 |
|
|
C gain of new ice over open water |
| 1681 |
|
|
C =============================== |
| 1682 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1683 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1684 |
|
|
CADJ STORE r_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
| 1685 |
|
|
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
| 1686 |
|
|
CADJ STORE a_QSWbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
| 1687 |
|
|
CADJ STORE a_QSWbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
| 1688 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1689 |
|
|
|
| 1690 |
|
|
DO J=1,sNy |
| 1691 |
|
|
DO I=1,sNx |
| 1692 |
|
|
c Initial ice growth is triggered by open water |
| 1693 |
|
|
c heat flux overcoming potential melt by ocean |
| 1694 |
|
|
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
| 1695 |
|
|
& (1.0 _d 0 - AREApreTH(I,J)) |
| 1696 |
|
|
c Penetrative shortwave flux beyond first layer |
| 1697 |
|
|
c that is therefore not available to ice growth/melt |
| 1698 |
|
|
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
| 1699 |
|
|
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
| 1700 |
|
|
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
| 1701 |
|
|
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
| 1702 |
|
|
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
| 1703 |
|
|
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
| 1704 |
|
|
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
| 1705 |
|
|
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
| 1706 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1707 |
torge |
1.3 |
C open water area fraction |
| 1708 |
|
|
tmpscal0 = ONE-AREApreTH(I,J) |
| 1709 |
dimitri |
1.2 |
C determine thickness of new ice |
| 1710 |
|
|
C considering the entire open water area to refreeze |
| 1711 |
torge |
1.3 |
tmpscal1 = tmpscal3/tmpscal0 |
| 1712 |
dimitri |
1.2 |
C then add new ice volume to appropriate thickness category |
| 1713 |
|
|
DO K=1,nITD |
| 1714 |
torge |
1.3 |
IF (tmpscal1.LT.Hlimit(K)) THEN |
| 1715 |
dimitri |
1.2 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal3 |
| 1716 |
torge |
1.3 |
tmpscal3=ZERO |
| 1717 |
|
|
C not sure if AREAITD should be changed here since AREA is incremented |
| 1718 |
|
|
C in PART 4 below in non-itd code |
| 1719 |
|
|
C in this scenario all open water is covered by new ice instantaneously, |
| 1720 |
|
|
C i.e. no delayed lead closing is concidered such as is associated with |
| 1721 |
|
|
C Hibler's h_0 parameter |
| 1722 |
dimitri |
1.2 |
AREAITD(I,J,K,bi,bj) = AREAITD(I,J,K,bi,bj) |
| 1723 |
torge |
1.3 |
& + tmpscal0 |
| 1724 |
|
|
tmpscal0=ZERO |
| 1725 |
dimitri |
1.2 |
ENDIF |
| 1726 |
|
|
ENDDO |
| 1727 |
torge |
1.3 |
#else |
| 1728 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
| 1729 |
dimitri |
1.2 |
#endif |
| 1730 |
dimitri |
1.1 |
ENDDO |
| 1731 |
|
|
ENDDO |
| 1732 |
|
|
|
| 1733 |
|
|
#ifdef ALLOW_SITRACER |
| 1734 |
torge |
1.3 |
#ifdef SEAICE_ITD |
| 1735 |
|
|
DO K=1,nITD |
| 1736 |
|
|
DO J=1,sNy |
| 1737 |
|
|
DO I=1,sNx |
| 1738 |
|
|
c needs to be here to allow use also with LEGACY branch |
| 1739 |
|
|
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
| 1740 |
|
|
& + HEFFITD(I,J,K,bi,bj) |
| 1741 |
|
|
ENDDO |
| 1742 |
|
|
ENDDO |
| 1743 |
|
|
ENDDO |
| 1744 |
|
|
#else |
| 1745 |
dimitri |
1.1 |
DO J=1,sNy |
| 1746 |
|
|
DO I=1,sNx |
| 1747 |
|
|
c needs to be here to allow use also with LEGACY branch |
| 1748 |
|
|
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
| 1749 |
|
|
ENDDO |
| 1750 |
|
|
ENDDO |
| 1751 |
torge |
1.3 |
#endif |
| 1752 |
dimitri |
1.1 |
#endif /* ALLOW_SITRACER */ |
| 1753 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
| 1754 |
|
|
WRITE(msgBuf,'(A,7F6.2)') |
| 1755 |
|
|
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
| 1756 |
|
|
& HEFFITD(20,20,:,bi,bj) |
| 1757 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 1758 |
|
|
& SQUEEZE_RIGHT , myThid) |
| 1759 |
|
|
c ToM>>> |
| 1760 |
dimitri |
1.1 |
|
| 1761 |
|
|
C convert snow to ice if submerged. |
| 1762 |
|
|
C ================================= |
| 1763 |
|
|
|
| 1764 |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
| 1765 |
|
|
C note: in legacy, this process is done at the end |
| 1766 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1767 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1768 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1769 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1770 |
|
|
IF ( SEAICEuseFlooding ) THEN |
| 1771 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1772 |
|
|
DO K=1,nITD |
| 1773 |
|
|
DO J=1,sNy |
| 1774 |
|
|
DO I=1,sNx |
| 1775 |
|
|
tmpscal0 = (HSNOWITD(I,J,K,bi,bj)*SEAICE_rhoSnow |
| 1776 |
|
|
& +HEFFITD(I,J,K,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
| 1777 |
|
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,K,bi,bj)) |
| 1778 |
|
|
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
| 1779 |
|
|
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
| 1780 |
|
|
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal1 |
| 1781 |
|
|
& * ICE2SNOW |
| 1782 |
|
|
ENDDO |
| 1783 |
|
|
ENDDO |
| 1784 |
