1 |
torge |
1.4 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_fgmres.F,v 1.16 2013/02/13 09:14:58 mlosch Exp $ |
2 |
torge |
1.1 |
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "SEAICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
C-- File seaice_fgmres.F: seaice fgmres dynamical (linear) solver S/R: |
7 |
|
|
C-- Contents |
8 |
|
|
C-- o SEAICE_FGMRES_DRIVER |
9 |
|
|
C-- o SEAICE_MAP2VEC |
10 |
torge |
1.4 |
C-- o SEAICE_MAP_RS2VEC |
11 |
torge |
1.1 |
C-- o SEAICE_FGMRES |
12 |
torge |
1.4 |
C-- o SEAICE_SCALPROD |
13 |
torge |
1.1 |
|
14 |
|
|
CBOP |
15 |
|
|
C !ROUTINE: SEAICE_FGMRES_DRIVER |
16 |
|
|
C !INTERFACE: |
17 |
|
|
|
18 |
|
|
SUBROUTINE SEAICE_FGMRES_DRIVER( |
19 |
torge |
1.2 |
I uIceRes, vIceRes, |
20 |
|
|
U duIce, dvIce, |
21 |
|
|
U iCode, |
22 |
torge |
1.3 |
I FGMRESeps, iOutFGMRES, |
23 |
torge |
1.4 |
I newtonIter, |
24 |
|
|
U krylovIter, |
25 |
|
|
I myTime, myIter, myThid ) |
26 |
torge |
1.1 |
|
27 |
|
|
C !DESCRIPTION: \bv |
28 |
|
|
C *==========================================================* |
29 |
|
|
C | SUBROUTINE SEAICE_FGMRES_DRIVER |
30 |
|
|
C | o driver routine for fgmres |
31 |
|
|
C | o does the conversion between 2D fields and 1D vector |
32 |
|
|
C | back and forth |
33 |
|
|
C *==========================================================* |
34 |
|
|
C | written by Martin Losch, Oct 2012 |
35 |
|
|
C *==========================================================* |
36 |
|
|
C \ev |
37 |
|
|
|
38 |
|
|
C !USES: |
39 |
|
|
IMPLICIT NONE |
40 |
|
|
|
41 |
|
|
C === Global variables === |
42 |
|
|
#include "SIZE.h" |
43 |
|
|
#include "EEPARAMS.h" |
44 |
|
|
#include "SEAICE_SIZE.h" |
45 |
|
|
#include "SEAICE_PARAMS.h" |
46 |
|
|
|
47 |
|
|
C !INPUT/OUTPUT PARAMETERS: |
48 |
|
|
C === Routine arguments === |
49 |
|
|
C myTime :: Simulation time |
50 |
|
|
C myIter :: Simulation timestep number |
51 |
|
|
C myThid :: my Thread Id. number |
52 |
torge |
1.4 |
C newtonIter :: current iterate of Newton iteration (for diagnostics) |
53 |
|
|
C krylovIter :: current iterate of Newton iteration (updated) |
54 |
torge |
1.3 |
C iCode :: FGMRES parameter to determine next step |
55 |
|
|
C iOutFGMRES :: control output of fgmres |
56 |
torge |
1.1 |
_RL myTime |
57 |
|
|
INTEGER myIter |
58 |
|
|
INTEGER myThid |
59 |
|
|
INTEGER newtonIter |
60 |
|
|
INTEGER krylovIter |
61 |
torge |
1.3 |
INTEGER iOutFGMRES |
62 |
torge |
1.1 |
INTEGER iCode |
63 |
|
|
C FGMRESeps :: tolerance for FGMRES |
64 |
|
|
_RL FGMRESeps |
65 |
|
|
C du/vIce :: solution vector |
66 |
|
|
_RL duIce(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
67 |
|
|
_RL dvIce(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
68 |
|
|
C u/vIceRes :: residual F(u) |
69 |
|
|
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
70 |
|
|
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
71 |
|
|
|
72 |
|
|
#if ( defined (SEAICE_CGRID) && \ |
73 |
|
|
defined (SEAICE_ALLOW_JFNK) && \ |
74 |
|
|
defined (SEAICE_ALLOW_DYNAMICS) ) |
75 |
|
|
C Local variables: |
76 |
|
|
C k :: loop indices |
77 |
torge |
1.4 |
INTEGER k, bi, bj |
78 |
torge |
1.1 |
C FGMRES parameters |
79 |
torge |
1.4 |
C nVec :: size of the input vector(s) |
80 |
|
|
C im :: size of Krylov space |
81 |
torge |
1.1 |
C ifgmres :: interation counter |
82 |
torge |
1.4 |
INTEGER nVec |
83 |
|
|
PARAMETER ( nVec = 2*sNx*sNy ) |
84 |
torge |
1.1 |
INTEGER im |
85 |
|
|
PARAMETER ( im = 50 ) |
86 |
torge |
1.3 |
INTEGER ifgmres |
87 |
torge |
1.1 |
C work arrays |
88 |
torge |
1.4 |
_RL rhs(nVec,nSx,nSy), sol(nVec,nSx,nSy) |
89 |
|
|
_RL vv(nVec,im+1,nSx,nSy), w(nVec,im,nSx,nSy) |
90 |
|
|
_RL wk1(nVec,nSx,nSy), wk2(nVec,nSx,nSy) |
91 |
torge |
1.1 |
C need to store some of the fgmres parameters and fields so that |
92 |
|
|
C they are not forgotten between Krylov iterations |
93 |
|
|
COMMON /FGMRES_I/ ifgmres |
94 |
|
|
COMMON /FGMRES_RL/ sol, rhs, vv, w |
95 |
|
|
CEOP |
96 |
|
|
|
97 |
|
|
IF ( iCode .EQ. 0 ) THEN |
98 |
torge |
1.3 |
C The first guess is zero because it is a correction, but this |
99 |
|
|
C is implemented by setting du/vIce=0 outside of this routine; |
100 |
|
|
