7 |
C-- Contents |
C-- Contents |
8 |
C-- o SEAICE_FGMRES_DRIVER |
C-- o SEAICE_FGMRES_DRIVER |
9 |
C-- o SEAICE_MAP2VEC |
C-- o SEAICE_MAP2VEC |
10 |
|
C-- o SEAICE_MAP_RS2VEC |
11 |
C-- o SEAICE_FGMRES |
C-- o SEAICE_FGMRES |
12 |
C-- o SCALPROD |
C-- o SEAICE_SCALPROD |
13 |
|
|
14 |
CBOP |
CBOP |
15 |
C !ROUTINE: SEAICE_FGMRES_DRIVER |
C !ROUTINE: SEAICE_FGMRES_DRIVER |
20 |
U duIce, dvIce, |
U duIce, dvIce, |
21 |
U iCode, |
U iCode, |
22 |
I FGMRESeps, iOutFGMRES, |
I FGMRESeps, iOutFGMRES, |
23 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, |
24 |
|
U krylovIter, |
25 |
|
I myTime, myIter, myThid ) |
26 |
|
|
27 |
C !DESCRIPTION: \bv |
C !DESCRIPTION: \bv |
28 |
C *==========================================================* |
C *==========================================================* |
49 |
C myTime :: Simulation time |
C myTime :: Simulation time |
50 |
C myIter :: Simulation timestep number |
C myIter :: Simulation timestep number |
51 |
C myThid :: my Thread Id. number |
C myThid :: my Thread Id. number |
52 |
C newtonIter :: current iterate of Newton iteration |
C newtonIter :: current iterate of Newton iteration (for diagnostics) |
53 |
C krylovIter :: current iterate of Newton iteration |
C krylovIter :: current iterate of Newton iteration (updated) |
54 |
C iCode :: FGMRES parameter to determine next step |
C iCode :: FGMRES parameter to determine next step |
55 |
C iOutFGMRES :: control output of fgmres |
C iOutFGMRES :: control output of fgmres |
56 |
_RL myTime |
_RL myTime |
74 |
defined (SEAICE_ALLOW_DYNAMICS) ) |
defined (SEAICE_ALLOW_DYNAMICS) ) |
75 |
C Local variables: |
C Local variables: |
76 |
C k :: loop indices |
C k :: loop indices |
77 |
INTEGER k |
INTEGER k, bi, bj |
78 |
C FGMRES parameters |
C FGMRES parameters |
79 |
C n :: size of the input vector(s) |
C nVec :: size of the input vector(s) |
80 |
C im :: size of Krylov space |
C im :: size of Krylov space |
81 |
C ifgmres :: interation counter |
C ifgmres :: interation counter |
82 |
INTEGER n |
INTEGER nVec |
83 |
PARAMETER ( n = 2*sNx*sNy*nSx*nSy ) |
PARAMETER ( nVec = 2*sNx*sNy ) |
84 |
INTEGER im |
INTEGER im |
85 |
PARAMETER ( im = 50 ) |
PARAMETER ( im = 50 ) |
86 |
INTEGER ifgmres |
INTEGER ifgmres |
87 |
C work arrays |
C work arrays |
88 |
_RL rhs(n), sol(n) |
_RL rhs(nVec,nSx,nSy), sol(nVec,nSx,nSy) |
89 |
_RL vv(n,im+1), w(n,im) |
_RL vv(nVec,im+1,nSx,nSy), w(nVec,im,nSx,nSy) |
90 |
_RL wk1(n), wk2(n) |
_RL wk1(nVec,nSx,nSy), wk2(nVec,nSx,nSy) |
91 |
C need to store some of the fgmres parameters and fields so that |
C need to store some of the fgmres parameters and fields so that |
92 |
C they are not forgotten between Krylov iterations |
C they are not forgotten between Krylov iterations |
93 |
COMMON /FGMRES_I/ ifgmres |
COMMON /FGMRES_I/ ifgmres |
94 |
COMMON /FGMRES_RL/ sol, rhs, vv, w |
COMMON /FGMRES_RL/ sol, rhs, vv, w |
95 |
CEOP |
CEOP |
96 |
|
|
|
C For now, let only the master thread do all the work |
|
|
C - copy from 2D arrays to 1D-vector |
|
|
C - perform fgmres step (including global sums) |
|
|
C - copy from 1D-vector to 2D arrays |
|
|
C not sure if this works properly |
|
|
|
|
|
_BEGIN_MASTER ( myThid ) |
|
97 |
IF ( iCode .EQ. 0 ) THEN |
IF ( iCode .EQ. 0 ) THEN |
98 |
C The first guess is zero because it is a correction, but this |
C The first guess is zero because it is a correction, but this |
99 |
C is implemented by setting du/vIce=0 outside of this routine; |
C is implemented by setting du/vIce=0 outside of this routine; |
100 |
C this make it possible to restart FGMRES with a nonzero sol |
C this make it possible to restart FGMRES with a nonzero sol |
101 |
CALL SEAICE_MAP2VEC(n,duIce,dvIce,sol,.TRUE.,myThid) |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.TRUE.,myThid) |
102 |
C wk2 needs to be reset for iCode = 0, because it may contain |
C wk2 needs to be reset for iCode = 0, because it may contain |
103 |
C remains of the previous Krylov iteration |
C remains of the previous Krylov iteration |
104 |
DO k=1,n |
DO bj=myByLo(myThid),myByHi(myThid) |
105 |
