15 |
C !INTERFACE: |
C !INTERFACE: |
16 |
|
|
17 |
SUBROUTINE SEAICE_FGMRES_DRIVER( |
SUBROUTINE SEAICE_FGMRES_DRIVER( |
18 |
I uIceRes, vIceRes, |
I uIceRes, vIceRes, |
19 |
U duIce, dvIce, |
U duIce, dvIce, |
20 |
U iCode, |
U iCode, |
21 |
I FGMRESeps, |
I FGMRESeps, |
22 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
23 |
|
|
24 |
C !DESCRIPTION: \bv |
C !DESCRIPTION: \bv |
102 |
_BEGIN_MASTER ( myThid ) |
_BEGIN_MASTER ( myThid ) |
103 |
IF ( iCode .EQ. 0 ) THEN |
IF ( iCode .EQ. 0 ) THEN |
104 |
C first guess is zero because it is a correction |
C first guess is zero because it is a correction |
105 |
C wk2 needs to reset for iCode = 0, because it contains |
C wk2 needs to be reset for iCode = 0, because it may contain |
106 |
C remains of the previous Krylov iteration |
C remains of the previous Krylov iteration |
107 |
DO k=1,n |
DO k=1,n |
108 |
sol(k) = 0. _d 0 |
sol(k) = 0. _d 0 |
110 |
ENDDO |
ENDDO |
111 |
ELSEIF ( iCode .EQ. 3 ) THEN |
ELSEIF ( iCode .EQ. 3 ) THEN |
112 |
CALL SEAICE_MAP2VEC(n,uIceRes,vIceRes,rhs,.TRUE.,myThid) |
CALL SEAICE_MAP2VEC(n,uIceRes,vIceRes,rhs,.TRUE.,myThid) |
113 |
C change sign because we are solving J*u = -F |
C change sign of rhs because we are solving J*u = -F |
114 |
|
C wk2 needs to be initialised for iCode = 3, because it may contain |
115 |
|
C garbage |
116 |
DO k=1,n |
DO k=1,n |
117 |
rhs(k) = -rhs(k) |
rhs(k) = -rhs(k) |
118 |
|
wk2(k) = 0. _d 0 |
119 |
ENDDO |
ENDDO |
120 |
ELSE |
ELSE |
121 |
C map preconditioner results or Jacobian times vector, |
C map preconditioner results or Jacobian times vector, |
122 |
C stored in du/vIce to wk2 |
C stored in du/vIce to wk2 |
123 |
CALL SEAICE_MAP2VEC(n,duIce,dvIce,wk2,.TRUE.,myThid) |
CALL SEAICE_MAP2VEC(n,duIce,dvIce,wk2,.TRUE.,myThid) |
124 |
ENDIF |
ENDIF |
125 |
C |
C |
126 |
CALL SEAICE_FGMRES (n,im,rhs,sol,ifgmres,vv,w,wk1,wk2, |
CALL SEAICE_FGMRES (n,im,rhs,sol,ifgmres,vv,w,wk1,wk2, |
127 |
& FGMRESeps,SEAICEkrylovIterMax, |
& FGMRESeps,SEAICEkrylovIterMax, |
128 |
& iout,icode,krylovIter,myThid) |
& iout,icode,krylovIter,myThid) |
129 |
C |
C |
130 |
IF ( iCode .EQ. 0 ) THEN |
IF ( iCode .EQ. 0 ) THEN |
131 |
C map sol(ution) vector to du/vIce |
C map sol(ution) vector to du/vIce |
132 |
CALL SEAICE_MAP2VEC(n,duIce,dvIce,sol,.FALSE.,myThid) |
CALL SEAICE_MAP2VEC(n,duIce,dvIce,sol,.FALSE.,myThid) |
136 |
CALL SEAICE_MAP2VEC(n,duIce,dvIce,wk1,.FALSE.,myThid) |
CALL SEAICE_MAP2VEC(n,duIce,dvIce,wk1,.FALSE.,myThid) |
137 |
ENDIF |
ENDIF |
138 |
_END_MASTER ( myThid ) |
_END_MASTER ( myThid ) |
139 |
|
|
140 |
C Fill overlaps in updated fields |
C Fill overlaps in updated fields |
141 |
CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid) |
CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid) |
142 |
|
|
149 |
C !INTERFACE: |
C !INTERFACE: |
150 |
|
|
151 |
SUBROUTINE SEAICE_MAP2VEC( |
SUBROUTINE SEAICE_MAP2VEC( |
152 |
I n, |
I n, |
153 |
O xfld2d, yfld2d, |
O xfld2d, yfld2d, |
154 |
U vector, |
U vector, |
155 |
I map2vec, myThid ) |
I map2vec, myThid ) |
156 |
|
|
157 |
C !DESCRIPTION: \bv |
C !DESCRIPTION: \bv |
180 |
INTEGER I, J, bi, bj |
INTEGER I, J, bi, bj |
181 |
INTEGER ii, jj, ib, jb, m |
INTEGER ii, jj, ib, jb, m |
182 |