C this make it possible to restart FGMRES with a nonzero sol |
101 |
torge |
1.4 |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.TRUE.,myThid) |
102 |
torge |
1.2 |
C wk2 needs to be reset for iCode = 0, because it may contain |
103 |
torge |
1.1 |
C remains of the previous Krylov iteration |
104 |
torge |
1.4 |
DO bj=myByLo(myThid),myByHi(myThid) |
105 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
106 |
|
|
DO k=1,nVec |
107 |
|
|
wk2(k,bi,bj) = 0. _d 0 |
108 |
|
|
ENDDO |
109 |
|
|
ENDDO |
110 |
torge |
1.1 |
ENDDO |
111 |
|
|
ELSEIF ( iCode .EQ. 3 ) THEN |
112 |
torge |
1.4 |
CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,rhs,.TRUE.,myThid) |
113 |
torge |
1.2 |
C change sign of rhs because we are solving J*u = -F |
114 |
|
|
C wk2 needs to be initialised for iCode = 3, because it may contain |
115 |
|
|
C garbage |
116 |
torge |
1.4 |
DO bj=myByLo(myThid),myByHi(myThid) |
117 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
118 |
|
|
DO k=1,nVec |
119 |
|
|
rhs(k,bi,bj) = -rhs(k,bi,bj) |
120 |
|
|
wk2(k,bi,bj) = 0. _d 0 |
121 |
|
|
ENDDO |
122 |
|
|
ENDDO |
123 |
torge |
1.1 |
ENDDO |
124 |
|
|
ELSE |
125 |
torge |
1.2 |
C map preconditioner results or Jacobian times vector, |
126 |
torge |
1.1 |
C stored in du/vIce to wk2 |
127 |
torge |
1.4 |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk2,.TRUE.,myThid) |
128 |
torge |
1.1 |
ENDIF |
129 |
torge |
1.2 |
C |
130 |
torge |
1.4 |
CALL SEAICE_FGMRES (nVec,im,rhs,sol,ifgmres,krylovIter, |
131 |
|
|
U vv,w,wk1,wk2, |
132 |
|
|
I FGMRESeps,SEAICEkrylovIterMax,iOutFGMRES, |
133 |
|
|
U iCode, |
134 |
|
|
I myThid) |
135 |
torge |
1.2 |
C |
136 |
torge |
1.1 |
IF ( iCode .EQ. 0 ) THEN |
137 |
|
|
C map sol(ution) vector to du/vIce |
138 |
torge |
1.4 |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.FALSE.,myThid) |
139 |
torge |
1.1 |
ELSE |
140 |
|
|
C map work vector to du/vIce to either compute a preconditioner |
141 |
|
|
C solution (wk1=rhs) or a Jacobian times wk1 |
142 |
torge |
1.4 |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk1,.FALSE.,myThid) |
143 |
torge |
1.1 |
ENDIF |
144 |
torge |
1.2 |
|
145 |
torge |
1.1 |
C Fill overlaps in updated fields |
146 |
|
|
CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid) |
147 |
|
|
|
148 |
|
|
RETURN |
149 |
|
|
END |
150 |
|
|
|
151 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
152 |
|
|
CBOP |
153 |
|
|
C !ROUTINE: SEAICE_MAP2VEC |
154 |
|
|
C !INTERFACE: |
155 |
|
|
|
156 |
|
|
SUBROUTINE SEAICE_MAP2VEC( |
157 |
torge |
1.2 |
I n, |
158 |
|
|
O xfld2d, yfld2d, |
159 |
|
|
U vector, |
160 |
torge |
1.1 |
I map2vec, myThid ) |
161 |
|
|
|
162 |
|
|
C !DESCRIPTION: \bv |
163 |
|
|
C *==========================================================* |
164 |
|
|
C | SUBROUTINE SEAICE_MAP2VEC |
165 |
|
|
C | o maps 2 2D-fields to vector and back |
166 |
|
|
C *==========================================================* |
167 |
|
|
C | written by Martin Losch, Oct 2012 |
168 |
|
|
C *==========================================================* |
169 |
|
|
C \ev |
170 |
|
|
|
171 |
|
|
C !USES: |
172 |
|
|
IMPLICIT NONE |
173 |
|
|
|
174 |
|
|
C === Global variables === |
175 |
|
|
#include "SIZE.h" |
176 |
|
|
#include "EEPARAMS.h" |
177 |
|
|
C === Routine arguments === |
178 |
|
|
INTEGER n |
179 |
|
|
LOGICAL map2vec |
180 |
|
|
INTEGER myThid |
181 |
|
|
_RL xfld2d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
182 |
|
|
_RL yfld2d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
183 |
torge |
1.4 |
_RL vector (n,nSx,nSy) |
184 |
torge |
1.1 |
C === local variables === |
185 |
|
|
INTEGER I, J, bi, bj |
186 |
torge |
1.4 |
INTEGER ii, jj, m |
187 |
torge |
1.1 |
CEOP |
188 |
torge |
1.2 |
|
189 |
torge |
1.1 |
m = n/2 |
190 |
torge |
1.4 |
DO bj=myByLo(myThid),myByHi(myThid) |
191 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
192 |
|
|
#ifdef SEAICE_JFNK_MAP_REORDER |
193 |
|
|
ii = 0 |
194 |
|
|
IF ( map2vec ) THEN |
195 |
|
|
DO J=1,sNy |
196 |
|
|
jj = 2*sNx*(J-1) |
197 |
|
|
DO I=1,sNx |
198 |
|
|
ii = jj + 2*I |
199 |
|
|
vector(ii-1,bi,bj) = xfld2d(I,J,bi,bj) |
200 |
|
|
vector(ii, bi,bj) = yfld2d(I,J,bi,bj) |
201 |
|
|
ENDDO |
202 |