wk2(k) = 0. _d 0 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
106 |
|
DO k=1,nVec |
107 |
|
wk2(k,bi,bj) = 0. _d 0 |
108 |
|
ENDDO |
109 |
|
ENDDO |
110 |
ENDDO |
ENDDO |
111 |
ELSEIF ( iCode .EQ. 3 ) THEN |
ELSEIF ( iCode .EQ. 3 ) THEN |
112 |
CALL SEAICE_MAP2VEC(n,uIceRes,vIceRes,rhs,.TRUE.,myThid) |
CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,rhs,.TRUE.,myThid) |
113 |
C change sign of rhs because we are solving J*u = -F |
C change sign of rhs because we are solving J*u = -F |
114 |
C wk2 needs to be initialised for iCode = 3, because it may contain |
C wk2 needs to be initialised for iCode = 3, because it may contain |
115 |
C garbage |
C garbage |
116 |
DO k=1,n |
DO bj=myByLo(myThid),myByHi(myThid) |
117 |
rhs(k) = -rhs(k) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
118 |
wk2(k) = 0. _d 0 |
DO k=1,nVec |
119 |
|
rhs(k,bi,bj) = -rhs(k,bi,bj) |
120 |
|
wk2(k,bi,bj) = 0. _d 0 |
121 |
|
ENDDO |
122 |
|
ENDDO |
123 |
ENDDO |
ENDDO |
124 |
ELSE |
ELSE |
125 |
C map preconditioner results or Jacobian times vector, |
C map preconditioner results or Jacobian times vector, |
126 |
C stored in du/vIce to wk2 |
C stored in du/vIce to wk2 |
127 |
CALL SEAICE_MAP2VEC(n,duIce,dvIce,wk2,.TRUE.,myThid) |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk2,.TRUE.,myThid) |
128 |
ENDIF |
ENDIF |
129 |
C |
C |
130 |
CALL SEAICE_FGMRES (n,im,rhs,sol,ifgmres,vv,w,wk1,wk2, |
CALL SEAICE_FGMRES (nVec,im,rhs,sol,ifgmres,krylovIter, |
131 |
& FGMRESeps,SEAICEkrylovIterMax, |
U vv,w,wk1,wk2, |
132 |
& iOutFGMRES,iCode,krylovIter,myThid) |
I FGMRESeps,SEAICEkrylovIterMax,iOutFGMRES, |
133 |
|
U iCode, |
134 |
|
I myThid) |
135 |
C |
C |
136 |
IF ( iCode .EQ. 0 ) THEN |
IF ( iCode .EQ. 0 ) THEN |
137 |
C map sol(ution) vector to du/vIce |
C map sol(ution) vector to du/vIce |
138 |
CALL SEAICE_MAP2VEC(n,duIce,dvIce,sol,.FALSE.,myThid) |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.FALSE.,myThid) |
139 |
ELSE |
ELSE |
140 |
C map work vector to du/vIce to either compute a preconditioner |
C map work vector to du/vIce to either compute a preconditioner |
141 |
C solution (wk1=rhs) or a Jacobian times wk1 |
C solution (wk1=rhs) or a Jacobian times wk1 |
142 |
CALL SEAICE_MAP2VEC(n,duIce,dvIce,wk1,.FALSE.,myThid) |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk1,.FALSE.,myThid) |
143 |
ENDIF |
ENDIF |
|
_END_MASTER ( myThid ) |
|
144 |
|
|
145 |
C Fill overlaps in updated fields |
C Fill overlaps in updated fields |
146 |
CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid) |
CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid) |
180 |
INTEGER myThid |
INTEGER myThid |
181 |
_RL xfld2d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL xfld2d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
182 |
_RL yfld2d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL yfld2d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
183 |
_RL vector (n) |
_RL vector (n,nSx,nSy) |
184 |
C === local variables === |
C === local variables === |
185 |
INTEGER I, J, bi, bj |
INTEGER I, J, bi, bj |
186 |
INTEGER ii, jj, ib, jb, m |
INTEGER ii, jj, m |
187 |
CEOP |
CEOP |
188 |
|
|
189 |
m = n/2 |
m = n/2 |
190 |
IF ( map2vec ) THEN |
DO bj=myByLo(myThid),myByHi(myThid) |
191 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
192 |
jb = nSx*sNy*sNx*(bj-1) |
#ifdef SEAICE_JFNK_MAP_REORDER |
193 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
ii = 0 |
194 |
ib = jb + sNy*sNx*(bi-1) |
IF ( map2vec ) THEN |
195 |
|
DO J=1,sNy |
196 |
|
jj = 2*sNx*(J-1) |
197 |
|
DO I=1,sNx |
198 |
|
ii = jj + 2*I |
199 |
|
vector(ii-1,bi,bj) = xfld2d(I,J,bi,bj) |
200 |
|
vector(ii, bi,bj) = yfld2d(I,J,bi,bj) |
201 |
|
ENDDO |
202 |
|
ENDDO |
203 |
|
ELSE |
204 |
DO J=1,sNy |
DO J=1,sNy |
205 |
jj = ib + sNx*(J-1) |
jj = 2*sNx*(J-1) |
206 |
|
DO I=1,sNx |
207 |
|
ii = jj + 2*I |
208 |
|
xfld2d(I,J,bi,bj) = vector(ii-1,bi,bj) |
209 |
|
yfld2d(I,J,bi,bj) = vector(ii, bi,bj) |
210 |
|
ENDDO |
211 |
|
ENDDO |
212 |
|
ENDIF |
213 |
|
#else |
214 |
|
IF ( map2vec ) THEN |
215 |
|
DO J=1,sNy |
216 |
|