CEOP |
CEOP |
183 |
|
|
184 |
m = n/2 |
m = n/2 |
185 |
IF ( map2vec ) THEN |
IF ( map2vec ) THEN |
186 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
196 |
ENDDO |
ENDDO |
197 |
ENDDO |
ENDDO |
198 |
ENDDO |
ENDDO |
199 |
ENDDO |
ENDDO |
200 |
ELSE |
ELSE |
201 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
202 |
jb = nSx*sNy*sNx*(bj-1) |
jb = nSx*sNy*sNx*(bj-1) |
211 |
ENDDO |
ENDDO |
212 |
ENDDO |
ENDDO |
213 |
ENDDO |
ENDDO |
214 |
ENDDO |
ENDDO |
215 |
ENDIF |
ENDIF |
216 |
|
|
217 |
RETURN |
RETURN |
222 |
C !ROUTINE: SEAICE_FGMRES |
C !ROUTINE: SEAICE_FGMRES |
223 |
C !INTERFACE: |
C !INTERFACE: |
224 |
|
|
225 |
SUBROUTINE SEAICE_FGMRES (n,im,rhs,sol,i,vv,w,wk1, wk2, |
SUBROUTINE SEAICE_FGMRES (n,im,rhs,sol,i,vv,w,wk1, wk2, |
226 |
& eps,maxits,iout,icode,its,myThid) |
& eps,maxits,iout,icode,its,myThid) |
227 |
|
|
228 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
229 |
C mlosch Oct 2012: modified the routine further to be compliant with |
C mlosch Oct 2012: modified the routine further to be compliant with |
232 |
C !-comment -> C-comment |
C !-comment -> C-comment |
233 |
C double precision -> _RL |
C double precision -> _RL |
234 |
C implicit none |
C implicit none |
235 |
C |
C |
236 |
C jfl Dec 1st 2006. We modified the routine so that it is double precison. |
C jfl Dec 1st 2006. We modified the routine so that it is double precison. |
237 |
C Here are the modifications: |
C Here are the modifications: |
238 |
C 1) implicit real (a-h,o-z) becomes implicit real*8 (a-h,o-z) |
C 1) implicit real (a-h,o-z) becomes implicit real*8 (a-h,o-z) |
239 |
C 2) real bocomes real*8 |
C 2) real bocomes real*8 |
240 |
C 3) subroutine scopy.f has been changed for dcopy.f |
C 3) subroutine scopy.f has been changed for dcopy.f |
241 |
C 4) subroutine saxpy.f has been changed for daxpy.f |
C 4) subroutine saxpy.f has been changed for daxpy.f |
242 |
C 5) function sdot.f has been changed for ddot.f |
C 5) function sdot.f has been changed for ddot.f |
243 |
C 6) 1e-08 becomes 1d-08 |
C 6) 1e-08 becomes 1d-08 |
244 |
C |
C |
245 |
C Be careful with the dcopy, daxpy and ddot code...there is a slight |
C Be careful with the dcopy, daxpy and ddot code...there is a slight |
246 |
C difference with the single precision versions (scopy, saxpy and sdot). |
C difference with the single precision versions (scopy, saxpy and sdot). |
247 |
C In the single precision versions, the array are declared sightly differently. |
C In the single precision versions, the array are declared sightly differently. |
248 |
C It is written for single precision: |
C It is written for single precision: |
257 |
_RL rhs(*), sol(*), vv(n,im+1), w(n,im) |
_RL rhs(*), sol(*), vv(n,im+1), w(n,im) |
258 |
_RL wk1(n), wk2(n), eps |
_RL wk1(n), wk2(n), eps |
259 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
260 |
C flexible GMRES routine. This is a version of GMRES which allows a |
C flexible GMRES routine. This is a version of GMRES which allows a |
261 |
C a variable preconditioner. Implemented with a reverse communication |
C a variable preconditioner. Implemented with a reverse communication |
262 |
C protocole for flexibility - |
C protocole for flexibility - |