|
|
ENDDO |
| 1785 |
|
|
#else |
| 1786 |
dimitri |
1.1 |
DO J=1,sNy |
| 1787 |
|
|
DO I=1,sNx |
| 1788 |
|
|
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
| 1789 |
|
|
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
| 1790 |
|
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
| 1791 |
|
|
d_HEFFbyFLOODING(I,J)=tmpscal1 |
| 1792 |
torge |
1.3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
| 1793 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
| 1794 |
|
|
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
| 1795 |
dimitri |
1.2 |
ENDDO |
| 1796 |
|
|
ENDDO |
| 1797 |
|
|
#endif |
| 1798 |
dimitri |
1.1 |
ENDIF |
| 1799 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
| 1800 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
| 1801 |
|
|
WRITE(msgBuf,'(A,7F6.2)') |
| 1802 |
|
|
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
| 1803 |
|
|
& HEFFITD(20,20,:,bi,bj) |
| 1804 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 1805 |
|
|
& SQUEEZE_RIGHT , myThid) |
| 1806 |
|
|
c ToM>>> |
| 1807 |
dimitri |
1.1 |
|
| 1808 |
|
|
C =================================================================== |
| 1809 |
|
|
C ==========PART 4: determine ice cover fraction increments=========- |
| 1810 |
|
|
C =================================================================== |
| 1811 |
|
|
|
| 1812 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 1813 |
|
|
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
| 1814 |
|
|
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
| 1815 |
|
|
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
| 1816 |
|
|
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
| 1817 |
|
|
CADJ STORE recip_heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
| 1818 |
|
|
CADJ STORE d_hsnwbyatmonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
| 1819 |
|
|
cph( |
| 1820 |
|
|
cphCADJ STORE d_AREAbyATM = comlev1_bibj,key=iicekey,byte=isbyte |
| 1821 |
|
|
cphCADJ STORE d_AREAbyICE = comlev1_bibj,key=iicekey,byte=isbyte |
| 1822 |
|
|
cphCADJ STORE d_AREAbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
| 1823 |
|
|
cph) |
| 1824 |
|
|
CADJ STORE a_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
| 1825 |
|
|
CADJ STORE heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
| 1826 |
|
|
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
| 1827 |
|
|
CADJ STORE HEFF(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1828 |
|
|
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1829 |
|
|
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 1830 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 1831 |
|
|
|
| 1832 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1833 |
|
|
C replaces Hibler '79 scheme and lead closing parameter |
| 1834 |
|
|
C because ITD accounts explicitly for lead openings and |
| 1835 |
|
|
C different melt rates due to varying ice thickness |
| 1836 |
|
|
C |
| 1837 |
|
|
C only consider ice area loss due to total ice thickness loss |
| 1838 |
|
|
C ice area gain due to freezing of open water as handled above |
| 1839 |
|
|
C under "gain of new ice over open water" |
| 1840 |
|
|
C |
| 1841 |
|
|
C does not account for lateral melt of ice floes |
| 1842 |
|
|
C |
| 1843 |
torge |
1.3 |
C AREAITD is incremented in section "gain of new ice over open water" above |
| 1844 |
|
|
C |
| 1845 |
dimitri |
1.2 |
DO K=1,nITD |
| 1846 |
|
|
DO J=1,sNy |
| 1847 |
|
|
DO I=1,sNx |
| 1848 |
|
|
IF (HEFFITD(I,J,K,bi,bj).LE.ZERO) THEN |
| 1849 |
|
|
AREAITD(I,J,K,bi,bj)=ZERO |
| 1850 |
|
|
ENDIF |
| 1851 |
torge |
1.3 |
#ifdef ALLOW_SITRACER |
| 1852 |
|
|
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
| 1853 |
|
|
& + AREAITD(I,J,K,bi,bj) |
| 1854 |
|
|
#endif /* ALLOW_SITRACER */ |
| 1855 |
dimitri |
1.2 |
ENDDO |
| 1856 |
|
|
ENDDO |
| 1857 |
|
|
ENDDO |
| 1858 |
torge |
1.3 |
#else /* SEAICE_ITD */ |
| 1859 |
dimitri |
1.1 |
DO J=1,sNy |
| 1860 |
|
|
DO I=1,sNx |
| 1861 |
|
|
|
| 1862 |
|
|
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
| 1863 |
|
|
recip_HO=1. _d 0 / HO_south |
| 1864 |
|
|
ELSE |
| 1865 |
|
|
recip_HO=1. _d 0 / HO |
| 1866 |
|
|
ENDIF |
| 1867 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
| 1868 |
|
|
tmpscal0=HEFF(I,J,bi,bj) - d_HEFFbyATMonOCN(I,J) |
| 1869 |
|
|
recip_HH = AREApreTH(I,J) /(tmpscal0+.00001 _d 0) |
| 1870 |
|
|
#else |
| 1871 |
|
|
recip_HH = recip_heffActual(I,J) |
| 1872 |
|
|
#endif |
| 1873 |
|
|
|
| 1874 |
|
|
C gain of ice over open water : computed from |
| 1875 |
|
|
C (SEAICE_areaGainFormula.EQ.1) from growth by ATM |
| 1876 |
|
|
C (SEAICE_areaGainFormula.EQ.2) from predicted growth by ATM |
| 1877 |
|
|
IF (SEAICE_areaGainFormula.EQ.1) THEN |
| 1878 |
|
|
tmpscal4 = MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
| 1879 |
|
|
ELSE |
| 1880 |
|
|
tmpscal4=MAX(ZERO,a_QbyATM_open(I,J)) |
| 1881 |
|
|
ENDIF |
| 1882 |
|
|
|
| 1883 |
|
|
C loss of ice cover by melting : computed from |
| 1884 |
|
|
C (SEAICE_areaLossFormula.EQ.1) from all but only melt conributions by ATM and OCN |
| 1885 |
|
|
C (SEAICE_areaLossFormula.EQ.2) from net melt-growth>0 by ATM and OCN |
| 1886 |
|
|
C (SEAICE_areaLossFormula.EQ.3) from predicted melt by ATM |