jj = sNx*(J-1) |
217 |
DO I=1,sNx |
DO I=1,sNx |
218 |
ii = jj + I |
ii = jj + I |
219 |
vector(ii) = xfld2d(I,J,bi,bj) |
vector(ii, bi,bj) = xfld2d(I,J,bi,bj) |
220 |
vector(ii+m) = yfld2d(I,J,bi,bj) |
vector(ii+m,bi,bj) = yfld2d(I,J,bi,bj) |
221 |
ENDDO |
ENDDO |
222 |
ENDDO |
ENDDO |
223 |
ENDDO |
ELSE |
224 |
|
DO J=1,sNy |
225 |
|
jj = sNx*(J-1) |
226 |
|
DO I=1,sNx |
227 |
|
ii = jj + I |
228 |
|
xfld2d(I,J,bi,bj) = vector(ii, bi,bj) |
229 |
|
yfld2d(I,J,bi,bj) = vector(ii+m,bi,bj) |
230 |
|
ENDDO |
231 |
|
ENDDO |
232 |
|
ENDIF |
233 |
|
#endif /* SEAICE_JFNK_MAP_REORDER */ |
234 |
|
C bi,bj-loops |
235 |
ENDDO |
ENDDO |
236 |
ELSE |
ENDDO |
237 |
DO bj=myByLo(myThid),myByHi(myThid) |
|
238 |
jb = nSx*sNy*sNx*(bj-1) |
RETURN |
239 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
END |
240 |
ib = jb + sNy*sNx*(bi-1) |
|
241 |
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
242 |
|
CBOP |
243 |
|
C !ROUTINE: SEAICE_MAP_RS2VEC |
244 |
|
C !INTERFACE: |
245 |
|
|
246 |
|
SUBROUTINE SEAICE_MAP_RS2VEC( |
247 |
|
I n, |
248 |
|
O xfld2d, yfld2d, |
249 |
|
U vector, |
250 |
|
I map2vec, myThid ) |
251 |
|
|
252 |
|
C !DESCRIPTION: \bv |
253 |
|
C *==========================================================* |
254 |
|
C | SUBROUTINE SEAICE_MAP_RS2VEC |
255 |
|
C | o maps 2 2D-RS-fields to vector and back |
256 |
|
C *==========================================================* |
257 |
|
C | written by Martin Losch, Oct 2012 |
258 |
|
C *==========================================================* |
259 |
|
C \ev |
260 |
|
|
261 |
|
C !USES: |
262 |
|
IMPLICIT NONE |
263 |
|
|
264 |
|
C === Global variables === |
265 |
|
#include "SIZE.h" |
266 |
|
#include "EEPARAMS.h" |
267 |
|
C === Routine arguments === |
268 |
|
INTEGER n |
269 |
|
LOGICAL map2vec |
270 |
|
INTEGER myThid |
271 |
|
_RS xfld2d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
272 |
|
_RS yfld2d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
273 |
|
_RL vector (n,nSx,nSy) |
274 |
|
C === local variables === |
275 |
|
INTEGER I, J, bi, bj |
276 |
|
INTEGER ii, jj, m |
277 |
|
CEOP |
278 |
|
|
279 |
|
m = n/2 |
280 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
281 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
282 |
|
#ifdef SEAICE_JFNK_MAP_REORDER |
283 |
|
ii = 0 |
284 |
|
IF ( map2vec ) THEN |
285 |
DO J=1,sNy |
DO J=1,sNy |
286 |
jj = ib + sNx*(J-1) |
jj = 2*sNx*(J-1) |
287 |
|
DO I=1,sNx |
288 |
|
ii = jj + 2*I |
289 |
|
vector(ii-1,bi,bj) = xfld2d(I,J,bi,bj) |
290 |
|
vector(ii, bi,bj) = yfld2d(I,J,bi,bj) |
291 |
|
ENDDO |
292 |
|
ENDDO |
293 |
|
ELSE |
294 |
|
DO J=1,sNy |
295 |
|
jj = 2*sNx*(J-1) |
296 |
|
DO I=1,sNx |
297 |
|
ii = jj + 2*I |
298 |
|
xfld2d(I,J,bi,bj) = vector(ii-1,bi,bj) |
299 |
|
yfld2d(I,J,bi,bj) = vector(ii, bi,bj) |
300 |
|
ENDDO |
301 |
|
ENDDO |
302 |
|
ENDIF |
303 |
|
#else |
304 |
|
IF ( map2vec ) THEN |
305 |
|
DO J=1,sNy |
306 |
|
jj = sNx*(J-1) |
307 |
DO I=1,sNx |
DO I=1,sNx |
308 |
ii = jj + I |
ii = jj + I |
309 |
xfld2d(I,J,bi,bj) = vector(ii) |
vector(ii, bi,bj) = xfld2d(I,J,bi,bj) |
310 |
yfld2d(I,J,bi,bj) = vector(ii+m) |
vector(ii+m,bi,bj) = yfld2d(I,J,bi,bj) |
311 |
ENDDO |
ENDDO |
312 |
ENDDO |
ENDDO |
313 |
ENDDO |
ELSE |
314 |
|
DO J=1,sNy |
315 |
|
jj = sNx*(J-1) |
316 |
|
DO I=1,sNx |
317 |
|
ii = jj + I |
318 |
|
xfld2d(I,J,bi,bj) = vector(ii, bi,bj) |
319 |
|
yfld2d(I,J,bi,bj) = vector(ii+m,bi,bj) |
320 |
|
ENDDO |
321 |
|
ENDDO |
322 |
|
ENDIF |
323 |
|
#endif /* SEAICE_JFNK_MAP_REORDER */ |
324 |
|
C bi,bj-loops |
325 |
ENDDO |
ENDDO |
326 |
ENDIF |
ENDDO |
327 |
|
|
328 |
RETURN |
RETURN |
329 |
END |
END |
332 |
CBOP |
CBOP |
333 |
C !ROUTINE: SEAICE_FGMRES |
C !ROUTINE: SEAICE_FGMRES |
334 |
C !INTERFACE: |
C !INTERFACE: |
335 |
|
SUBROUTINE SEAICE_FGMRES ( |
336 |
SUBROUTINE SEAICE_FGMRES (n,im,rhs,sol,i,vv,w,wk1, wk2, |
I n,im,rhs, |
337 |
& eps,maxits,iout,icode,its,myThid) |
U sol,i,its,vv,w,wk1,wk2, |
338 |
|
I eps,maxits,iout, |
339 |
|
U icode, |
340 |
|
I myThid ) |
341 |
|
|
342 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
343 |