263 |
C DISTRIBUTED VERSION (USES DISTDOT FOR DDOT) |
C DISTRIBUTED VERSION (USES DISTDOT FOR DDOT) |
264 |
C explicit (exact) residual norms for restarts |
C explicit (exact) residual norms for restarts |
265 |
C written by Y. Saad, modified by A. Malevsky, version February 1, 1995 |
C written by Y. Saad, modified by A. Malevsky, version February 1, 1995 |
266 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
267 |
C This Is A Reverse Communication Implementation. |
C This Is A Reverse Communication Implementation. |
268 |
C------------------------------------------------- |
C------------------------------------------------- |
269 |
C USAGE: (see also comments for icode below). FGMRES |
C USAGE: (see also comments for icode below). FGMRES |
270 |
C should be put in a loop and the loop should be active for as |
C should be put in a loop and the loop should be active for as |
271 |
C long as icode is not equal to 0. On return fgmres will |
C long as icode is not equal to 0. On return fgmres will |
272 |
C 1) either be requesting the new preconditioned vector applied |
C 1) either be requesting the new preconditioned vector applied |
273 |
C to wk1 in case icode.eq.1 (result should be put in wk2) |
C to wk1 in case icode.eq.1 (result should be put in wk2) |
274 |
C 2) or be requesting the product of A applied to the vector wk1 |
C 2) or be requesting the product of A applied to the vector wk1 |
275 |
C in case icode.eq.2 (result should be put in wk2) |
C in case icode.eq.2 (result should be put in wk2) |
276 |
C 3) or be terminated in case icode .eq. 0. |
C 3) or be terminated in case icode .eq. 0. |
277 |
C on entry always set icode = 0. So icode should be set back to zero |
C on entry always set icode = 0. So icode should be set back to zero |
278 |
C upon convergence. |
C upon convergence. |
279 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
280 |
C Here is a typical way of running fgmres: |
C Here is a typical way of running fgmres: |
281 |
C |
C |
282 |
C icode = 0 |
C icode = 0 |
283 |
C 1 continue |
C 1 continue |
287 |
C call precon(n, wk1, wk2) <--- user variable preconditioning |
C call precon(n, wk1, wk2) <--- user variable preconditioning |
288 |
C goto 1 |
C goto 1 |
289 |
C else if (icode .ge. 2) then |
C else if (icode .ge. 2) then |
290 |
C call matvec (n,wk1, wk2) <--- user matrix vector product. |
C call matvec (n,wk1, wk2) <--- user matrix vector product. |
291 |
C goto 1 |
C goto 1 |
292 |
C else |
C else |
293 |
C ----- done ---- |
C ----- done ---- |
294 |
C ......... |
C ......... |
295 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
296 |
C list of parameters |
C list of parameters |
297 |
C------------------- |
C------------------- |
298 |
C |
C |
299 |
C n == integer. the dimension of the problem |
C n == integer. the dimension of the problem |
300 |
C im == size of Krylov subspace: should not exceed 50 in this |
C im == size of Krylov subspace: should not exceed 50 in this |
302 |
C rhs == vector of length n containing the right hand side |
C rhs == vector of length n containing the right hand side |
303 |
C sol == initial guess on input, approximate solution on output |
C sol == initial guess on input, approximate solution on output |