|
|
ENDDO |
203 |
|
|
ELSE |
204 |
|
|
DO J=1,sNy |
205 |
|
|
jj = 2*sNx*(J-1) |
206 |
|
|
DO I=1,sNx |
207 |
|
|
ii = jj + 2*I |
208 |
|
|
xfld2d(I,J,bi,bj) = vector(ii-1,bi,bj) |
209 |
|
|
yfld2d(I,J,bi,bj) = vector(ii, bi,bj) |
210 |
|
|
ENDDO |
211 |
|
|
ENDDO |
212 |
|
|
ENDIF |
213 |
|
|
#else |
214 |
|
|
IF ( map2vec ) THEN |
215 |
|
|
DO J=1,sNy |
216 |
|
|
jj = sNx*(J-1) |
217 |
|
|
DO I=1,sNx |
218 |
|
|
ii = jj + I |
219 |
|
|
vector(ii, bi,bj) = xfld2d(I,J,bi,bj) |
220 |
|
|
vector(ii+m,bi,bj) = yfld2d(I,J,bi,bj) |
221 |
|
|
ENDDO |
222 |
|
|
ENDDO |
223 |
|
|
ELSE |
224 |
torge |
1.1 |
DO J=1,sNy |
225 |
torge |
1.4 |
jj = sNx*(J-1) |
226 |
torge |
1.1 |
DO I=1,sNx |
227 |
|
|
ii = jj + I |
228 |
torge |
1.4 |
xfld2d(I,J,bi,bj) = vector(ii, bi,bj) |
229 |
|
|
yfld2d(I,J,bi,bj) = vector(ii+m,bi,bj) |
230 |
torge |
1.1 |
ENDDO |
231 |
|
|
ENDDO |
232 |
torge |
1.4 |
ENDIF |
233 |
|
|
#endif /* SEAICE_JFNK_MAP_REORDER */ |
234 |
|
|
C bi,bj-loops |
235 |
torge |
1.2 |
ENDDO |
236 |
torge |
1.4 |
ENDDO |
237 |
|
|
|
238 |
|
|
RETURN |
239 |
|
|
END |
240 |
|
|
|
241 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
242 |
|
|
CBOP |
243 |
|
|
C !ROUTINE: SEAICE_MAP_RS2VEC |
244 |
|
|
C !INTERFACE: |
245 |
|
|
|
246 |
|
|
SUBROUTINE SEAICE_MAP_RS2VEC( |
247 |
|
|
I n, |
248 |
|
|
O xfld2d, yfld2d, |
249 |
|
|
U vector, |
250 |
|
|
I map2vec, myThid ) |
251 |
|
|
|
252 |
|
|
C !DESCRIPTION: \bv |
253 |
|
|
C *==========================================================* |
254 |
|
|
C | SUBROUTINE SEAICE_MAP_RS2VEC |
255 |
|
|
C | o maps 2 2D-RS-fields to vector and back |
256 |
|
|
C *==========================================================* |
257 |
|
|
C | written by Martin Losch, Oct 2012 |
258 |
|
|
C *==========================================================* |
259 |
|
|
C \ev |
260 |
|
|
|
261 |
|
|
C !USES: |
262 |
|
|
IMPLICIT NONE |
263 |
|
|
|
264 |
|
|
C === Global variables === |
265 |
|
|
#include "SIZE.h" |
266 |
|
|
#include "EEPARAMS.h" |
267 |
|
|
C === Routine arguments === |
268 |
|
|
INTEGER n |
269 |
|
|
LOGICAL map2vec |
270 |
|
|
INTEGER myThid |
271 |
|
|
_RS xfld2d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
272 |
|
|
_RS yfld2d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
273 |
|
|
_RL vector (n,nSx,nSy) |
274 |
|
|
C === local variables === |
275 |
|
|
INTEGER I, J, bi, bj |
276 |
|
|
INTEGER ii, jj, m |
277 |
|
|
CEOP |
278 |
|
|
|
279 |
|
|
m = n/2 |
280 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
281 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
282 |
|
|
#ifdef SEAICE_JFNK_MAP_REORDER |
283 |
|
|
ii = 0 |
284 |
|
|
IF ( map2vec ) THEN |
285 |
|
|
DO J=1,sNy |
286 |
|
|
jj = 2*sNx*(J-1) |
287 |
|
|
DO I=1,sNx |
288 |
|
|
ii = jj + 2*I |
289 |
|
|
vector(ii-1,bi,bj) = xfld2d(I,J,bi,bj) |
290 |
|
|
vector(ii, bi,bj) = yfld2d(I,J,bi,bj) |
291 |
|
|
ENDDO |
292 |
|
|
ENDDO |
293 |
|
|
ELSE |
294 |
|
|
DO J=1,sNy |
295 |
|
|
jj = 2*sNx*(J-1) |
296 |
|
|
DO I=1,sNx |
297 |
|
|
ii = jj + 2*I |
298 |
|
|
xfld2d(I,J,bi,bj) = vector(ii-1,bi,bj) |
299 |
|
|
yfld2d(I,J,bi,bj) = vector(ii, bi,bj) |
300 |
|
|
ENDDO |
301 |
|
|
ENDDO |
302 |
|
|
ENDIF |
303 |
|
|
#else |
304 |
|
|
IF ( map2vec ) THEN |
305 |
|
|
DO J=1,sNy |
306 |
|
|
jj = sNx*(J-1) |
307 |
|
|
DO I=1,sNx |
308 |
|
|
ii = jj + I |
309 |
|
|
vector(ii, bi,bj) = xfld2d(I,J,bi,bj) |
310 |
|
|
vector(ii+m,bi,bj) = yfld2d(I,J,bi,bj) |
311 |
|
|
ENDDO |
312 |
|
|
ENDDO |
313 |
|
|
ELSE |
314 |
torge |
1.1 |
DO J=1,sNy |
315 |
torge |
1.4 |
jj = sNx*(J-1) |
316 |
torge |
1.1 |
DO I=1,sNx |
317 |
|
|
ii = jj + I |
318 |
torge |
1.4 |
xfld2d(I,J,bi,bj) = vector(ii, bi,bj) |
319 |
|
|
yfld2d(I,J,bi,bj) = vector(ii+m,bi,bj) |
320 |
torge |
1.1 |
ENDDO |
321 |
|
|
ENDDO |
322 |
torge |
1.4 |
ENDIF |
323 |
|
|
#endif /* SEAICE_JFNK_MAP_REORDER */ |
324 |
|
|
C bi,bj-loops |
325 |
torge |
1.2 |
ENDDO |
326 |
torge |
1.4 |
ENDDO |
327 |
torge |
1.1 |
|
328 |
|
|
RETURN |
329 |
|
|
END |
330 |
|
|
|
331 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
332 |
|
|
CBOP |
333 |
|
|
C !ROUTINE: SEAICE_FGMRES |
334 |
|
|
C !INTERFACE: |
335 |
torge |
1.4 |
SUBROUTINE SEAICE_FGMRES ( |