C mlosch Oct 2012: modified the routine further to be compliant with |
C mlosch Oct 2012: modified the routine further to be compliant with |
344 |
C MITgcm standards: |
C MITgcm standards: |
345 |
C f90 -> F |
C f90 -> F |
346 |
C !-comment -> C-comment |
C !-comment -> C-comment |
347 |
|
C add its to list of arguments |
348 |
C double precision -> _RL |
C double precision -> _RL |
349 |
C implicit none |
C implicit none |
350 |
C |
C |
366 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
367 |
|
|
368 |
implicit none |
implicit none |
369 |
|
C === Global variables === |
370 |
|
#include "SIZE.h" |
371 |
|
#include "EEPARAMS.h" |
372 |
CML implicit double precision (a-h,o-z) !jfl modification |
CML implicit double precision (a-h,o-z) !jfl modification |
373 |
integer myThid |
integer myThid |
374 |
integer n, im, maxits, iout, icode |
integer n, im, its, maxits, iout, icode |
375 |
_RL rhs(*), sol(*), vv(n,im+1), w(n,im) |
_RL rhs(n,nSx,nSy), sol(n,nSx,nSy) |
376 |
_RL wk1(n), wk2(n), eps |
_RL vv(n,im+1,nSx,nSy), w(n,im,nSx,nSy) |
377 |
|
_RL wk1(n,nSx,nSy), wk2(n,nSx,nSy), eps |
378 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
379 |
C flexible GMRES routine. This is a version of GMRES which allows a |
C flexible GMRES routine. This is a version of GMRES which allows a |
380 |
C a variable preconditioner. Implemented with a reverse communication |
C a variable preconditioner. Implemented with a reverse communication |
400 |
C |
C |
401 |
C icode = 0 |
C icode = 0 |
402 |
C 1 continue |
C 1 continue |
403 |
C call fgmres (n,im,rhs,sol,i,vv,w,wk1, wk2,eps,maxits,iout,icode) |
C call fgmres (n,im,rhs,sol,i,vv,w,wk1,wk2,eps,maxits,iout, |
404 |
|
C & icode,its,mythid) |
405 |
C |
C |
406 |
C if (icode .eq. 1) then |
C if (icode .eq. 1) then |
407 |
C call precon(n, wk1, wk2) <--- user variable preconditioning |
C call precon(n, wk1, wk2) <--- user variable preconditioning |
436 |
C |
C |
437 |
C maxits== maximum number of iterations allowed |
C maxits== maximum number of iterations allowed |
438 |
C |
C |
439 |
|
C i == internal iteration counter, updated in this routine |
440 |
|
C its == current (Krylov) iteration counter, updated in this routine |
441 |
|
C |
442 |
C iout == output unit number number for printing intermediate results |
C iout == output unit number number for printing intermediate results |
443 |
C if (iout .le. 0) no statistics are printed. |
C if (iout .le. 0) no statistics are printed. |
444 |
C |
C |
473 |
C------------------------------------------------------------- |
C------------------------------------------------------------- |
474 |
C arnoldi size should not exceed 50 in this version.. |
C arnoldi size should not exceed 50 in this version.. |
475 |
C------------------------------------------------------------- |
C------------------------------------------------------------- |
476 |
integer i, its, i1, ii, j, jj, k, k1!, n1 |
integer i, i1, ii, j, jj, k, k1!, n1 |
477 |
|
integer bi, bj |
478 |
_RL r0, gam, epsmac, eps1 |
_RL r0, gam, epsmac, eps1 |
479 |
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
480 |
|
|
481 |
CEOP |
CEOP |
482 |
save |
CML save |
483 |
|
C local common block to replace the save statement |
484 |
|
COMMON /SEAICE_FMRES_LOC_I/ i1 |
485 |
|
COMMON /SEAICE_FMRES_LOC_RL/ |
486 |
|
& hh, c, s, rs, t, ro, r0, gam, epsmac, eps1 |
487 |
data epsmac/1.d-16/ |
data epsmac/1.d-16/ |
488 |
C |
C |
489 |
C computed goto |
C computed goto |
491 |
if ( im .gt. imax ) stop 'size of krylov space > 50' |
if ( im .gt. imax ) stop 'size of krylov space > 50' |
492 |
goto (100,200,300,11) icode +1 |
goto (100,200,300,11) icode +1 |
493 |
100 continue |
100 continue |
494 |
CML n1 = n + 1 |
CML n1 = n + 1 |
495 |
its = 0 |
its = 0 |
496 |
C------------------------------------------------------------- |
C------------------------------------------------------------- |
497 |
C ** outer loop starts here.. |
C ** outer loop starts here.. |
498 |
C--------------compute initial residual vector -------------- |
C--------------compute initial residual vector -------------- |