| 1887 |
|
|
IF (SEAICE_areaLossFormula.EQ.1) THEN |
| 1888 |
|
|
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) ) |
| 1889 |
|
|
& + MIN( 0. _d 0 , d_HEFFbyATMonOCN_open(I,J) ) |
| 1890 |
|
|
& + MIN( 0. _d 0 , d_HEFFbyOCNonICE(I,J) ) |
| 1891 |
|
|
ELSEIF (SEAICE_areaLossFormula.EQ.2) THEN |
| 1892 |
|
|
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) |
| 1893 |
|
|
& + d_HEFFbyATMonOCN_open(I,J) + d_HEFFbyOCNonICE(I,J) ) |
| 1894 |
|
|
ELSE |
| 1895 |
|
|
C compute heff after ice melt by ocn: |
| 1896 |
|
|
tmpscal0=HEFF(I,J,bi,bj) - d_HEFFbyATMonOCN(I,J) |
| 1897 |
|
|
C compute available heat left after snow melt by atm: |
| 1898 |
|
|
tmpscal1= a_QbyATM_open(I,J)+a_QbyATM_cover(I,J) |
| 1899 |
|
|
& - d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
| 1900 |
|
|
C could not melt more than all the ice |
| 1901 |
|
|
tmpscal2 = MAX(-tmpscal0,tmpscal1) |
| 1902 |
|
|
tmpscal3 = MIN(ZERO,tmpscal2) |
| 1903 |
|
|
ENDIF |
| 1904 |
|
|
|
| 1905 |
|
|
C apply tendency |
| 1906 |
|
|
IF ( (HEFF(i,j,bi,bj).GT.0. _d 0).OR. |
| 1907 |
|
|
& (HSNOW(i,j,bi,bj).GT.0. _d 0) ) THEN |
| 1908 |
|
|
AREA(I,J,bi,bj)=MAX(0. _d 0, |
| 1909 |
|
|
& MIN( SEAICE_area_max, AREA(I,J,bi,bj) |
| 1910 |
|
|
& + recip_HO*tmpscal4+HALF*recip_HH*tmpscal3 )) |
| 1911 |
|
|
ELSE |
| 1912 |
|
|
AREA(I,J,bi,bj)=0. _d 0 |
| 1913 |
|
|
ENDIF |
| 1914 |
|
|
#ifdef ALLOW_SITRACER |
| 1915 |
|
|
SItrAREA(I,J,bi,bj,3)=AREA(I,J,bi,bj) |
| 1916 |
|
|
#endif /* ALLOW_SITRACER */ |
| 1917 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 1918 |
|
|
d_AREAbyATM(I,J)= |
| 1919 |
|
|
& recip_HO*MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
| 1920 |
|
|
& +HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_open(I,J)) |
| 1921 |
|
|
d_AREAbyICE(I,J)= |
| 1922 |
|
|
& HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_cover(I,J)) |
| 1923 |
|
|
d_AREAbyOCN(I,J)= |
| 1924 |
|
|
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
| 1925 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
| 1926 |
|
|
ENDDO |
| 1927 |
|
|
ENDDO |
| 1928 |
dimitri |
1.2 |
#endif /* SEAICE_ITD */ |
| 1929 |
dimitri |
1.1 |
|
| 1930 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
| 1931 |
|
|
Cgf 'bulk' linearization of area=f(HEFF) |
| 1932 |
|
|
IF ( SEAICEadjMODE.GE.1 ) THEN |
| 1933 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
| 1934 |
|
|
DO K=1,nITD |
| 1935 |
|
|
DO J=1,sNy |
| 1936 |
|
|
DO I=1,sNx |
| 1937 |
|
|
AREAITD(I,J,K,bi,bj) = AREAITDpreTH(I,J,K) + 0.1 _d 0 * |
| 1938 |
|
|
& ( HEFFITD(I,J,K,bi,bj) - HEFFITDpreTH(I,J,K) ) |
| 1939 |
|
|
ENDDO |
| 1940 |
|
|
ENDDO |
| 1941 |
|
|
ENDDO |
| 1942 |
|
|
#else |
| 1943 |
dimitri |
1.1 |
DO J=1,sNy |
| 1944 |
|
|
DO I=1,sNx |
| 1945 |
|
|
C AREA(I,J,bi,bj) = 0.1 _d 0 * HEFF(I,J,bi,bj) |
| 1946 |
|
|
AREA(I,J,bi,bj) = AREApreTH(I,J) + 0.1 _d 0 * |
| 1947 |
|
|
& ( HEFF(I,J,bi,bj) - HEFFpreTH(I,J) ) |
| 1948 |
|
|
ENDDO |
| 1949 |
|
|
ENDDO |
| 1950 |
dimitri |
1.2 |
#endif |
| 1951 |
dimitri |
1.1 |
ENDIF |
| 1952 |
|
|
#endif |
| 1953 |
torge |
1.3 |
#ifdef SEAICE_ITD |
| 1954 |
|
|
C check categories for consistency with limits after growth/melt |
| 1955 |
|
|
CALL SEAICE_ITD_REDIST(bi, bj, myTime,myIter,myThid) |
| 1956 |
|
|
C finally update total AREA, HEFF, HSNOW |
| 1957 |
|
|
CALL SEAICE_ITD_SUM(bi, bj, myTime,myIter,myThid) |
| 1958 |
|
|
#endif |
| 1959 |
dimitri |
1.1 |
|
| 1960 |
|
|
C =================================================================== |
| 1961 |
|
|
C =============PART 5: determine ice salinity increments============= |
| 1962 |
|
|
C =================================================================== |
| 1963 |
|
|
|
| 1964 |
|
|
#ifndef SEAICE_VARIABLE_SALINITY |
| 1965 |
|
|
# if (defined ALLOW_AUTODIFF_TAMC && defined ALLOW_SALT_PLUME) |
| 1966 |
|
|
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
| 1967 |
|
|
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
| 1968 |
|
|
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
| 1969 |
|
|
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
| 1970 |
|
|
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
| 1971 |
|
|
CADJ STORE d_HEFFbyFLOODING = comlev1_bibj,key=iicekey,byte=isbyte |
| 1972 |
|
|
CADJ STORE d_HEFFbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
| 1973 |
|
|
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
| 1974 |
|
|
CADJ & key = iicekey, byte = isbyte |
| 1975 |
|
|
# endif /* ALLOW_AUTODIFF_TAMC and ALLOW_SALT_PLUME */ |
| 1976 |
|
|
DO J=1,sNy |
| 1977 |
|
|
DO I=1,sNx |
| 1978 |
|
|
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
| 1979 |
|
|
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
| 1980 |
|
|
& + d_HEFFbySublim(I,J) |
| 1981 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
| 1982 |
|
|
+ d_HEFFbyRLX(I,J) |
| 1983 |
|
|
#endif |
| 1984 |
|
|
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
| 1985 |
|
|
& * recip_deltaTtherm * SEAICE_rhoIce |
| 1986 |
|
|
saltFlux(I,J,bi,bj) = tmpscal2 |
| 1987 |
|
|
#ifdef ALLOW_SALT_PLUME |
| 1988 |
|
|
tmpscal3 = tmpscal1*salt(I,J,kSurface,bi,bj)*HEFFM(I,J,bi,bj) |
| 1989 |
|
|
& * recip_deltaTtherm * SEAICE_rhoIce |
| 1990 |
|
|