336 |
|
|
I n,im,rhs, |
337 |
|
|
U sol,i,its,vv,w,wk1,wk2, |
338 |
|
|
I eps,maxits,iout, |
339 |
|
|
U icode, |
340 |
|
|
I myThid ) |
341 |
torge |
1.1 |
|
342 |
|
|
C----------------------------------------------------------------------- |
343 |
|
|
C mlosch Oct 2012: modified the routine further to be compliant with |
344 |
|
|
C MITgcm standards: |
345 |
|
|
C f90 -> F |
346 |
|
|
C !-comment -> C-comment |
347 |
torge |
1.4 |
C add its to list of arguments |
348 |
torge |
1.1 |
C double precision -> _RL |
349 |
|
|
C implicit none |
350 |
torge |
1.2 |
C |
351 |
torge |
1.1 |
C jfl Dec 1st 2006. We modified the routine so that it is double precison. |
352 |
|
|
C Here are the modifications: |
353 |
torge |
1.2 |
C 1) implicit real (a-h,o-z) becomes implicit real*8 (a-h,o-z) |
354 |
torge |
1.1 |
C 2) real bocomes real*8 |
355 |
|
|
C 3) subroutine scopy.f has been changed for dcopy.f |
356 |
|
|
C 4) subroutine saxpy.f has been changed for daxpy.f |
357 |
|
|
C 5) function sdot.f has been changed for ddot.f |
358 |
|
|
C 6) 1e-08 becomes 1d-08 |
359 |
|
|
C |
360 |
torge |
1.2 |
C Be careful with the dcopy, daxpy and ddot code...there is a slight |
361 |
torge |
1.1 |
C difference with the single precision versions (scopy, saxpy and sdot). |
362 |
|
|
C In the single precision versions, the array are declared sightly differently. |
363 |
|
|
C It is written for single precision: |
364 |
|
|
C |
365 |
|
|
C modified 12/3/93, array(1) declarations changed to array(*) |
366 |
|
|
C----------------------------------------------------------------------- |
367 |
|
|
|
368 |
|
|
implicit none |
369 |
torge |
1.4 |
C === Global variables === |
370 |
|
|
#include "SIZE.h" |
371 |
|
|
#include "EEPARAMS.h" |
372 |
torge |
1.1 |
CML implicit double precision (a-h,o-z) !jfl modification |
373 |
|
|
integer myThid |
374 |
torge |
1.4 |
integer n, im, its, maxits, iout, icode |
375 |
|
|
_RL rhs(n,nSx,nSy), sol(n,nSx,nSy) |
376 |
|
|
_RL vv(n,im+1,nSx,nSy), w(n,im,nSx,nSy) |
377 |
|
|
_RL wk1(n,nSx,nSy), wk2(n,nSx,nSy), eps |
378 |
torge |
1.1 |
C----------------------------------------------------------------------- |
379 |
torge |
1.2 |
C flexible GMRES routine. This is a version of GMRES which allows a |
380 |
|
|
C a variable preconditioner. Implemented with a reverse communication |
381 |
torge |
1.1 |
C protocole for flexibility - |
382 |
torge |
1.2 |
C DISTRIBUTED VERSION (USES DISTDOT FOR DDOT) |
383 |
|
|
C explicit (exact) residual norms for restarts |
384 |
torge |
1.1 |
C written by Y. Saad, modified by A. Malevsky, version February 1, 1995 |
385 |
|
|
C----------------------------------------------------------------------- |
386 |
torge |
1.2 |
C This Is A Reverse Communication Implementation. |
387 |
|
|
C------------------------------------------------- |
388 |
torge |
1.1 |
C USAGE: (see also comments for icode below). FGMRES |
389 |
|
|
C should be put in a loop and the loop should be active for as |
390 |
|
|
C long as icode is not equal to 0. On return fgmres will |
391 |
|
|
C 1) either be requesting the new preconditioned vector applied |
392 |
torge |
1.2 |
C to wk1 in case icode.eq.1 (result should be put in wk2) |
393 |
torge |
1.1 |
C 2) or be requesting the product of A applied to the vector wk1 |
394 |
torge |
1.2 |
C in case icode.eq.2 (result should be put in wk2) |
395 |
|
|
C 3) or be terminated in case icode .eq. 0. |
396 |
torge |
1.1 |
C on entry always set icode = 0. So icode should be set back to zero |
397 |
|
|
C upon convergence. |
398 |
|
|
C----------------------------------------------------------------------- |
399 |
torge |
1.2 |
C Here is a typical way of running fgmres: |
400 |
torge |
1.1 |
C |
401 |
|
|
C icode = 0 |
402 |
|
|
C 1 continue |
403 |
torge |
1.4 |
C call fgmres (n,im,rhs,sol,i,vv,w,wk1,wk2,eps,maxits,iout, |
404 |
|
|
C & icode,its,mythid) |
405 |
torge |
1.1 |
C |
406 |
|
|
C if (icode .eq. 1) then |
407 |
|
|
C call precon(n, wk1, wk2) <--- user variable preconditioning |
408 |
|
|
C goto 1 |
409 |
|
|
C else if (icode .ge. 2) then |
410 |
torge |
1.2 |
C call matvec (n,wk1, wk2) <--- user matrix vector product. |
411 |
torge |