304 |
C vv == work space of size n x (im+1) |
C vv == work space of size n x (im+1) |
305 |
C w == work space of length n x im |
C w == work space of length n x im |
306 |
C wk1, |
C wk1, |
307 |
C wk2, == two work vectors of length n each used for the reverse |
C wk2, == two work vectors of length n each used for the reverse |
308 |
C communication protocole. When on return (icode .ne. 1) |
C communication protocole. When on return (icode .ne. 1) |
309 |
C the user should call fgmres again with wk2 = precon * wk1 |
C the user should call fgmres again with wk2 = precon * wk1 |
310 |
C and icode untouched. When icode.eq.1 then it means that |
C and icode untouched. When icode.eq.1 then it means that |
311 |
C convergence has taken place. |
C convergence has taken place. |
312 |
C |
C |
313 |
C eps == tolerance for stopping criterion. process is stopped |
C eps == tolerance for stopping criterion. process is stopped |
314 |
C as soon as ( ||.|| is the euclidean norm): |
C as soon as ( ||.|| is the euclidean norm): |
315 |
C || current residual||/||initial residual|| <= eps |
C || current residual||/||initial residual|| <= eps |
318 |
C |
C |
319 |
C iout == output unit number number for printing intermediate results |
C iout == output unit number number for printing intermediate results |
320 |
C if (iout .le. 0) no statistics are printed. |
C if (iout .le. 0) no statistics are printed. |
321 |
C |
C |
322 |
C icode = integer. indicator for the reverse communication protocole. |
C icode = integer. indicator for the reverse communication protocole. |
323 |
C ON ENTRY : icode should be set to icode = 0. |
C ON ENTRY : icode should be set to icode = 0. |
324 |
C ON RETURN: |
C ON RETURN: |
325 |
C * icode .eq. 1 value means that fgmres has not finished |
C * icode .eq. 1 value means that fgmres has not finished |
326 |
C and that it is requesting a preconditioned vector before |
C and that it is requesting a preconditioned vector before |
327 |
C continuing. The user must compute M**(-1) wk1, where M is |
C continuing. The user must compute M**(-1) wk1, where M is |
328 |
C the preconditioing matrix (may vary at each call) and wk1 is |
C the preconditioing matrix (may vary at each call) and wk1 is |
329 |
C the vector as provided by fgmres upun return, and put the |
C the vector as provided by fgmres upun return, and put the |
330 |
C result in wk2. Then fgmres must be called again without |
C result in wk2. Then fgmres must be called again without |
331 |
C changing any other argument. |
C changing any other argument. |
332 |
C * icode .eq. 2 value means that fgmres has not finished |
C * icode .eq. 2 value means that fgmres has not finished |
333 |
C and that it is requesting a matrix vector product before |
C and that it is requesting a matrix vector product before |
334 |
C continuing. The user must compute A * wk1, where A is the |
C continuing. The user must compute A * wk1, where A is the |
335 |
C coefficient matrix and wk1 is the vector provided by |
C coefficient matrix and wk1 is the vector provided by |
336 |
C upon return. The result of the operation is to be put in |
C upon return. The result of the operation is to be put in |