saltPlumeFlux(I,J,bi,bj) = MAX( tmpscal3-tmpscal2 , 0. _d 0) |
| 1991 |
|
|
& *SPsalFRAC |
| 1992 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
| 1993 |
|
|
ENDDO |
| 1994 |
|
|
ENDDO |
| 1995 |
|
|
#endif /* ndef SEAICE_VARIABLE_SALINITY */ |
| 1996 |
|
|
|
| 1997 |
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
| 1998 |
|
|
|
| 1999 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
| 2000 |
|
|
# ifdef ALLOW_AUTODIFF_TAMC |
| 2001 |
|
|
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 2002 |
|
|
# endif /* ALLOW_AUTODIFF_TAMC */ |
| 2003 |
|
|
DO J=1,sNy |
| 2004 |
|
|
DO I=1,sNx |
| 2005 |
|
|
C set HSALT = 0 if HSALT < 0 and compute salt to remove from ocean |
| 2006 |
|
|
IF ( HSALT(I,J,bi,bj) .LT. 0.0 ) THEN |
| 2007 |
|
|
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
| 2008 |
|
|
& HSALT(I,J,bi,bj) * recip_deltaTtherm |
| 2009 |
|
|
HSALT(I,J,bi,bj) = 0.0 _d 0 |
| 2010 |
|
|
ENDIF |
| 2011 |
|
|
ENDDO |
| 2012 |
|
|
ENDDO |
| 2013 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
| 2014 |
|
|
|
| 2015 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 2016 |
|
|
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 2017 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 2018 |
|
|
|
| 2019 |
|
|
DO J=1,sNy |
| 2020 |
|
|
DO I=1,sNx |
| 2021 |
|
|
C sum up the terms that affect the salt content of the ice pack |
| 2022 |
|
|
tmpscal1=d_HEFFbyOCNonICE(I,J)+d_HEFFbyATMonOCN(I,J) |
| 2023 |
|
|
|
| 2024 |
|
|
C recompute HEFF before thermodynamic updates (which is not AREApreTH in legacy code) |
| 2025 |
|
|
tmpscal2=HEFF(I,J,bi,bj)-tmpscal1-d_HEFFbyFLOODING(I,J) |
| 2026 |
|
|
C tmpscal1 > 0 : m of sea ice that is created |
| 2027 |
|
|
IF ( tmpscal1 .GE. 0.0 ) THEN |
| 2028 |
|
|
saltFlux(I,J,bi,bj) = |
| 2029 |
|
|
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
| 2030 |
|
|
& *SEAICE_saltFrac*salt(I,J,kSurface,bi,bj) |
| 2031 |
|
|
& *tmpscal1*SEAICE_rhoIce |
| 2032 |
|
|
#ifdef ALLOW_SALT_PLUME |
| 2033 |
|
|
C saltPlumeFlux is defined only during freezing: |
| 2034 |
|
|
saltPlumeFlux(I,J,bi,bj)= |
| 2035 |
|
|
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
| 2036 |
|
|
& *(ONE-SEAICE_saltFrac)*salt(I,J,kSurface,bi,bj) |
| 2037 |
|
|
& *tmpscal1*SEAICE_rhoIce |
| 2038 |
|
|
& *SPsalFRAC |
| 2039 |
|
|
C if SaltPlumeSouthernOcean=.FALSE. turn off salt plume in Southern Ocean |
| 2040 |
|
|
IF ( .NOT. SaltPlumeSouthernOcean ) THEN |
| 2041 |
|
|
IF ( YC(I,J,bi,bj) .LT. 0.0 _d 0 ) |
| 2042 |
|
|
& saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
| 2043 |
|
|
ENDIF |
| 2044 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
| 2045 |
|
|
|
| 2046 |
|
|
C tmpscal1 < 0 : m of sea ice that is melted |
| 2047 |
|
|
ELSE |
| 2048 |
|
|
saltFlux(I,J,bi,bj) = |
| 2049 |
|
|
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
| 2050 |
|
|
& *HSALT(I,J,bi,bj) |
| 2051 |
|
|
& *tmpscal1/tmpscal2 |
| 2052 |
|
|
#ifdef ALLOW_SALT_PLUME |
| 2053 |
|
|
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
| 2054 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
| 2055 |
|
|
ENDIF |
| 2056 |
|
|
C update HSALT based on surface saltFlux |
| 2057 |
|
|
HSALT(I,J,bi,bj) = HSALT(I,J,bi,bj) + |
| 2058 |
|
|
& saltFlux(I,J,bi,bj) * SEAICE_deltaTtherm |
| 2059 |
|
|
saltFlux(I,J,bi,bj) = |
| 2060 |
|
|
& saltFlux(I,J,bi,bj) + saltFluxAdjust(I,J) |
| 2061 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
| 2062 |
|
|
C set HSALT = 0 if HEFF = 0 and compute salt to dump into ocean |
| 2063 |
|
|
IF ( HEFF(I,J,bi,bj) .EQ. 0.0 ) THEN |
| 2064 |
|
|
saltFlux(I,J,bi,bj) = saltFlux(I,J,bi,bj) - |
| 2065 |
|
|
& HEFFM(I,J,bi,bj) * HSALT(I,J,bi,bj) * recip_deltaTtherm |
| 2066 |
|
|
HSALT(I,J,bi,bj) = 0.0 _d 0 |
| 2067 |
|
|
#ifdef ALLOW_SALT_PLUME |
| 2068 |
|
|
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
| 2069 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
| 2070 |
|
|
ENDIF |
| 2071 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
| 2072 |
|
|
ENDDO |
| 2073 |
|
|
ENDDO |
| 2074 |
|
|
#endif /* SEAICE_VARIABLE_SALINITY */ |
| 2075 |
|
|
|
| 2076 |
|
|
|
| 2077 |
|
|
C ======================================================================= |
| 2078 |
|
|
C ==LEGACY PART 6 (LEGACY) treat pathological cases, then do flooding === |
| 2079 |
|
|
C ======================================================================= |
| 2080 |
|
|
|
| 2081 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
| 2082 |
|
|
|
| 2083 |
|
|
C treat values of ice cover fraction oustide |
| 2084 |
|
|
C the [0 1] range, and other such issues. |
| 2085 |
|
|
C =========================================== |
| 2086 |
|
|
|
| 2087 |
|
|
Cgf note: this part cannot be heat and water conserving |
| 2088 |
|
|
|
| 2089 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 2090 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
| 2091 |
|
|
CADJ & key = iicekey, byte = isbyte |
| 2092 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, |
| 2093 |
|
|
CADJ & key = iicekey, byte = isbyte |
| 2094 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 2095 |
|
|
DO J=1,sNy |
| 2096 |
|
|
DO I=1,sNx |
| 2097 |
|
|
C NOW SET AREA(I,J,bi,bj)=0 WHERE THERE IS NO ICE |