1.1 |
C goto 1 |
412 |
torge |
1.2 |
C else |
413 |
|
|
C ----- done ---- |
414 |
torge |
1.1 |
C ......... |
415 |
|
|
C----------------------------------------------------------------------- |
416 |
torge |
1.2 |
C list of parameters |
417 |
|
|
C------------------- |
418 |
torge |
1.1 |
C |
419 |
|
|
C n == integer. the dimension of the problem |
420 |
|
|
C im == size of Krylov subspace: should not exceed 50 in this |
421 |
|
|
C version (can be reset in code. looking at comment below) |
422 |
|
|
C rhs == vector of length n containing the right hand side |
423 |
|
|
C sol == initial guess on input, approximate solution on output |
424 |
|
|
C vv == work space of size n x (im+1) |
425 |
torge |
1.2 |
C w == work space of length n x im |
426 |
torge |
1.1 |
C wk1, |
427 |
|
|
C wk2, == two work vectors of length n each used for the reverse |
428 |
|
|
C communication protocole. When on return (icode .ne. 1) |
429 |
|
|
C the user should call fgmres again with wk2 = precon * wk1 |
430 |
|
|
C and icode untouched. When icode.eq.1 then it means that |
431 |
|
|
C convergence has taken place. |
432 |
torge |
1.2 |
C |
433 |
torge |
1.1 |
C eps == tolerance for stopping criterion. process is stopped |
434 |
|
|
C as soon as ( ||.|| is the euclidean norm): |
435 |
|
|
C || current residual||/||initial residual|| <= eps |
436 |
|
|
C |
437 |
|
|
C maxits== maximum number of iterations allowed |
438 |
|
|
C |
439 |
torge |
1.4 |
C i == internal iteration counter, updated in this routine |
440 |
|
|
C its == current (Krylov) iteration counter, updated in this routine |
441 |
|
|
C |
442 |
torge |
1.1 |
C iout == output unit number number for printing intermediate results |
443 |
|
|
C if (iout .le. 0) no statistics are printed. |
444 |
torge |
1.2 |
C |
445 |
torge |
1.1 |
C icode = integer. indicator for the reverse communication protocole. |
446 |
|
|
C ON ENTRY : icode should be set to icode = 0. |
447 |
torge |
1.2 |
C ON RETURN: |
448 |
torge |
1.1 |
C * icode .eq. 1 value means that fgmres has not finished |
449 |
|
|
C and that it is requesting a preconditioned vector before |
450 |
|
|
C continuing. The user must compute M**(-1) wk1, where M is |
451 |
|
|
C the preconditioing matrix (may vary at each call) and wk1 is |
452 |
torge |
1.2 |
C the vector as provided by fgmres upun return, and put the |
453 |
torge |
1.1 |
C result in wk2. Then fgmres must be called again without |
454 |
torge |
1.2 |
C changing any other argument. |
455 |
torge |
1.1 |
C * icode .eq. 2 value means that fgmres has not finished |
456 |
|
|
C and that it is requesting a matrix vector product before |
457 |
|
|
C continuing. The user must compute A * wk1, where A is the |
458 |
torge |
1.2 |
C coefficient matrix and wk1 is the vector provided by |
459 |
torge |
1.1 |
C upon return. The result of the operation is to be put in |
460 |
|
|
C the vector wk2. Then fgmres must be called again without |
461 |
torge |
1.2 |
C changing any other argument. |
462 |
|
|
C * icode .eq. 0 means that fgmres has finished and sol contains |
463 |
torge |
1.1 |
C the approximate solution. |
464 |
|
|
C comment: typically fgmres must be implemented in a loop |
465 |
torge |
1.2 |
C with fgmres being called as long icode is returned with |
466 |
|
|
C a value .ne. 0. |
467 |
torge |
1.1 |
C----------------------------------------------------------------------- |
468 |
|
|
C local variables -- !jfl modif |
469 |
torge |
1.2 |
integer imax |
470 |
torge |
1.1 |
parameter ( imax = 50 ) |
471 |
|
|
_RL hh(4*imax+1,4*imax),c(4*imax),s(4*imax) |
472 |
|
|
_RL rs(4*imax+1),t,ro |
473 |
|
|
C------------------------------------------------------------- |
474 |
|
|
C arnoldi size should not exceed 50 in this version.. |
475 |
|
|
C------------------------------------------------------------- |
476 |
torge |
1.4 |
integer i, i1, ii, j, jj, k, k1!, n1 |
477 |
|
|
integer bi, bj |
478 |
torge |
1.1 |
_RL r0, gam, epsmac, eps1 |
479 |
torge |
1.4 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
480 |
torge |
1.1 |
|
481 |
|
|
CEOP |
482 |
torge |
1.4 |
CML save |
483 |
|
|
C local common block to replace the save statement |
484 |
|
|