337 |
C the vector wk2. Then fgmres must be called again without |
C the vector wk2. Then fgmres must be called again without |
338 |
C changing any other argument. |
C changing any other argument. |
339 |
C * icode .eq. 0 means that fgmres has finished and sol contains |
C * icode .eq. 0 means that fgmres has finished and sol contains |
340 |
C the approximate solution. |
C the approximate solution. |
341 |
C comment: typically fgmres must be implemented in a loop |
C comment: typically fgmres must be implemented in a loop |
342 |
C with fgmres being called as long icode is returned with |
C with fgmres being called as long icode is returned with |
343 |
C a value .ne. 0. |
C a value .ne. 0. |
344 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
345 |
C local variables -- !jfl modif |
C local variables -- !jfl modif |
346 |
integer imax |
integer imax |
347 |
parameter ( imax = 50 ) |
parameter ( imax = 50 ) |
348 |
_RL hh(4*imax+1,4*imax),c(4*imax),s(4*imax) |
_RL hh(4*imax+1,4*imax),c(4*imax),s(4*imax) |
349 |
_RL rs(4*imax+1),t,ro |
_RL rs(4*imax+1),t,ro |
356 |
CEOP |
CEOP |
357 |
save |
save |
358 |
data epsmac/1.d-16/ |
data epsmac/1.d-16/ |
359 |
C |
C |
360 |
C computed goto |
C computed goto |
361 |
C |
C |
362 |
if ( im .gt. imax ) stop 'size of krylov space > 50' |
if ( im .gt. imax ) stop 'size of krylov space > 50' |
363 |
goto (100,200,300,11) icode +1 |
goto (100,200,300,11) icode +1 |
364 |
100 continue |
100 continue |
373 |
wk1(k)=sol(k) |
wk1(k)=sol(k) |
374 |
enddo |
enddo |
375 |
icode = 3 |
icode = 3 |
376 |
return |
RETURN |
377 |
11 continue |
11 continue |
378 |
do j=1,n |
do j=1,n |
379 |
vv(j,1) = rhs(j) - wk2(j) |
vv(j,1) = rhs(j) - wk2(j) |
380 |
enddo |
enddo |
381 |
CML 20 ro = ddot(n, vv, 1, vv,1) !jfl modification |
CML 20 ro = ddot(n, vv, 1, vv,1) !jfl modification |
382 |
20 call scalprod(n, vv, vv, ro, myThid) |
20 call scalprod(n, vv, vv, ro, myThid) |
383 |
ro = sqrt(ro) |
ro = sqrt(ro) |
384 |
if (ro .eq. 0.0d0) goto 999 |
if (ro .eq. 0.0d0) goto 999 |
385 |
t = 1.0d0/ ro |
t = 1.0d0/ ro |
386 |
do j=1, n |
do j=1, n |
387 |
vv(j,1) = vv(j,1)*t |
vv(j,1) = vv(j,1)*t |
388 |
enddo |
enddo |
389 |
if (its .eq. 0) eps1=eps |
if (its .eq. 0) eps1=eps |
390 |
if (its .eq. 0) r0 = ro |
if (its .eq. 0) r0 = ro |
391 |
if (iout .gt. 0) write(*, 199) its, ro!& |
if (iout .gt. 0) write(*, 199) its, ro!& |
392 |
C print *,'chau',its, ro !write(iout, 199) its, ro |
C print *,'chau',its, ro !write(iout, 199) its, ro |
393 |
C |
C |
394 |
C initialize 1-st term of rhs of hessenberg system.. |
C initialize 1-st term of rhs of hessenberg system.. |
395 |
C |
C |
396 |
rs(1) = ro |
rs(1) = ro |
397 |
i = 0 |
i = 0 |
398 |
4 i=i+1 |
4 i=i+1 |
399 |
its = its + 1 |
its = its + 1 |
400 |
i1 = i + 1 |
i1 = i + 1 |
401 |
do k=1, n |
do k=1, n |
402 |
wk1(k) = vv(k,i) |
wk1(k) = vv(k,i) |
403 |
enddo |
enddo |
404 |
C |
C |
405 |
C return |
C return |
406 |
C |
C |
407 |
icode = 1 |
icode = 1 |
408 |
|
|
409 |
return |
RETURN |
410 |
200 continue |
200 continue |
411 |
do k=1, n |
do k=1, n |
412 |
w(k,i) = wk2(k) |
w(k,i) = wk2(k) |
413 |
enddo |
enddo |
414 |
C |
C |
415 |
C call matvec operation |