| 2098 |
|
|
CML replaced "/.0001 _d 0" by "*1. _d 4", 1e-4 is probably |
| 2099 |
|
|
CML meant to be something like a minimum thickness |
| 2100 |
|
|
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),HEFF(I,J,bi,bj)*1. _d 4) |
| 2101 |
|
|
ENDDO |
| 2102 |
|
|
ENDDO |
| 2103 |
|
|
|
| 2104 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 2105 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
| 2106 |
|
|
CADJ & key = iicekey, byte = isbyte |
| 2107 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 2108 |
|
|
DO J=1,sNy |
| 2109 |
|
|
DO I=1,sNx |
| 2110 |
|
|
C NOW TRUNCATE AREA |
| 2111 |
|
|
AREA(I,J,bi,bj)=MIN(ONE,AREA(I,J,bi,bj)) |
| 2112 |
|
|
ENDDO |
| 2113 |
|
|
ENDDO |
| 2114 |
|
|
|
| 2115 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 2116 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
| 2117 |
|
|
CADJ & key = iicekey, byte = isbyte |
| 2118 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, |
| 2119 |
|
|
CADJ & key = iicekey, byte = isbyte |
| 2120 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 2121 |
|
|
DO J=1,sNy |
| 2122 |
|
|
DO I=1,sNx |
| 2123 |
|
|
AREA(I,J,bi,bj) = MAX(ZERO,AREA(I,J,bi,bj)) |
| 2124 |
|
|
HSNOW(I,J,bi,bj) = MAX(ZERO,HSNOW(I,J,bi,bj)) |
| 2125 |
|
|
AREA(I,J,bi,bj) = AREA(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
| 2126 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
| 2127 |
|
|
#ifdef SEAICE_CAP_HEFF |
| 2128 |
|
|
C This is not energy conserving, but at least it conserves fresh water |
| 2129 |
|
|
tmpscal0 = -MAX(HEFF(I,J,bi,bj)-MAX_HEFF,0. _d 0) |
| 2130 |
|
|
d_HEFFbyNeg(I,J) = d_HEFFbyNeg(I,J) + tmpscal0 |
| 2131 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal0 |
| 2132 |
|
|
#endif /* SEAICE_CAP_HEFF */ |
| 2133 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
| 2134 |
|
|
ENDDO |
| 2135 |
|
|
ENDDO |
| 2136 |
|
|
|
| 2137 |
|
|
C convert snow to ice if submerged. |
| 2138 |
|
|
C ================================= |
| 2139 |
|
|
|
| 2140 |
|
|
IF ( SEAICEuseFlooding ) THEN |
| 2141 |
|
|
DO J=1,sNy |
| 2142 |
|
|
DO I=1,sNx |
| 2143 |
|
|
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
| 2144 |
|
|
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
| 2145 |
|
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
| 2146 |
|
|
d_HEFFbyFLOODING(I,J)=tmpscal1 |
| 2147 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
| 2148 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
| 2149 |
|
|
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
| 2150 |
|
|
ENDDO |
| 2151 |
|
|
ENDDO |
| 2152 |
|
|
ENDIF |
| 2153 |
|
|
|
| 2154 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
| 2155 |
|
|
|
| 2156 |
|
|
#ifdef ALLOW_SITRACER |
| 2157 |
|
|
DO J=1,sNy |
| 2158 |
|
|
DO I=1,sNx |
| 2159 |
|
|
c needs to be here to allow use also with LEGACY branch |
| 2160 |
|
|
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
| 2161 |
|
|
ENDDO |
| 2162 |
|
|
ENDDO |
| 2163 |
|
|
#endif /* ALLOW_SITRACER */ |
| 2164 |
|
|
|
| 2165 |
|
|
C =================================================================== |
| 2166 |
|
|
C ==============PART 7: determine ocean model forcing================ |
| 2167 |
|
|
C =================================================================== |
| 2168 |
|
|
|
| 2169 |
|
|
C compute net heat flux leaving/entering the ocean, |
| 2170 |
|
|
C accounting for the part used in melt/freeze processes |
| 2171 |
|
|
C ===================================================== |
| 2172 |
|
|
|
| 2173 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 2174 |
|
|
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
| 2175 |
|
|
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
| 2176 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 2177 |
|
|
|
| 2178 |
|
|
DO J=1,sNy |
| 2179 |
|
|
DO I=1,sNx |
| 2180 |
|
|
QNET(I,J,bi,bj) = r_QbyATM_cover(I,J) + r_QbyATM_open(I,J) |
| 2181 |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
| 2182 |
|
|
C in principle a_QSWbyATM_cover should always be included here, however |
| 2183 |
|
|
C for backward compatibility it is left out of the LEGACY branch |
| 2184 |
|
|
& + a_QSWbyATM_cover(I,J) |
| 2185 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
| 2186 |
|
|
& - ( d_HEFFbyOCNonICE(I,J) + |
| 2187 |
|
|
& d_HSNWbyOCNonSNW(I,J)*SNOW2ICE + |
| 2188 |
|
|
& d_HEFFbyNEG(I,J) + |
| 2189 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
| 2190 |
|
|
& d_HEFFbyRLX(I,J) + |
| 2191 |
|
|
#endif |
| 2192 |
|
|
& d_HSNWbyNEG(I,J)*SNOW2ICE ) |
| 2193 |
|
|
& * maskC(I,J,kSurface,bi,bj) |
| 2194 |
|
|
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
| 2195 |
|
|
ENDDO |
| 2196 |
|
|
ENDDO |
| 2197 |
|
|
|
| 2198 |
|
|
C switch heat fluxes from 'effective' ice meters to W/m2 |
| 2199 |
|
|
C ====================================================== |
| 2200 |
|
|
|
| 2201 |
|
|
DO J=1,sNy |
| 2202 |
|
|
DO I=1,sNx |
| 2203 |
|
|
QNET(I,J,bi,bj) = QNET(I,J,bi,bj)*convertHI2Q |
| 2204 |
|
|
QSW(I,J,bi,bj) = QSW(I,J,bi,bj)*convertHI2Q |
| 2205 |
|
|
ENDDO |
| 2206 |
|
|
ENDDO |
| 2207 |
|
|
|
| 2208 |
|
|
#ifndef SEAICE_DISABLE_HEATCONSFIX |
| 2209 |
|
|
C treat advective heat flux by ocean to ice water exchange (at 0decC) |