COMMON /SEAICE_FMRES_LOC_I/ i1 |
485 |
|
|
COMMON /SEAICE_FMRES_LOC_RL/ |
486 |
|
|
& hh, c, s, rs, t, ro, r0, gam, epsmac, eps1 |
487 |
torge |
1.1 |
data epsmac/1.d-16/ |
488 |
torge |
1.2 |
C |
489 |
|
|
C computed goto |
490 |
|
|
C |
491 |
torge |
1.1 |
if ( im .gt. imax ) stop 'size of krylov space > 50' |
492 |
|
|
goto (100,200,300,11) icode +1 |
493 |
|
|
100 continue |
494 |
torge |
1.4 |
CML n1 = n + 1 |
495 |
torge |
1.1 |
its = 0 |
496 |
|
|
C------------------------------------------------------------- |
497 |
|
|
C ** outer loop starts here.. |
498 |
|
|
C--------------compute initial residual vector -------------- |
499 |
|
|
C 10 continue |
500 |
torge |
1.4 |
CML call dcopy (n, sol, 1, wk1, 1) !jfl modification |
501 |
|
|
do bj=myByLo(myThid),myByHi(myThid) |
502 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
503 |
|
|
do j=1,n |
504 |
|
|
wk1(j,bi,bj)=sol(j,bi,bj) |
505 |
|
|
enddo |
506 |
|
|
enddo |
507 |
torge |
1.1 |
enddo |
508 |
|
|
icode = 3 |
509 |
torge |
1.2 |
RETURN |
510 |
torge |
1.1 |
11 continue |
511 |
torge |
1.4 |
do bj=myByLo(myThid),myByHi(myThid) |
512 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
513 |
|
|
do j=1,n |
514 |
|
|
vv(j,1,bi,bj) = rhs(j,bi,bj) - wk2(j,bi,bj) |
515 |
|
|
enddo |
516 |
|
|
enddo |
517 |
torge |
1.1 |
enddo |
518 |
torge |
1.4 |
20 continue |
519 |
|
|
CML ro = ddot(n, vv, 1, vv,1) !jfl modification |
520 |
|
|
call SEAICE_SCALPROD(n, im+1, 1, 1, vv, vv, ro, myThid) |
521 |
torge |
1.1 |
ro = sqrt(ro) |
522 |
torge |
1.4 |
if (ro .eq. 0.0 _d 0) goto 999 |
523 |
|
|
t = 1.0 _d 0/ ro |
524 |
|
|
do bj=myByLo(myThid),myByHi(myThid) |
525 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
526 |
|
|
do j=1, n |
527 |
|
|
vv(j,1,bi,bj) = vv(j,1,bi,bj)*t |
528 |
|
|
enddo |
529 |
|
|
enddo |
530 |
torge |
1.1 |
enddo |
531 |
|
|
if (its .eq. 0) eps1=eps |
532 |
torge |
1.4 |
C not sure what this is, r0 is never used again |
533 |
torge |
1.1 |
if (its .eq. 0) r0 = ro |
534 |
torge |
1.4 |
if (iout .gt. 0) then |
535 |
|
|
_BEGIN_MASTER( myThid ) |
536 |
|
|
write(msgBuf, 199) its, ro |
537 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
538 |
|
|
& SQUEEZE_RIGHT, myThid ) |
539 |
torge |
1.1 |
C print *,'chau',its, ro !write(iout, 199) its, ro |
540 |
torge |
1.4 |
_END_MASTER( myThid ) |
541 |
|
|
endif |
542 |
torge |
1.2 |
C |
543 |
torge |
1.1 |
C initialize 1-st term of rhs of hessenberg system.. |
544 |
torge |
1.2 |
C |
545 |
torge |
1.1 |
rs(1) = ro |
546 |
|
|
i = 0 |
547 |
torge |
1.4 |
4 continue |
548 |
|
|
i=i+1 |
549 |
torge |
1.1 |
its = its + 1 |
550 |
|
|
i1 = i + 1 |
551 |
torge |
1.4 |
do bj=myByLo(myThid),myByHi(myThid) |
552 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
553 |
|
|
do k=1, n |
554 |
|
|
wk1(k,bi,bj) = vv(k,i,bi,bj) |
555 |
|
|
enddo |
556 |
|
|
enddo |
557 |
torge |
1.1 |
enddo |
558 |
torge |
1.2 |
C |
559 |
torge |
1.1 |
C return |
560 |
torge |
1.2 |
C |
561 |
torge |
1.1 |
icode = 1 |
562 |
torge |
1.2 |
RETURN |
563 |
torge |
1.1 |
200 continue |
564 |
torge |
1.4 |
do bj=myByLo(myThid),myByHi(myThid) |
565 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
566 |
|
|
do k=1, n |
567 |
|
|
w(k,i,bi,bj) = wk2(k,bi,bj) |
568 |
|
|
enddo |
569 |
|
|
enddo |
570 |
torge |
1.1 |
enddo |
571 |
torge |
1.2 |
C |
572 |
torge |
1.1 |
C call matvec operation |
573 |
torge |
1.2 |
C |
574 |
torge |
1.4 |
CML call dcopy(n, wk2, 1, wk1, 1) !jfl modification |
575 |
|
|
do bj=myByLo(myThid),myByHi(myThid) |
576 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
577 |
|
|
do k=1,n |
578 |
|
|
wk1(k,bi,bj)=wk2(k,bi,bj) |
579 |
|
|
enddo |
580 |
|
|
enddo |
581 |
torge |
1.1 |
enddo |
582 |
|
|
C |
583 |
|
|
C return |
584 |
torge |
1.2 |
C |
585 |
torge |
1.4 |
icode = 2 |
586 |
torge |
1.2 |
RETURN |
587 |
torge |
1.1 |
300 continue |
588 |
torge |
1.2 |
C |
589 |
torge |
1.1 |
C first call to ope corresponds to intialization goto back to 11. |
590 |
torge |
1.2 |
C |
591 |
torge |
1.1 |
C if (icode .eq. 3) goto 11 |
592 |
torge |
1.4 |
CML call dcopy (n, wk2, 1, vv(1,i1), 1) !jfl modification |
593 |
|
|
do bj=myByLo(myThid),myByHi(myThid) |