C call matvec operation |
416 |
C |
C |
417 |
icode = 2 |
icode = 2 |
418 |
CML call dcopy(n, wk2, 1, wk1, 1) !jfl modification |
CML call dcopy(n, wk2, 1, wk1, 1) !jfl modification |
419 |
do k=1,n |
do k=1,n |
421 |
enddo |
enddo |
422 |
C |
C |
423 |
C return |
C return |
424 |
C |
C |
425 |
return |
RETURN |
426 |
300 continue |
300 continue |
427 |
C |
C |
428 |
C first call to ope corresponds to intialization goto back to 11. |
C first call to ope corresponds to intialization goto back to 11. |
429 |
C |
C |
430 |
C if (icode .eq. 3) goto 11 |
C if (icode .eq. 3) goto 11 |
431 |
CML call dcopy (n, wk2, 1, vv(1,i1), 1) !jfl modification |
CML call dcopy (n, wk2, 1, vv(1,i1), 1) !jfl modification |
432 |
do k=1,n |
do k=1,n |
433 |
vv(k,i1)=wk2(k) |
vv(k,i1)=wk2(k) |
434 |
enddo |
enddo |
435 |
C |
C |
436 |
C modified gram - schmidt... |
C modified gram - schmidt... |
437 |
C |
C |
438 |
do j=1, i |
do j=1, i |
439 |
CML t = ddot(n, vv(1,j), 1, vv(1,i1), 1) !jfl modification |
CML t = ddot(n, vv(1,j), 1, vv(1,i1), 1) !jfl modification |
440 |
call scalprod(n, vv(1,j), vv(1,i1), t, myThid) |
call scalprod(n, vv(1,j), vv(1,i1), t, myThid) |
456 |
do k=1,n |
do k=1,n |
457 |
vv(k,i1) = vv(k,i1)*t |
vv(k,i1) = vv(k,i1)*t |
458 |
enddo |
enddo |
459 |
C |
C |
460 |
C done with modified gram schimd and arnoldi step. |
C done with modified gram schimd and arnoldi step. |
461 |
C now update factorization of hh |
C now update factorization of hh |
462 |
C |
C |
463 |
58 if (i .eq. 1) goto 121 |
58 if (i .eq. 1) goto 121 |
464 |
C |
C |
465 |
C perfrom previous transformations on i-th column of h |
C perfrom previous transformations on i-th column of h |
466 |
C |
C |
467 |
do k=2,i |
do k=2,i |
468 |
k1 = k-1 |
k1 = k-1 |
469 |
t = hh(k1,i) |
t = hh(k1,i) |
477 |
s(i) = hh(i1,i)/gam |
s(i) = hh(i1,i)/gam |
478 |
rs(i1) = -s(i)*rs(i) |
rs(i1) = -s(i)*rs(i) |
479 |
rs(i) = c(i)*rs(i) |
rs(i) = c(i)*rs(i) |
480 |
C |
C |
481 |
C determine res. norm. and test for convergence- |
C determine res. norm. and test for convergence- |
482 |
C |
C |
483 |
hh(i,i) = c(i)*hh(i,i) + s(i)*hh(i1,i) |
hh(i,i) = c(i)*hh(i,i) + s(i)*hh(i1,i) |
484 |
ro = abs(rs(i1)) |
ro = abs(rs(i1)) |
485 |
if (iout .gt. 0) write(*, 199) its, ro |
if (iout .gt. 0) write(*, 199) its, ro |
486 |
if (i .lt. im .and. (ro .gt. eps1)) goto 4 |
if (i .lt. im .and. (ro .gt. eps1)) goto 4 |
487 |
C |
C |
488 |
C now compute solution. first solve upper triangular system. |
C now compute solution. first solve upper triangular system. |
489 |
C |
C |
490 |
rs(i) = rs(i)/hh(i,i) |
rs(i) = rs(i)/hh(i,i) |
491 |
do ii=2,i |
do ii=2,i |
492 |
k=i-ii+1 |
k=i-ii+1 |
497 |
enddo |
enddo |
498 |
rs(k) = t/hh(k,k) |
rs(k) = t/hh(k,k) |
499 |
enddo |
enddo |
500 |
C |
C |
501 |
C done with back substitution.. |
C done with back substitution.. |
502 |
C now form linear combination to get solution |
C now form linear combination to get solution |
503 |
C |
C |
504 |
do j=1, i |
do j=1, i |
505 |
t = rs(j) |
t = rs(j) |
506 |
C call daxpy(n, t, w(1,j), 1, sol,1) !jfl modification |
C call daxpy(n, t, w(1,j), 1, sol,1) !jfl modification |
508 |
sol(k) = sol(k) + t*w(k,j) |
sol(k) = sol(k) + t*w(k,j) |
509 |
enddo |
enddo |