| 2210 |
|
|
C =================================================================== |
| 2211 |
|
|
# ifdef ALLOW_AUTODIFF_TAMC |
| 2212 |
|
|
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
| 2213 |
|
|
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
| 2214 |
|
|
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
| 2215 |
|
|
CADJ STORE d_HSNWbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
| 2216 |
|
|
CADJ STORE d_HSNWbyOCNonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
| 2217 |
|
|
CADJ STORE d_HSNWbyATMonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
| 2218 |
|
|
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
| 2219 |
|
|
CADJ & key = iicekey, byte = isbyte |
| 2220 |
|
|
# endif /* ALLOW_AUTODIFF_TAMC */ |
| 2221 |
|
|
IF ( SEAICEheatConsFix ) THEN |
| 2222 |
|
|
c Unlike for evap and precip, the temperature of gained/lost |
| 2223 |
|
|
c ocean liquid water due to melt/freeze of solid water cannot be chosen |
| 2224 |
|
|
c to be e.g. the ocean SST. It must be done at 0degC. The fix below anticipates |
| 2225 |
|
|
c on external_forcing_surf.F and applies the correction to QNET. |
| 2226 |
|
|
IF ((convertFW2Salt.EQ.-1.).OR.(temp_EvPrRn.EQ.UNSET_RL)) THEN |
| 2227 |
|
|
c I leave alone the exotic case when onvertFW2Salt.NE.-1 and temp_EvPrRn.NE.UNSET_RL and |
| 2228 |
|
|
c the small error of the synchronous time stepping case (see external_forcing_surf.F). |
| 2229 |
|
|
DO J=1,sNy |
| 2230 |
|
|
DO I=1,sNx |
| 2231 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 2232 |
|
|
c store unaltered QNET for diagnostic purposes |
| 2233 |
|
|
DIAGarrayA(I,J)=QNET(I,J,bi,bj) |
| 2234 |
|
|
#endif |
| 2235 |
|
|
c compute the ocean water going to ice/snow, in precip units |
| 2236 |
|
|
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
| 2237 |
|
|
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
| 2238 |
|
|
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
| 2239 |
|
|
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
| 2240 |
|
|
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
| 2241 |
|
|
& * convertHI2PRECIP |
| 2242 |
|
|
c factor in the heat content that external_forcing_surf.F |
| 2243 |
|
|
c will associate with EMPMR, and remove it from QNET, so that |
| 2244 |
|
|
c melt/freez water is in effect consistently gained/lost at 0degC |
| 2245 |
|
|
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
| 2246 |
|
|
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
| 2247 |
|
|
& HeatCapacity_Cp * temp_EvPrRn |
| 2248 |
|
|
ELSE |
| 2249 |
|
|
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
| 2250 |
|
|
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
| 2251 |
|
|
ENDIF |
| 2252 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 2253 |
|
|
c back out the eventual TFLUX adjustement and fill diag |
| 2254 |
|
|
DIAGarrayA(I,J)=QNET(I,J,bi,bj)-DIAGarrayA(I,J) |
| 2255 |
|
|
#endif |
| 2256 |
|
|
ENDDO |
| 2257 |
|
|
ENDDO |
| 2258 |
|
|
ENDIF |
| 2259 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 2260 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
| 2261 |
|
|
& 'SIaaflux',0,1,3,bi,bj,myThid) |
| 2262 |
|
|
#endif |
| 2263 |
|
|
ENDIF |
| 2264 |
|
|
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
| 2265 |
|
|
|
| 2266 |
|
|
C compute net fresh water flux leaving/entering |
| 2267 |
|
|
C the ocean, accounting for fresh/salt water stocks. |
| 2268 |
|
|
C ================================================== |
| 2269 |
|
|
|
| 2270 |
|
|
#ifdef ALLOW_ATM_TEMP |
| 2271 |
|
|
DO J=1,sNy |
| 2272 |
|
|
DO I=1,sNx |
| 2273 |
|
|
tmpscal1= d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
| 2274 |
|
|
& +d_HFRWbyRAIN(I,J) |
| 2275 |
|
|
& +d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
| 2276 |
|
|
& +d_HEFFbyOCNonICE(I,J) |
| 2277 |
|
|
& +d_HEFFbyATMonOCN(I,J) |
| 2278 |
|
|
& +d_HEFFbyNEG(I,J) |
| 2279 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
| 2280 |
|
|
& +d_HEFFbyRLX(I,J) |
| 2281 |
|
|
#endif |
| 2282 |
|
|
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
| 2283 |
|
|
C If r_FWbySublim>0, then it is evaporated from ocean. |
| 2284 |
|
|
& +r_FWbySublim(I,J) |
| 2285 |
|
|
EmPmR(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
| 2286 |
|
|
& ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
| 2287 |
|
|
& * ( ONE - AREApreTH(I,J) ) |
| 2288 |
|
|
#ifdef ALLOW_RUNOFF |
| 2289 |
|
|
& - RUNOFF(I,J,bi,bj) |
| 2290 |
|
|
#endif /* ALLOW_RUNOFF */ |
| 2291 |
|
|
& + tmpscal1*convertHI2PRECIP |
| 2292 |
|
|
& )*rhoConstFresh |
| 2293 |
|
|
ENDDO |
| 2294 |
|
|
ENDDO |
| 2295 |
|
|
|
| 2296 |
|
|
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
| 2297 |
|
|
C-- |
| 2298 |
|
|
DO J=1,sNy |
| 2299 |
|
|
DO I=1,sNx |
| 2300 |
|
|
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
| 2301 |
|
|
& PRECIP(I,J,bi,bj) |
| 2302 |
|
|
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
| 2303 |
|
|
# ifdef ALLOW_RUNOFF |
| 2304 |
|
|
& + RUNOFF(I,J,bi,bj) |
| 2305 |
|
|
# endif /* ALLOW_RUNOFF */ |
| 2306 |
|
|
& )*rhoConstFresh |
| 2307 |
|
|
# ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
| 2308 |
|
|
& - a_FWbySublim(I,J)*AREApreTH(I,J) |
| 2309 |