594 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
595 |
|
|
do k=1,n |
596 |
|
|
vv(k,i1,bi,bj)=wk2(k,bi,bj) |
597 |
|
|
enddo |
598 |
|
|
enddo |
599 |
torge |
1.1 |
enddo |
600 |
torge |
1.2 |
C |
601 |
torge |
1.1 |
C modified gram - schmidt... |
602 |
torge |
1.2 |
C |
603 |
torge |
1.1 |
do j=1, i |
604 |
torge |
1.4 |
CML t = ddot(n, vv(1,j), 1, vv(1,i1), 1) !jfl modification |
605 |
|
|
call SEAICE_SCALPROD(n, im+1, j, i1, vv, vv, t, myThid) |
606 |
|
|
hh(j,i) = t |
607 |
|
|
CML call daxpy(n, -t, vv(1,j), 1, vv(1,i1), 1) !jfl modification |
608 |
|
|
CML enddo |
609 |
|
|
CML do j=1, i |
610 |
|
|
CML t = hh(j,i) |
611 |
|
|
do bj=myByLo(myThid),myByHi(myThid) |
612 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
613 |
torge |
1.1 |
do k=1,n |
614 |
torge |
1.4 |
vv(k,i1,bi,bj) = vv(k,i1,bi,bj) - t*vv(k,j,bi,bj) |
615 |
torge |
1.1 |
enddo |
616 |
torge |
1.4 |
enddo |
617 |
|
|
enddo |
618 |
torge |
1.1 |
enddo |
619 |
torge |
1.4 |
CML t = sqrt(ddot(n, vv(1,i1), 1, vv(1,i1), 1)) !jfl modification |
620 |
|
|
call SEAICE_SCALPROD(n, im+1, i1, i1, vv, vv, t, myThid) |
621 |
torge |
1.1 |
t = sqrt(t) |
622 |
|
|
hh(i1,i) = t |
623 |
torge |
1.4 |
if (t .ne. 0.0 _d 0) then |
624 |
|
|
t = 1.0 _d 0 / t |
625 |
|
|
do bj=myByLo(myThid),myByHi(myThid) |
626 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
627 |
|
|
do k=1,n |
628 |
|
|
vv(k,i1,bi,bj) = vv(k,i1,bi,bj)*t |
629 |
|
|
enddo |
630 |
|
|
enddo |
631 |
|
|
enddo |
632 |
|
|
endif |
633 |
torge |
1.2 |
C |
634 |
|
|
C done with modified gram schimd and arnoldi step. |
635 |
torge |
1.1 |
C now update factorization of hh |
636 |
torge |
1.2 |
C |
637 |
torge |
1.4 |
if (i .ne. 1) then |
638 |
torge |
1.2 |
C |
639 |
torge |
1.1 |
C perfrom previous transformations on i-th column of h |
640 |
torge |
1.2 |
C |
641 |
torge |
1.4 |
do k=2,i |
642 |
|
|
k1 = k-1 |
643 |
|
|
t = hh(k1,i) |
644 |
|
|
hh(k1,i) = c(k1)*t + s(k1)*hh(k,i) |
645 |
|
|
hh(k,i) = -s(k1)*t + c(k1)*hh(k,i) |
646 |
|
|
enddo |
647 |
|
|
endif |
648 |
|
|
gam = sqrt(hh(i,i)**2 + hh(i1,i)**2) |
649 |
|
|
if (gam .eq. 0.0 _d 0) gam = epsmac |
650 |
torge |
1.1 |
C-----------#determine next plane rotation #------------------- |
651 |
torge |
1.4 |
c(i) = hh(i,i)/gam |
652 |
|
|
s(i) = hh(i1,i)/gam |
653 |
|
|
C numerically more stable Givens rotation, but the results |
654 |
|
|
C are not better |
655 |
|
|
CML c(i)=1. _d 0 |
656 |
|
|
CML s(i)=0. _d 0 |
657 |
|
|
CML if ( abs(hh(i1,i)) .gt. 0.0 _d 0) then |
658 |
|
|
CML if ( abs(hh(i1,i)) .gt. abs(hh(i,i)) ) then |
659 |
|
|
CML gam = hh(i,i)/hh(i1,i) |
660 |
|
|
CML s(i) = 1./sqrt(1.+gam*gam) |
661 |
|
|
CML c(i) = s(i)*gam |
662 |
|
|
CML else |
663 |
|
|
CML gam = hh(i1,i)/hh(i,i) |
664 |
|
|
CML c(i) = 1./sqrt(1.+gam*gam) |
665 |
|
|
CML s(i) = c(i)*gam |
666 |
|
|
CML endif |
667 |
|
|
CML endif |
668 |
torge |
1.1 |
rs(i1) = -s(i)*rs(i) |
669 |
torge |
1.4 |
rs(i) = c(i)*rs(i) |
670 |
torge |
1.2 |
C |
671 |
torge |
1.4 |
C determine res. norm. and test for convergence |
672 |
torge |
1.2 |
C |
673 |
torge |
1.1 |
hh(i,i) = c(i)*hh(i,i) + s(i)*hh(i1,i) |
674 |
|
|
ro = abs(rs(i1)) |
675 |
torge |
1.4 |
if (iout .gt. 0) then |
676 |
|
|
_BEGIN_MASTER( myThid ) |
677 |
|
|
write(msgBuf, 199) its, ro |
678 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
679 |
|
|
& SQUEEZE_RIGHT, myThid ) |
680 |
|
|
_END_MASTER( myThid ) |
681 |
|
|
endif |
682 |
torge |
1.1 |
if (i .lt. im .and. (ro .gt. eps1)) goto 4 |
683 |
torge |
1.2 |
C |
684 |
torge |
1.1 |
C now compute solution. first solve upper triangular system. |
685 |
torge |
1.2 |
C |
686 |
torge |
1.1 |
rs(i) = rs(i)/hh(i,i) |
687 |
|
|
do ii=2,i |
688 |
torge |
1.4 |
k=i-ii+1 |
689 |
|
|
k1 = k+1 |
690 |
|
|
t=rs(k) |
691 |
|
|
do j=k1,i |
692 |
|
|
t = t-hh(k,j)*rs(j) |
693 |
|
|
enddo |
694 |
|
|
rs(k) = t/hh(k,k) |
695 |
torge |
1.1 |
enddo |
696 |
torge |
1.2 |
C |
697 |
torge |
1.1 |
C done with back substitution.. |
698 |
|
|
C now form linear combination to get solution |
699 |
torge |
1.2 |
C |
700 |
torge |
1.1 |
do j=1, i |
701 |
|
|
t = rs(j) |
702 |
torge |
1.4 |
CML call daxpy(n, t, w(1,j), 1, sol,1) !jfl modification |
703 |
|
|