510 |
enddo |
enddo |
511 |
C |
C |
512 |
C test for return |
C test for return |
513 |
C |
C |
514 |
print *, 'ml-fgmres: its, maxits: ', its, maxits, ro, '<', eps1 |
print *, 'ml-fgmres: its, maxits: ', its, maxits, ro, '<', eps1 |
515 |
if (ro .le. eps1 .or. its .ge. maxits) goto 999 |
if (ro .le. eps1 .or. its .ge. maxits) goto 999 |
516 |
C |
C |
517 |
C else compute residual vector and continue.. |
C else compute residual vector and continue.. |
518 |
C |
C |
519 |
C goto 10 |
C goto 10 |
520 |
|
|
521 |
do j=1,i |
do j=1,i |
531 |
vv(k,1) = vv(k,1) + t*vv(k,j) |
vv(k,1) = vv(k,1) + t*vv(k,j) |
532 |
enddo |
enddo |
533 |
enddo |
enddo |
534 |
C |
C |
535 |
C restart outer loop. |
C restart outer loop. |
536 |
C |
C |
537 |
goto 20 |
goto 20 |
538 |
999 icode = 0 |
999 icode = 0 |
539 |
|
|
540 |
199 format(' -- fgmres its =', i4, ' res. norm =', d26.16) |
199 format(' -- fgmres its =', i4, ' res. norm =', d26.16) |
541 |
C |
C |
542 |
return |
RETURN |
543 |
C-----end-of-fgmres----------------------------------------------------- |
C-----end-of-fgmres----------------------------------------------------- |
544 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
545 |
end |
END |
546 |
|
|
547 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
548 |
CBOP |
CBOP |
551 |
|
|
552 |
subroutine scalprod(n,dx,dy,t,myThid) |
subroutine scalprod(n,dx,dy,t,myThid) |
553 |
|
|
|
C |
|
554 |
C forms the dot product of two vectors. |
C forms the dot product of two vectors. |
555 |
C uses unrolled loops for increments equal to one. |
C uses unrolled loops for increments equal to one. |
556 |
C jack dongarra, linpack, 3/11/78. |
C jack dongarra, linpack, 3/11/78. |
557 |
C ML: code stolen from BLAS and adapted for parallel applications |
C ML: code stolen from BLAS and adapted for parallel applications |
558 |
C |
|
559 |
implicit none |
implicit none |
560 |
#include "SIZE.h" |
#include "SIZE.h" |
561 |
#include "EEPARAMS.h" |
#include "EEPARAMS.h" |
562 |
#include "EESUPPORT.h" |
#include "EESUPPORT.h" |
563 |
integer myThid |
integer n |
564 |
_RL dx(n),dy(n) |
_RL dx(n),dy(n) |
|
real*8 dtemp |
|
565 |
real*8 t |
real*8 t |
566 |
integer i,m,mp1,n |
integer myThid |
567 |
|
|
568 |
|
real*8 dtemp |
569 |
|
integer i,m,mp1 |
570 |
#ifdef ALLOW_USE_MPI |
#ifdef ALLOW_USE_MPI |
571 |
INTEGER mpiRC |
INTEGER mpiRC |
572 |
#endif /* ALLOW_USE_MPI */ |
#endif /* ALLOW_USE_MPI */ |
582 |
if( n .lt. 5 ) go to 60 |
if( n .lt. 5 ) go to 60 |
583 |
40 mp1 = m + 1 |
40 mp1 = m + 1 |
584 |
do i = mp1,n,5 |
do i = mp1,n,5 |
585 |
dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + |
dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + |
586 |
& dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + |
& dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + |
587 |
& dx(i + 4)*dy(i + 4) |
& dx(i + 4)*dy(i + 4) |
588 |
enddo |
enddo |
589 |
60 continue |
60 continue |
596 |
ENDIF |
ENDIF |
597 |
#endif /* ALLOW_USE_MPI */ |
#endif /* ALLOW_USE_MPI */ |
598 |
t = dtemp |
t = dtemp |
599 |
|
|
600 |
CML return |
CML return |
601 |
CML end |
CML end |
602 |
CML |
CML |
603 |
CML subroutine daxpy(n,da,dx,incx,dy,incy) |
CML subroutine daxpy(n,da,dx,incx,dy,incy) |