|
|
# endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
| 2310 |
|
|
ENDDO |
| 2311 |
|
|
ENDDO |
| 2312 |
|
|
C-- |
| 2313 |
|
|
#else /* ndef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
| 2314 |
|
|
C-- |
| 2315 |
|
|
# ifdef ALLOW_MEAN_SFLUX_COST_CONTRIBUTION |
| 2316 |
|
|
DO J=1,sNy |
| 2317 |
|
|
DO I=1,sNx |
| 2318 |
|
|
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
| 2319 |
|
|
& PRECIP(I,J,bi,bj) |
| 2320 |
|
|
& - EVAP(I,J,bi,bj) |
| 2321 |
|
|
& *( ONE - AREApreTH(I,J) ) |
| 2322 |
|
|
# ifdef ALLOW_RUNOFF |
| 2323 |
|
|
& + RUNOFF(I,J,bi,bj) |
| 2324 |
|
|
# endif /* ALLOW_RUNOFF */ |
| 2325 |
|
|
& )*rhoConstFresh |
| 2326 |
|
|
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
| 2327 |
|
|
ENDDO |
| 2328 |
|
|
ENDDO |
| 2329 |
|
|
# endif |
| 2330 |
|
|
C-- |
| 2331 |
|
|
#endif /* ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
| 2332 |
|
|
|
| 2333 |
|
|
#endif /* ALLOW_ATM_TEMP */ |
| 2334 |
|
|
|
| 2335 |
|
|
#ifdef SEAICE_DEBUG |
| 2336 |
|
|
CALL PLOT_FIELD_XYRL( QSW,'Current QSW ', myIter, myThid ) |
| 2337 |
|
|
CALL PLOT_FIELD_XYRL( QNET,'Current QNET ', myIter, myThid ) |
| 2338 |
|
|
CALL PLOT_FIELD_XYRL( EmPmR,'Current EmPmR ', myIter, myThid ) |
| 2339 |
|
|
#endif /* SEAICE_DEBUG */ |
| 2340 |
|
|
|
| 2341 |
|
|
C Sea Ice Load on the sea surface. |
| 2342 |
|
|
C ================================= |
| 2343 |
|
|
|
| 2344 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 2345 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 2346 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
| 2347 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 2348 |
|
|
|
| 2349 |
|
|
IF ( useRealFreshWaterFlux ) THEN |
| 2350 |
|
|
DO J=1,sNy |
| 2351 |
|
|
DO I=1,sNx |
| 2352 |
|
|
#ifdef SEAICE_CAP_ICELOAD |
| 2353 |
|
|
tmpscal1 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
| 2354 |
|
|
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
| 2355 |
|
|
tmpscal2 = MIN(tmpscal1,heffTooHeavy*rhoConst) |
| 2356 |
|
|
#else |
| 2357 |
|
|
tmpscal2 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
| 2358 |
|
|
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
| 2359 |
|
|
#endif |
| 2360 |
|
|
sIceLoad(i,j,bi,bj) = tmpscal2 |
| 2361 |
|
|
ENDDO |
| 2362 |
|
|
ENDDO |
| 2363 |
|
|
ENDIF |
| 2364 |
|
|
|
| 2365 |
|
|
C =================================================================== |
| 2366 |
|
|
C ======================PART 8: diagnostics========================== |
| 2367 |
|
|
C =================================================================== |
| 2368 |
|
|
|
| 2369 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 2370 |
|
|
IF ( useDiagnostics ) THEN |
| 2371 |
|
|
tmpscal1=1. _d 0 * recip_deltaTtherm |
| 2372 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_cover, |
| 2373 |
|
|
& tmpscal1,1,'SIaQbATC',0,1,3,bi,bj,myThid) |
| 2374 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_open, |
| 2375 |
|
|
& tmpscal1,1,'SIaQbATO',0,1,3,bi,bj,myThid) |
| 2376 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(a_QbyOCN, |
| 2377 |
|
|
& tmpscal1,1,'SIaQbOCN',0,1,3,bi,bj,myThid) |
| 2378 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyOCNonICE, |
| 2379 |
|
|
& tmpscal1,1,'SIdHbOCN',0,1,3,bi,bj,myThid) |
| 2380 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_cover, |
| 2381 |
|
|
& tmpscal1,1,'SIdHbATC',0,1,3,bi,bj,myThid) |
| 2382 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_open, |
| 2383 |
|
|
& tmpscal1,1,'SIdHbATO',0,1,3,bi,bj,myThid) |
| 2384 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyFLOODING, |
| 2385 |
|
|
& tmpscal1,1,'SIdHbFLO',0,1,3,bi,bj,myThid) |
| 2386 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyOCNonSNW, |
| 2387 |
|
|
& tmpscal1,1,'SIdSbOCN',0,1,3,bi,bj,myThid) |
| 2388 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyATMonSNW, |
| 2389 |
|
|
& tmpscal1,1,'SIdSbATC',0,1,3,bi,bj,myThid) |
| 2390 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyATM, |
| 2391 |
|
|
& tmpscal1,1,'SIdAbATO',0,1,3,bi,bj,myThid) |
| 2392 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyICE, |
| 2393 |
|
|
& tmpscal1,1,'SIdAbATC',0,1,3,bi,bj,myThid) |
| 2394 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyOCN, |
| 2395 |
|
|
& tmpscal1,1,'SIdAbOCN',0,1,3,bi,bj,myThid) |
| 2396 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_open, |
| 2397 |
|
|
& convertHI2Q,1, 'SIqneto ',0,1,3,bi,bj,myThid) |
| 2398 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_cover, |
| 2399 |
|
|
& convertHI2Q,1, 'SIqneti ',0,1,3,bi,bj,myThid) |
| 2400 |
|
|
C three that actually need intermediate storage |
| 2401 |
|
|
DO J=1,sNy |
| 2402 |
|
|
DO I=1,sNx |
| 2403 |
|
|
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
| 2404 |
|
|
& * d_HSNWbyRAIN(I,J)*SEAICE_rhoSnow*recip_deltaTtherm |
| 2405 |
|
|
DIAGarrayB(I,J) = AREA(I,J,bi,bj)-AREApreTH(I,J) |
| 2406 |
|
|
ENDDO |
| 2407 |
|
|
ENDDO |
| 2408 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
| 2409 |
|
|
& 'SIsnPrcp',0,1,3,bi,bj,myThid) |
| 2410 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(DIAGarrayB, |
| 2411 |
|
|
& tmpscal1,1,'SIdA ',0,1,3,bi,bj,myThid) |
| 2412 |
|
|
#ifdef ALLOW_ATM_TEMP |
| 2413 |