499 |
C 10 continue |
C 10 continue |
500 |
CML call dcopy (n, sol, 1, wk1, 1) !jfl modification |
CML call dcopy (n, sol, 1, wk1, 1) !jfl modification |
501 |
do k=1,n |
do bj=myByLo(myThid),myByHi(myThid) |
502 |
wk1(k)=sol(k) |
do bi=myBxLo(myThid),myBxHi(myThid) |
503 |
|
do j=1,n |
504 |
|
wk1(j,bi,bj)=sol(j,bi,bj) |
505 |
|
enddo |
506 |
|
enddo |
507 |
enddo |
enddo |
508 |
icode = 3 |
icode = 3 |
509 |
RETURN |
RETURN |
510 |
11 continue |
11 continue |
511 |
do j=1,n |
do bj=myByLo(myThid),myByHi(myThid) |
512 |
vv(j,1) = rhs(j) - wk2(j) |
do bi=myBxLo(myThid),myBxHi(myThid) |
513 |
|
do j=1,n |
514 |
|
vv(j,1,bi,bj) = rhs(j,bi,bj) - wk2(j,bi,bj) |
515 |
|
enddo |
516 |
|
enddo |
517 |
enddo |
enddo |
518 |
CML 20 ro = ddot(n, vv, 1, vv,1) !jfl modification |
20 continue |
519 |
20 call scalprod(n, vv, vv, ro, myThid) |
CML ro = ddot(n, vv, 1, vv,1) !jfl modification |
520 |
|
call SEAICE_SCALPROD(n, im+1, 1, 1, vv, vv, ro, myThid) |
521 |
ro = sqrt(ro) |
ro = sqrt(ro) |
522 |
if (ro .eq. 0.0d0) goto 999 |
if (ro .eq. 0.0 _d 0) goto 999 |
523 |
t = 1.0d0/ ro |
t = 1.0 _d 0/ ro |
524 |
do j=1, n |
do bj=myByLo(myThid),myByHi(myThid) |
525 |
vv(j,1) = vv(j,1)*t |
do bi=myBxLo(myThid),myBxHi(myThid) |
526 |
|
do j=1, n |
527 |
|
vv(j,1,bi,bj) = vv(j,1,bi,bj)*t |
528 |
|
enddo |
529 |
|
enddo |
530 |
enddo |
enddo |
531 |
if (its .eq. 0) eps1=eps |
if (its .eq. 0) eps1=eps |
532 |
|
C not sure what this is, r0 is never used again |
533 |
if (its .eq. 0) r0 = ro |
if (its .eq. 0) r0 = ro |
534 |
if (iout .gt. 0) write(*, 199) its, ro!& |
if (iout .gt. 0) then |
535 |
|
_BEGIN_MASTER( myThid ) |
536 |
|
write(msgBuf, 199) its, ro |
537 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
538 |
|
& SQUEEZE_RIGHT, myThid ) |
539 |
C print *,'chau',its, ro !write(iout, 199) its, ro |
C print *,'chau',its, ro !write(iout, 199) its, ro |
540 |
|
_END_MASTER( myThid ) |
541 |
|
endif |
542 |
C |
C |
543 |
C initialize 1-st term of rhs of hessenberg system.. |
C initialize 1-st term of rhs of hessenberg system.. |
544 |
C |
C |
545 |
rs(1) = ro |
rs(1) = ro |
546 |
i = 0 |
i = 0 |
547 |
4 i=i+1 |
4 continue |
548 |
|
i=i+1 |
549 |
its = its + 1 |
its = its + 1 |
550 |
i1 = i + 1 |
i1 = i + 1 |
551 |
do k=1, n |
do bj=myByLo(myThid),myByHi(myThid) |
552 |
wk1(k) = vv(k,i) |
do bi=myBxLo(myThid),myBxHi(myThid) |
553 |
|
do k=1, n |
554 |
|
wk1(k,bi,bj) = vv(k,i,bi,bj) |
555 |
|
enddo |
556 |
|
enddo |
557 |
enddo |
enddo |
558 |
C |
C |
559 |
C return |
C return |
560 |
C |
C |
561 |
icode = 1 |
icode = 1 |
|
|
|
562 |
RETURN |
RETURN |
563 |
200 continue |
200 continue |
564 |
do k=1, n |
do bj=myByLo(myThid),myByHi(myThid) |
565 |
w(k,i) = wk2(k) |
do bi=myBxLo(myThid),myBxHi(myThid) |
566 |
|
do k=1, n |
567 |
|
w(k,i,bi,bj) = wk2(k,bi,bj) |
568 |
|
enddo |
569 |
|
enddo |
570 |
enddo |
enddo |
571 |
C |
C |
572 |
C call matvec operation |
C call matvec operation |
573 |
C |
C |
574 |
icode = 2 |
CML call dcopy(n, wk2, 1, wk1, 1) !jfl modification |
575 |
CML call dcopy(n, wk2, 1, wk1, 1) !jfl modification |
do bj=myByLo(myThid),myByHi(myThid) |
576 |
do k=1,n |
do bi=myBxLo(myThid),myBxHi(myThid) |
577 |
wk1(k)=wk2(k) |
do k=1,n |
578 |
|
wk1(k,bi,bj)=wk2(k,bi,bj) |
579 |
|
enddo |
580 |
|
enddo |
581 |
enddo |
enddo |
582 |
C |
C |
583 |
C return |
C return |
584 |
C |
C |
585 |
|
icode = 2 |
586 |
RETURN |
RETURN |
587 |
300 continue |
300 continue |
588 |
C |
C |
589 |
C first call to ope corresponds to intialization goto back to 11. |
C first call to ope corresponds to intialization goto back to 11. |
590 |
C |
C |
591 |
C if (icode .eq. 3) goto 11 |
C if (icode .eq. 3) goto 11 |
592 |
CML call dcopy (n, wk2, 1, vv(1,i1), 1) !jfl modification |
CML call dcopy (n, wk2, 1, vv(1,i1), 1) !jfl modification |
593 |
do k=1,n |
do bj=myByLo(myThid),myByHi(myThid) |
594 |
vv(k,i1)=wk2(k) |
do bi=myBxLo(myThid),myBxHi(myThid) |
595 |
|
do k=1,n |
596 |
|
vv(k,i1,bi,bj)=wk2(k,bi,bj) |
597 |
|
enddo |
598 |
|
enddo |
599 |
enddo |
enddo |
600 |
C |
C |
601 |
C modified gram - schmidt... |