604 |
CMLC |
CMLC |
605 |
CMLC constant times a vector plus a vector. |
CMLC constant times a vector plus a vector. |
606 |
CMLC uses unrolled loops for increments equal to one. |
CMLC uses unrolled loops for increments equal to one. |
607 |
CMLC jack dongarra, linpack, 3/11/78. |
CMLC jack dongarra, linpack, 3/11/78. |
608 |
CMLC |
CMLC |
609 |
CML _RL dx(n),dy(n),da |
CML _RL dx(n),dy(n),da |
610 |
CML integer i,incx,incy,ix,iy,m,mp1,n |
CML integer i,incx,incy,ix,iy,m,mp1,n |
611 |
CMLC |
CMLC |
612 |
CML if(n.le.0)return |
CML if(n.le.0)return |
613 |
CML if (da .eq. 0.0d0) return |
CML if (da .eq. 0.0d0) return |
614 |
CML if(incx.eq.1.and.incy.eq.1)go to 20 |
CML if(incx.eq.1.and.incy.eq.1)go to 20 |
615 |
CMLC |
CMLC |
616 |
CMLC code for unequal increments or equal increments |
CMLC code for unequal increments or equal increments |
617 |
CMLC not equal to 1 |
CMLC not equal to 1 |
618 |
CMLC |
CMLC |
619 |
CML ix = 1 |
CML ix = 1 |
620 |
CML iy = 1 |
CML iy = 1 |
621 |
CML if(incx.lt.0)ix = (-n+1)*incx + 1 |
CML if(incx.lt.0)ix = (-n+1)*incx + 1 |
626 |
CML iy = iy + incy |
CML iy = iy + incy |
627 |
CML 10 continue |
CML 10 continue |
628 |
CML return |
CML return |
629 |
CMLC |
CMLC |
630 |
CMLC code for both increments equal to 1 |
CMLC code for both increments equal to 1 |
631 |
CMLC |
CMLC |
632 |
CMLC |
CMLC |
633 |
CMLC clean-up loop |
CMLC clean-up loop |
634 |
CMLC |
CMLC |
635 |
CML 20 m = mod(n,4) |
CML 20 m = mod(n,4) |
636 |
CML if( m .eq. 0 ) go to 40 |
CML if( m .eq. 0 ) go to 40 |
637 |
CML do 30 i = 1,m |
CML do 30 i = 1,m |
649 |
CML end |
CML end |
650 |
CML |
CML |
651 |
CML subroutine dcopy(n,dx,incx,dy,incy) |
CML subroutine dcopy(n,dx,incx,dy,incy) |
652 |
CMLC |
CMLC |
653 |
CMLC copies a vector, x, to a vector, y. |
CMLC copies a vector, x, to a vector, y. |
654 |
CMLC uses unrolled loops for increments equal to one. |
CMLC uses unrolled loops for increments equal to one. |
655 |
CMLC jack dongarra, linpack, 3/11/78. |
CMLC jack dongarra, linpack, 3/11/78. |
656 |
CMLC |
CMLC |
657 |
CML _RL dx(n),dy(n) |
CML _RL dx(n),dy(n) |
658 |
CML integer i,incx,incy,ix,iy,m,mp1,n |
CML integer i,incx,incy,ix,iy,m,mp1,n |
659 |
CMLC |
CMLC |
660 |
CML if(n.le.0)return |
CML if(n.le.0)return |
661 |
CML if(incx.eq.1.and.incy.eq.1)go to 20 |
CML if(incx.eq.1.and.incy.eq.1)go to 20 |
662 |
CMLC |
CMLC |
663 |
CMLC code for unequal increments or equal increments |
CMLC code for unequal increments or equal increments |
664 |
CMLC not equal to 1 |
CMLC not equal to 1 |
665 |
CMLC |
CMLC |
666 |
CML ix = 1 |
CML ix = 1 |
667 |
CML iy = 1 |
CML iy = 1 |
668 |
CML if(incx.lt.0)ix = (-n+1)*incx + 1 |
CML if(incx.lt.0)ix = (-n+1)*incx + 1 |
673 |
CML iy = iy + incy |
CML iy = iy + incy |
674 |
CML 10 continue |
CML 10 continue |
675 |
CML return |
CML return |
676 |
CMLC |
CMLC |
677 |
CMLC code for both increments equal to 1 |
CMLC code for both increments equal to 1 |
678 |
CMLC |
CMLC |
679 |
CMLC |
CMLC |
680 |
CMLC clean-up loop |
CMLC clean-up loop |
681 |
CMLC |
CMLC |
682 |
CML 20 m = mod(n,7) |
CML 20 m = mod(n,7) |
683 |
CML if( m .eq. 0 ) go to 40 |
CML if( m .eq. 0 ) go to 40 |
684 |
CML do 30 i = 1,m |
CML do 30 i = 1,m |