|
|
DO J=1,sNy |
| 2414 |
|
|
DO I=1,sNx |
| 2415 |
|
|
CML If I consider the atmosphere above the ice, the surface flux |
| 2416 |
|
|
CML which is relevant for the air temperature dT/dt Eq |
| 2417 |
|
|
CML accounts for sensible and radiation (with different treatment |
| 2418 |
|
|
CML according to wave-length) fluxes but not for "latent heat flux", |
| 2419 |
|
|
CML since it does not contribute to heating the air. |
| 2420 |
|
|
CML So this diagnostic is only good for heat budget calculations within |
| 2421 |
|
|
CML the ice-ocean system. |
| 2422 |
|
|
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
| 2423 |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
| 2424 |
|
|
& a_QSWbyATM_cover(I,J) + |
| 2425 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
| 2426 |
|
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
| 2427 |
|
|
C |
| 2428 |
|
|
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
| 2429 |
|
|
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
| 2430 |
|
|
C |
| 2431 |
|
|
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj)*( |
| 2432 |
|
|
& PRECIP(I,J,bi,bj) |
| 2433 |
|
|
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
| 2434 |
|
|
#ifdef ALLOW_RUNOFF |
| 2435 |
|
|
& + RUNOFF(I,J,bi,bj) |
| 2436 |
|
|
#endif /* ALLOW_RUNOFF */ |
| 2437 |
|
|
& )*rhoConstFresh |
| 2438 |
|
|
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
| 2439 |
|
|
ENDDO |
| 2440 |
|
|
ENDDO |
| 2441 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
| 2442 |
|
|
& 'SIatmQnt',0,1,3,bi,bj,myThid) |
| 2443 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
| 2444 |
|
|
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
| 2445 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayC, |
| 2446 |
|
|
& 'SIatmFW ',0,1,3,bi,bj,myThid) |
| 2447 |
|
|
C |
| 2448 |
|
|
DO J=1,sNy |
| 2449 |
|
|
DO I=1,sNx |
| 2450 |
|
|
C the actual Freshwater flux of sublimated ice, >0 decreases ice |
| 2451 |
|
|
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
| 2452 |
|
|
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
| 2453 |
|
|
& * SEAICE_rhoIce * recip_deltaTtherm |
| 2454 |
|
|
c the residual Freshwater flux of sublimated ice |
| 2455 |
|
|
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
| 2456 |
|
|
& * r_FWbySublim(I,J) |
| 2457 |
|
|
& * SEAICE_rhoIce * recip_deltaTtherm |
| 2458 |
|
|
C the latent heat flux |
| 2459 |
|
|
tmpscal1= EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
| 2460 |
|
|
& + r_FWbySublim(I,J)*convertHI2PRECIP |
| 2461 |
|
|
tmpscal2= ( a_FWbySublim(I,J)-r_FWbySublim(I,J) ) |
| 2462 |
|
|
& * convertHI2PRECIP |
| 2463 |
|
|
tmpscal3= SEAICE_lhEvap+SEAICE_lhFusion |
| 2464 |
|
|
DIAGarrayB(I,J) = -maskC(I,J,kSurface,bi,bj)*rhoConstFresh |
| 2465 |
|
|
& * ( tmpscal1*SEAICE_lhEvap + tmpscal2*tmpscal3 ) |
| 2466 |
|
|
ENDDO |
| 2467 |
|
|
ENDDO |
| 2468 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
| 2469 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
| 2470 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
| 2471 |
|
|
|
| 2472 |
|
|
DO J=1,sNy |
| 2473 |
|
|
DO I=1,sNx |
| 2474 |
|
|
c compute ice/snow water going to atm, in precip units |
| 2475 |
|
|
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
| 2476 |
|
|
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
| 2477 |
|
|
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
| 2478 |
|
|
c compute ocean water going to atm, in precip units |
| 2479 |
|
|
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
| 2480 |
|
|
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
| 2481 |
|
|
& * ( ONE - AREApreTH(I,J) ) |
| 2482 |
|
|
#ifdef ALLOW_RUNOFF |
| 2483 |
|
|
& - RUNOFF(I,J,bi,bj) |
| 2484 |
|
|
#endif /* ALLOW_RUNOFF */ |
| 2485 |
|
|
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
| 2486 |
|
|
& *convertHI2PRECIP ) |
| 2487 |
|
|
c factor in the advected specific energy (referenced to 0 for 0deC liquid water) |
| 2488 |
|
|
tmpscal1= - tmpscal1* |
| 2489 |
|
|
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
| 2490 |
|
|
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
| 2491 |
|
|
tmpscal2= - tmpscal2* |
| 2492 |
|
|
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
| 2493 |
|
|
ELSE |
| 2494 |
|
|
tmpscal2= - tmpscal2* |
| 2495 |
|
|
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
| 2496 |
|
|
ENDIF |
| 2497 |
|
|
c add to SIatmQnt, leading to SItflux, which is analogous to TFLUX |
| 2498 |
|
|
DIAGarrayA(I,J)=maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
| 2499 |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
| 2500 |
|
|
& a_QSWbyATM_cover(I,J) + |
| 2501 |
|
|
#endif |
| 2502 |
|
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
| 2503 |
|
|
& -tmpscal1-tmpscal2 |
| 2504 |
|
|
ENDDO |
| 2505 |
|
|
ENDDO |
| 2506 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
| 2507 |
|
|
& 'SItflux ',0,1,3,bi,bj,myThid) |
| 2508 |
|
|
#endif /* ALLOW_ATM_TEMP */ |
| 2509 |
|
|
|
| 2510 |
|
|
ENDIF |
| 2511 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
| 2512 |
|
|
|
| 2513 |
|
|
C close bi,bj loops |
| 2514 |
|
|
ENDDO |
| 2515 |
|
|
ENDDO |
| 2516 |
|
|
|
| 2517 |
|
|
RETURN |
| 2518 |
|
|
END |