C modified gram - schmidt... |
602 |
C |
C |
603 |
do j=1, i |
do j=1, i |
604 |
CML t = ddot(n, vv(1,j), 1, vv(1,i1), 1) !jfl modification |
CML t = ddot(n, vv(1,j), 1, vv(1,i1), 1) !jfl modification |
605 |
call scalprod(n, vv(1,j), vv(1,i1), t, myThid) |
call SEAICE_SCALPROD(n, im+1, j, i1, vv, vv, t, myThid) |
606 |
hh(j,i) = t |
hh(j,i) = t |
607 |
CML call daxpy(n, -t, vv(1,j), 1, vv(1,i1), 1) !jfl modification |
CML call daxpy(n, -t, vv(1,j), 1, vv(1,i1), 1) !jfl modification |
608 |
CML enddo |
CML enddo |
609 |
CML do j=1, i |
CML do j=1, i |
610 |
CML t = hh(j,i) |
CML t = hh(j,i) |
611 |
|
do bj=myByLo(myThid),myByHi(myThid) |
612 |
|
do bi=myBxLo(myThid),myBxHi(myThid) |
613 |
do k=1,n |
do k=1,n |
614 |
vv(k,i1) = vv(k,i1) - t*vv(k,j) |
vv(k,i1,bi,bj) = vv(k,i1,bi,bj) - t*vv(k,j,bi,bj) |
615 |
enddo |
enddo |
616 |
|
enddo |
617 |
|
enddo |
618 |
enddo |
enddo |
619 |
CML t = sqrt(ddot(n, vv(1,i1), 1, vv(1,i1), 1)) !jfl modification |
CML t = sqrt(ddot(n, vv(1,i1), 1, vv(1,i1), 1)) !jfl modification |
620 |
call scalprod(n, vv(1,i1), vv(1,i1), t, myThid) |
call SEAICE_SCALPROD(n, im+1, i1, i1, vv, vv, t, myThid) |
621 |
t = sqrt(t) |
t = sqrt(t) |
622 |
hh(i1,i) = t |
hh(i1,i) = t |
623 |
if (t .eq. 0.0d0) goto 58 |
if (t .ne. 0.0 _d 0) then |
624 |
t = 1.0d0 / t |
t = 1.0 _d 0 / t |
625 |
do k=1,n |
do bj=myByLo(myThid),myByHi(myThid) |
626 |
vv(k,i1) = vv(k,i1)*t |
do bi=myBxLo(myThid),myBxHi(myThid) |
627 |
enddo |
do k=1,n |
628 |
|
vv(k,i1,bi,bj) = vv(k,i1,bi,bj)*t |
629 |
|
enddo |
630 |
|
enddo |
631 |
|
enddo |
632 |
|
endif |
633 |
C |
C |
634 |
C done with modified gram schimd and arnoldi step. |
C done with modified gram schimd and arnoldi step. |
635 |
C now update factorization of hh |
C now update factorization of hh |
636 |
C |
C |
637 |
58 if (i .eq. 1) goto 121 |
if (i .ne. 1) then |
638 |
C |
C |
639 |
C perfrom previous transformations on i-th column of h |
C perfrom previous transformations on i-th column of h |
640 |
C |
C |
641 |
do k=2,i |
do k=2,i |
642 |
k1 = k-1 |
k1 = k-1 |
643 |
t = hh(k1,i) |
t = hh(k1,i) |
644 |
hh(k1,i) = c(k1)*t + s(k1)*hh(k,i) |
hh(k1,i) = c(k1)*t + s(k1)*hh(k,i) |
645 |
hh(k,i) = -s(k1)*t + c(k1)*hh(k,i) |
hh(k,i) = -s(k1)*t + c(k1)*hh(k,i) |
646 |
enddo |
enddo |
647 |
121 gam = sqrt(hh(i,i)**2 + hh(i1,i)**2) |
endif |
648 |
if (gam .eq. 0.0d0) gam = epsmac |
gam = sqrt(hh(i,i)**2 + hh(i1,i)**2) |
649 |
|
if (gam .eq. 0.0 _d 0) gam = epsmac |
650 |
C-----------#determine next plane rotation #------------------- |
C-----------#determine next plane rotation #------------------- |
651 |
c(i) = hh(i,i)/gam |
c(i) = hh(i,i)/gam |
652 |
s(i) = hh(i1,i)/gam |
s(i) = hh(i1,i)/gam |
653 |
|
C numerically more stable Givens rotation, but the results |
654 |
|
C are not better |
655 |
|
CML c(i)=1. _d 0 |
656 |
|
CML s(i)=0. _d 0 |
657 |
|
CML if ( abs(hh(i1,i)) .gt. 0.0 _d 0) then |
658 |
|
CML if ( abs(hh(i1,i)) .gt. abs(hh(i,i)) ) then |
659 |
|
CML gam = hh(i,i)/hh(i1,i) |
660 |
|
CML s(i) = 1./sqrt(1.+gam*gam) |
661 |
|
CML c(i) = s(i)*gam |
662 |
|
CML else |
663 |
|
CML gam = hh(i1,i)/hh(i,i) |
664 |
|
CML c(i) = 1./sqrt(1.+gam*gam) |
665 |
|
CML s(i) = c(i)*gam |
666 |
|
CML endif |
667 |
|
CML endif |
668 |
rs(i1) = -s(i)*rs(i) |
rs(i1) = -s(i)*rs(i) |
669 |
rs(i) = c(i)*rs(i) |
rs(i) = c(i)*rs(i) |
670 |
C |
C |
671 |
C determine res. norm. and test for convergence- |
C determine res. norm. and test for convergence |
672 |
C |
C |
673 |
hh(i,i) = c(i)*hh(i,i) + s(i)*hh(i1,i) |
hh(i,i) = c(i)*hh(i,i) + s(i)*hh(i1,i) |
674 |
ro = abs(rs(i1)) |
ro = abs(rs(i1)) |
675 |
if (iout .gt. 0) write(*, 199) its, ro |
if (iout .gt. 0) then |
676 |
|
_BEGIN_MASTER( myThid ) |
677 |
|
write(msgBuf, 199) its, ro |
678 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
679 |
|
& SQUEEZE_RIGHT, myThid ) |
680 |
|
_END_MASTER( myThid ) |
681 |
|
endif |
682 |
if (i .lt. im .and. (ro .gt. eps1)) goto 4 |
if (i .lt. im .and. (ro .gt. eps1)) goto 4 |
683 |
C |
C |
684 |
C now compute solution. first solve upper triangular system. |