do bj=myByLo(myThid),myByHi(myThid) |
704 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
705 |
|
|
do k=1,n |
706 |
|
|
sol(k,bi,bj) = sol(k,bi,bj) + t*w(k,j,bi,bj) |
707 |
|
|
enddo |
708 |
|
|
enddo |
709 |
torge |
1.1 |
enddo |
710 |
|
|
enddo |
711 |
torge |
1.2 |
C |
712 |
|
|
C test for return |
713 |
|
|
C |
714 |
torge |
1.1 |
if (ro .le. eps1 .or. its .ge. maxits) goto 999 |
715 |
torge |
1.2 |
C |
716 |
torge |
1.1 |
C else compute residual vector and continue.. |
717 |
torge |
1.2 |
C |
718 |
torge |
1.1 |
C goto 10 |
719 |
|
|
|
720 |
|
|
do j=1,i |
721 |
torge |
1.4 |
jj = i1-j+1 |
722 |
|
|
rs(jj-1) = -s(jj-1)*rs(jj) |
723 |
|
|
rs(jj) = c(jj-1)*rs(jj) |
724 |
torge |
1.1 |
enddo |
725 |
|
|
do j=1,i1 |
726 |
torge |
1.4 |
t = rs(j) |
727 |
|
|
if (j .eq. 1) t = t-1.0 _d 0 |
728 |
|
|
CML call daxpy (n, t, vv(1,j), 1, vv, 1) |
729 |
|
|
do bj=myByLo(myThid),myByHi(myThid) |
730 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
731 |
|
|
do k=1,n |
732 |
|
|
vv(k,1,bi,bj) = vv(k,1,bi,bj) + t*vv(k,j,bi,bj) |
733 |
|
|
enddo |
734 |
torge |
1.1 |
enddo |
735 |
torge |
1.4 |
enddo |
736 |
torge |
1.1 |
enddo |
737 |
torge |
1.2 |
C |
738 |
torge |
1.1 |
C restart outer loop. |
739 |
torge |
1.2 |
C |
740 |
torge |
1.1 |
goto 20 |
741 |
|
|
999 icode = 0 |
742 |
|
|
|
743 |
torge |
1.4 |
199 format(' SEAICE_FGMRES: its =', i4, ' res. norm =', d26.16) |
744 |
torge |
1.2 |
C |
745 |
|
|
RETURN |
746 |
|
|
C-----end-of-fgmres----------------------------------------------------- |
747 |
torge |
1.1 |
C----------------------------------------------------------------------- |
748 |
torge |
1.2 |
END |
749 |
torge |
1.1 |
|
750 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
751 |
|
|
CBOP |
752 |
torge |
1.4 |
C !ROUTINE: SEAICE_SCALPROD |
753 |
torge |
1.1 |
C !INTERFACE: |
754 |
|
|
|
755 |
torge |
1.4 |
subroutine SEAICE_SCALPROD(n,im,i1,i2,dx,dy,t,myThid) |
756 |
torge |
1.1 |
|
757 |
|
|
C forms the dot product of two vectors. |
758 |
|
|
C uses unrolled loops for increments equal to one. |
759 |
|
|
C jack dongarra, linpack, 3/11/78. |
760 |
torge |
1.4 |
C ML: code stolen from BLAS-ddot and adapted for parallel applications |
761 |
torge |
1.2 |
|
762 |
torge |
1.1 |
implicit none |
763 |
|
|
#include "SIZE.h" |
764 |
|
|
#include "EEPARAMS.h" |
765 |
|
|
#include "EESUPPORT.h" |
766 |
torge |
1.4 |
#include "SEAICE_SIZE.h" |
767 |
|
|
#include "SEAICE.h" |
768 |
|
|
integer n, im, i1, i2 |
769 |
|
|
_RL dx(n,im,nSx,nSy),dy(n,im,nSx,nSy) |
770 |
|
|
_RL t |
771 |
torge |
1.1 |
integer myThid |
772 |
torge |
1.4 |
C local arrays |
773 |
|
|
_RL dtemp(nSx,nSy) |
774 |
|
|
integer i,m,mp1,bi,bj |
775 |
|
|
CEOP |
776 |
torge |
1.2 |
|
777 |
torge |
1.1 |
m = mod(n,5) |
778 |
torge |
1.4 |
mp1 = m + 1 |
779 |
torge |
1.1 |
t = 0. _d 0 |
780 |
torge |
1.4 |
c if( m .eq. 0 ) go to 40 |
781 |
|
|
do bj=myByLo(myThid),myByHi(myThid) |
782 |
|
|
do bi=myBxLo(myThid),myBxHi(myThid) |
783 |
|
|
dtemp(bi,bj) = 0. _d 0 |
784 |
|
|
if ( m .ne. 0 ) then |
785 |
|
|
do i = 1,m |
786 |
|
|
dtemp(bi,bj) = dtemp(bi,bj) + dx(i,i1,bi,bj)*dy(i,i2,bi,bj) |
787 |
|
|
& * scalarProductMetric(i,1,bi,bj) |
788 |
|
|
enddo |
789 |
|
|
endif |
790 |
|
|
if ( n .ge. 5 ) then |
791 |
|
|
c if( n .lt. 5 ) go to 60 |
792 |
|
|
c40 mp1 = m + 1 |
793 |
|
|
do i = mp1,n,5 |
794 |
|
|
dtemp(bi,bj) = dtemp(bi,bj) + |
795 |
|
|
& dx(i, i1,bi,bj)*dy(i, i2,bi,bj) |
796 |
|
|
& * scalarProductMetric(i, 1, bi,bj) + |
797 |
|
|
& dx(i + 1,i1,bi,bj)*dy(i + 1,i2,bi,bj) |
798 |
|
|
& * scalarProductMetric(i + 1,1, bi,bj) + |
799 |
|
|
& dx(i + 2,i1,bi,bj)*dy(i + 2,i2,bi,bj) |
800 |
|
|
& * scalarProductMetric(i + 2,1, bi,bj) + |
801 |
|
|
& dx(i + 3,i1,bi,bj)*dy(i + 3,i2,bi,bj) |
802 |
|
|
& * scalarProductMetric(i + 3,1, bi,bj) + |
803 |
|
|
& dx(i + 4,i1,bi,bj)*dy(i + 4,i2,bi,bj) |
804 |
|
|
& * scalarProductMetric(i + 4,1, bi,bj) |
805 |
|
|
enddo |
806 |
|
|
c60 continue |
807 |
|
|
endif |
808 |
|
|
enddo |
809 |
|
|
enddo |
810 |
|
|
CALL GLOBAL_SUM_TILE_RL( dtemp,t,myThid ) |
811 |
torge |
1.1 |
|
812 |
|
|
#endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */ |
813 |
|
|
|
814 |
|
|
RETURN |
815 |
|
|
END |