C now compute solution. first solve upper triangular system. |
685 |
C |
C |
686 |
rs(i) = rs(i)/hh(i,i) |
rs(i) = rs(i)/hh(i,i) |
687 |
do ii=2,i |
do ii=2,i |
688 |
k=i-ii+1 |
k=i-ii+1 |
689 |
k1 = k+1 |
k1 = k+1 |
690 |
t=rs(k) |
t=rs(k) |
691 |
do j=k1,i |
do j=k1,i |
692 |
t = t-hh(k,j)*rs(j) |
t = t-hh(k,j)*rs(j) |
693 |
enddo |
enddo |
694 |
rs(k) = t/hh(k,k) |
rs(k) = t/hh(k,k) |
695 |
enddo |
enddo |
696 |
C |
C |
697 |
C done with back substitution.. |
C done with back substitution.. |
699 |
C |
C |
700 |
do j=1, i |
do j=1, i |
701 |
t = rs(j) |
t = rs(j) |
702 |
C call daxpy(n, t, w(1,j), 1, sol,1) !jfl modification |
CML call daxpy(n, t, w(1,j), 1, sol,1) !jfl modification |
703 |
do k=1,n |
do bj=myByLo(myThid),myByHi(myThid) |
704 |
sol(k) = sol(k) + t*w(k,j) |
do bi=myBxLo(myThid),myBxHi(myThid) |
705 |
|
do k=1,n |
706 |
|
sol(k,bi,bj) = sol(k,bi,bj) + t*w(k,j,bi,bj) |
707 |
|
enddo |
708 |
|
enddo |
709 |
enddo |
enddo |
710 |
enddo |
enddo |
711 |
C |
C |
718 |
C goto 10 |
C goto 10 |
719 |
|
|
720 |
do j=1,i |
do j=1,i |
721 |
jj = i1-j+1 |
jj = i1-j+1 |
722 |
rs(jj-1) = -s(jj-1)*rs(jj) |
rs(jj-1) = -s(jj-1)*rs(jj) |
723 |
rs(jj) = c(jj-1)*rs(jj) |
rs(jj) = c(jj-1)*rs(jj) |
724 |
enddo |
enddo |
725 |
do j=1,i1 |
do j=1,i1 |
726 |
t = rs(j) |
t = rs(j) |
727 |
if (j .eq. 1) t = t-1.0d0 |
if (j .eq. 1) t = t-1.0 _d 0 |
728 |
CML call daxpy (n, t, vv(1,j), 1, vv, 1) |
CML call daxpy (n, t, vv(1,j), 1, vv, 1) |
729 |
do k=1,n |
do bj=myByLo(myThid),myByHi(myThid) |
730 |
vv(k,1) = vv(k,1) + t*vv(k,j) |
do bi=myBxLo(myThid),myBxHi(myThid) |
731 |
|
do k=1,n |
732 |
|
vv(k,1,bi,bj) = vv(k,1,bi,bj) + t*vv(k,j,bi,bj) |
733 |
|
enddo |
734 |
enddo |
enddo |
735 |
|
enddo |
736 |
enddo |
enddo |
737 |
C |
C |
738 |
C restart outer loop. |
C restart outer loop. |
740 |
goto 20 |
goto 20 |
741 |
999 icode = 0 |
999 icode = 0 |
742 |
|
|
743 |
199 format(' -- fgmres its =', i4, ' res. norm =', d26.16) |
199 format(' SEAICE_FGMRES: its =', i4, ' res. norm =', d26.16) |
744 |
C |
C |
745 |
RETURN |
RETURN |
746 |
C-----end-of-fgmres----------------------------------------------------- |
C-----end-of-fgmres----------------------------------------------------- |
749 |
|
|
750 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
751 |
CBOP |
CBOP |
752 |
C !ROUTINE: SCALPROD |
C !ROUTINE: SEAICE_SCALPROD |
753 |
C !INTERFACE: |
C !INTERFACE: |
754 |
|
|
755 |
subroutine scalprod(n,dx,dy,t,myThid) |
subroutine SEAICE_SCALPROD(n,im,i1,i2,dx,dy,t,myThid) |
756 |
|
|
757 |
C forms the dot product of two vectors. |
C forms the dot product of two vectors. |
758 |
C uses unrolled loops for increments equal to one. |
C uses unrolled loops for increments equal to one. |
759 |
C jack dongarra, linpack, 3/11/78. |
C jack dongarra, linpack, 3/11/78. |
760 |
C ML: code stolen from BLAS and adapted for parallel applications |
C ML: code stolen from BLAS-ddot and adapted for parallel applications |
761 |
|
|
762 |
implicit none |
implicit none |
763 |
#include "SIZE.h" |
#include "SIZE.h" |
764 |
#include "EEPARAMS.h" |
#include "EEPARAMS.h" |
765 |
#include "EESUPPORT.h" |
#include "EESUPPORT.h" |
766 |
integer n |
#include "SEAICE_SIZE.h" |
767 |
_RL dx(n),dy(n) |
#include "SEAICE.h" |
768 |
real*8 t |
integer n, im, i1, i2 |
769 |
|
_RL dx(n,im,nSx,nSy),dy(n,im,nSx,nSy) |
770 |
|
_RL t |
771 |
integer myThid |
integer myThid |
772 |
|
C local arrays |
773 |
real*8 dtemp |
_RL dtemp(nSx,nSy) |
774 |
integer i,m,mp1 |
integer i,m,mp1,bi,bj |
|
#ifdef ALLOW_USE_MPI |
|
|
INTEGER mpiRC |
|
|
#endif /* ALLOW_USE_MPI */ |
|
775 |
CEOP |
CEOP |
776 |
C |
|
777 |
m = mod(n,5) |
m = mod(n,5) |
778 |
dtemp = 0. _d 0 |
mp1 = m + 1 |
779 |
t = 0. _d 0 |
t = 0. _d 0 |
780 |
if( m .eq. 0 ) go to 40 |
c if( m .eq. 0 ) go to 40 |
781 |
do i = 1,m |
do bj=myByLo(myThid),myByHi(myThid) |
782 |
dtemp = dtemp + dx(i)*dy(i) |
do bi=myBxLo(myThid),myBxHi(myThid) |
783 |
enddo |
dtemp(bi,bj) = 0. _d 0 |
784 |
if( n .lt. 5 ) go to 60 |
if ( m .ne. 0 ) then |
785 |
40 mp1 = m + 1 |
do i = 1,m |
786 |
do i = mp1,n,5 |
dtemp(bi,bj) = dtemp(bi,bj) + dx(i,i1,bi,bj)*dy(i,i2,bi,bj) |
787 |
dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + |
& * scalarProductMetric(i,1,bi,bj) |
788 |
& dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + |
enddo |
789 |
& dx(i + 4)*dy(i + 4) |
endif |
790 |
enddo |
if ( n .ge. 5 ) then |
791 |
60 continue |
c if( n .lt. 5 ) go to 60 |
792 |
C sum over all processors |
c40 mp1 = m + 1 |
793 |
#ifdef ALLOW_USE_MPI |
do i = mp1,n,5 |
794 |
t = dtemp |
dtemp(bi,bj) = dtemp(bi,bj) + |
795 |
IF ( usingMPI ) THEN |
& dx(i, i1,bi,bj)*dy(i, i2,bi,bj) |
796 |
CALL MPI_Allreduce(t,dtemp,1,MPI_DOUBLE_PRECISION,MPI_SUM, |
& * scalarProductMetric(i, 1, bi,bj) + |
797 |
& MPI_COMM_MODEL,mpiRC) |
& dx(i + 1,i1,bi,bj)*dy(i + 1,i2,bi,bj) |
798 |
ENDIF |
& * scalarProductMetric(i + 1,1, bi,bj) + |
799 |
#endif /* ALLOW_USE_MPI */ |
& dx(i + 2,i1,bi,bj)*dy(i + 2,i2,bi,bj) |
800 |
t = dtemp |
& * scalarProductMetric(i + 2,1, bi,bj) + |
801 |
|
& dx(i + 3,i1,bi,bj)*dy(i + 3,i2,bi,bj) |
802 |
CML return |
& * scalarProductMetric(i + 3,1, bi,bj) + |
803 |
CML end |
& dx(i + 4,i1,bi,bj)*dy(i + 4,i2,bi,bj) |
804 |
CML |
& * scalarProductMetric(i + 4,1, bi,bj) |
805 |
CML subroutine daxpy(n,da,dx,incx,dy,incy) |
enddo |
806 |
CMLC |
c60 continue |
807 |
CMLC constant times a vector plus a vector. |
endif |
808 |
CMLC uses unrolled loops for increments equal to one. |
enddo |
809 |
CMLC jack dongarra, linpack, 3/11/78. |
enddo |
810 |
CMLC |
CALL GLOBAL_SUM_TILE_RL( dtemp,t,myThid ) |
|
CML _RL dx(n),dy(n),da |
|
|
CML integer i,incx,incy,ix,iy,m,mp1,n |
|
|
CMLC |
|
|
CML if(n.le.0)return |
|
|
CML if (da .eq. 0.0d0) return |
|
|
CML if(incx.eq.1.and.incy.eq.1)go to 20 |
|
|
CMLC |
|
|
CMLC code for unequal increments or equal increments |
|
|
CMLC not equal to 1 |
|
|
CMLC |
|
|
CML ix = 1 |
|
|
CML iy = 1 |
|
|
CML if(incx.lt.0)ix = (-n+1)*incx + 1 |
|
|
CML if(incy.lt.0)iy = (-n+1)*incy + 1 |
|
|
CML do 10 i = 1,n |
|
|
CML dy(iy) = dy(iy) + da*dx(ix) |
|
|
CML ix = ix + incx |
|
|
CML iy = iy + incy |
|
|
CML 10 continue |
|
|
CML return |
|
|
CMLC |
|
|
CMLC code for both increments equal to 1 |
|
|
CMLC |
|
|
CMLC |
|
|
CMLC clean-up loop |
|
|
CMLC |
|
|
CML 20 m = mod(n,4) |
|
|
CML if( m .eq. 0 ) go to 40 |
|
|
CML do 30 i = 1,m |
|
|
CML dy(i) = dy(i) + da*dx(i) |
|
|
CML 30 continue |
|
|
CML if( n .lt. 4 ) return |
|
|
CML 40 mp1 = m + 1 |
|
|
CML do 50 i = mp1,n,4 |
|
|
CML dy(i) = dy(i) + da*dx(i) |
|
|
CML dy(i + 1) = dy(i + 1) + da*dx(i + 1) |
|
|
CML dy(i + 2) = dy(i + 2) + da*dx(i + 2) |
|
|
CML dy(i + 3) = dy(i + 3) + da*dx(i + 3) |
|
|
CML 50 continue |
|
|
CML return |
|
|
CML end |
|
|
CML |
|
|
CML subroutine dcopy(n,dx,incx,dy,incy) |
|
|
CMLC |
|
|
CMLC copies a vector, x, to a vector, y. |
|
|
CMLC uses unrolled loops for increments equal to one. |
|
|
CMLC jack dongarra, linpack, 3/11/78. |
|
|
CMLC |
|
|
CML _RL dx(n),dy(n) |
|
|
CML integer i,incx,incy,ix,iy,m,mp1,n |
|
|
CMLC |
|
|
CML if(n.le.0)return |
|
|
CML if(incx.eq.1.and.incy.eq.1)go to 20 |
|
|
CMLC |
|
|
CMLC code for unequal increments or equal increments |
|
|
CMLC not equal to 1 |
|
|
CMLC |
|
|
CML ix = 1 |
|
|
CML iy = 1 |
|
|
CML if(incx.lt.0)ix = (-n+1)*incx + 1 |
|
|
CML if(incy.lt.0)iy = (-n+1)*incy + 1 |
|
|
CML do 10 i = 1,n |
|
|
CML dy(iy) = dx(ix) |
|
|
CML ix = ix + incx |
|
|
CML iy = iy + incy |
|
|
CML 10 continue |
|
|
CML return |
|
|
CMLC |
|
|
CMLC code for both increments equal to 1 |
|
|
CMLC |
|
|
CMLC |
|
|
CMLC clean-up loop |
|
|
CMLC |
|
|
CML 20 m = mod(n,7) |
|
|
CML if( m .eq. 0 ) go to 40 |
|
|
CML do 30 i = 1,m |
|
|
CML dy(i) = dx(i) |
|
|
CML 30 continue |
|
|
CML if( n .lt. 7 ) return |
|
|
CML 40 mp1 = m + 1 |
|
|
CML do 50 i = mp1,n,7 |
|
|
CML dy(i) = dx(i) |
|
|
CML dy(i + 1) = dx(i + 1) |
|
|
CML dy(i + 2) = dx(i + 2) |
|
|
CML dy(i + 3) = dx(i + 3) |
|
|
CML dy(i + 4) = dx(i + 4) |
|
|
CML dy(i + 5) = dx(i + 5) |
|
|
CML dy(i + 6) = dx(i + 6) |
|
|
CML 50 continue |
|
811 |
|
|
812 |
#endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */ |
#endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */ |
813 |
|
|