1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_growth.F,v 1.194 2013/12/03 22:11:01 torge Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SEAICE_OPTIONS.h" |
5 |
#ifdef ALLOW_EXF |
6 |
# include "EXF_OPTIONS.h" |
7 |
#endif |
8 |
|
9 |
CBOP |
10 |
C !ROUTINE: SEAICE_GROWTH |
11 |
C !INTERFACE: |
12 |
SUBROUTINE SEAICE_GROWTH( myTime, myIter, myThid ) |
13 |
C !DESCRIPTION: \bv |
14 |
C *==========================================================* |
15 |
C | SUBROUTINE seaice_growth |
16 |
C | o Updata ice thickness and snow depth |
17 |
C *==========================================================* |
18 |
C \ev |
19 |
|
20 |
C !USES: |
21 |
IMPLICIT NONE |
22 |
C === Global variables === |
23 |
#include "SIZE.h" |
24 |
#include "EEPARAMS.h" |
25 |
#include "PARAMS.h" |
26 |
#include "DYNVARS.h" |
27 |
#include "GRID.h" |
28 |
#include "FFIELDS.h" |
29 |
#include "SEAICE_SIZE.h" |
30 |
#include "SEAICE_PARAMS.h" |
31 |
#include "SEAICE.h" |
32 |
#include "SEAICE_TRACER.h" |
33 |
#ifdef ALLOW_EXF |
34 |
# include "EXF_PARAM.h" |
35 |
# include "EXF_FIELDS.h" |
36 |
#endif |
37 |
#ifdef ALLOW_SALT_PLUME |
38 |
# include "SALT_PLUME.h" |
39 |
#endif |
40 |
#ifdef ALLOW_AUTODIFF_TAMC |
41 |
# include "tamc.h" |
42 |
#endif |
43 |
|
44 |
C !INPUT/OUTPUT PARAMETERS: |
45 |
C === Routine arguments === |
46 |
C myTime :: Simulation time |
47 |
C myIter :: Simulation timestep number |
48 |
C myThid :: Thread no. that called this routine. |
49 |
_RL myTime |
50 |
INTEGER myIter, myThid |
51 |
CEOP |
52 |
|
53 |
#if (defined ALLOW_EXF) && (defined ALLOW_ATM_TEMP) |
54 |
C !FUNCTIONS: |
55 |
#ifdef ALLOW_DIAGNOSTICS |
56 |
LOGICAL DIAGNOSTICS_IS_ON |
57 |
EXTERNAL DIAGNOSTICS_IS_ON |
58 |
#endif |
59 |
|
60 |
C !LOCAL VARIABLES: |
61 |
C === Local variables === |
62 |
C |
63 |
C unit/sign convention: |
64 |
C Within the thermodynamic computation all stocks, except HSNOW, |
65 |
C are in 'effective ice meters' units, and >0 implies more ice. |
66 |
C This holds for stocks due to ocean and atmosphere heat, |
67 |
C at the outset of 'PART 2: determine heat fluxes/stocks' |
68 |
C and until 'PART 7: determine ocean model forcing' |
69 |
C This strategy minimizes the need for multiplications/divisions |
70 |
C by ice fraction, heat capacity, etc. The only conversions that |
71 |
C occurs are for the HSNOW (in effective snow meters) and |
72 |
C PRECIP (fresh water m/s). |
73 |
C |
74 |
C HEFF is effective Hice thickness (m3/m2) |
75 |
C HSNOW is Heffective snow thickness (m3/m2) |
76 |
C HSALT is Heffective salt content (g/m2) |
77 |
C AREA is the seaice cover fraction (0<=AREA<=1) |
78 |
C Q denotes heat stocks -- converted to ice stocks (m3/m2) early on |
79 |
C |
80 |
C For all other stocks/increments, such as d_HEFFbyATMonOCN |
81 |
C or a_QbyATM_cover, the naming convention is as follows: |
82 |
C The prefix 'a_' means available, the prefix 'd_' means delta |
83 |
C (i.e. increment), and the prefix 'r_' means residual. |
84 |
C The suffix '_cover' denotes a value for the ice covered fraction |
85 |
C of the grid cell, whereas '_open' is for the open water fraction. |
86 |
C The main part of the name states what ice/snow stock is concerned |
87 |
C (e.g. QbyATM or HEFF), and how it is affected (e.g. d_HEFFbyATMonOCN |
88 |
C is the increment of HEFF due to the ATMosphere extracting heat from the |
89 |
C OCeaN surface, or providing heat to the OCeaN surface). |
90 |
|
91 |
C i,j,bi,bj :: Loop counters |
92 |
INTEGER i, j, bi, bj |
93 |
C number of surface interface layer |
94 |
INTEGER kSurface |
95 |
C IT :: ice thickness category index (MULTICATEGORIES and ITD code) |
96 |
INTEGER IT |
97 |
C msgBuf :: Informational/error message buffer |
98 |
#ifdef ALLOW_BALANCE_FLUXES |
99 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
100 |
#elif (defined (SEAICE_DEBUG)) |
101 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
102 |
CHARACTER*12 msgBufForm |
103 |
#endif |
104 |
C constants |
105 |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
106 |
_RL QI, QS, recip_QI |
107 |
_RL lhSublim |
108 |
|
109 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
110 |
_RL convertQ2HI, convertHI2Q |
111 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
112 |
_RL convertPRECIP2HI, convertHI2PRECIP |
113 |
C Factor by which we increase the upper ocean friction velocity (u*) when |
114 |
C ice is absent in a grid cell (dimensionless) |
115 |
_RL MixedLayerTurbulenceFactor |
116 |
|
117 |
C wind speed square |
118 |
_RL SPEED_SQ |
119 |
|
120 |
C Regularization values squared |
121 |
_RL area_reg_sq, hice_reg_sq |
122 |
C pathological cases thresholds |
123 |
_RL heffTooHeavy |
124 |
|
125 |
C Helper variables: reciprocal of some constants |
126 |
_RL recip_multDim |
127 |
_RL recip_deltaTtherm |
128 |
_RL recip_rhoIce |
129 |
C local value (=1/HO or 1/HO_south) |
130 |
_RL recip_HO |
131 |
C local value (=1/ice thickness) |
132 |
_RL recip_HH |
133 |
#ifndef SEAICE_ITD |
134 |
C facilitate multi-category snow implementation |
135 |
_RL pFac, pFacSnow |
136 |
#endif |
137 |
|
138 |
C temporary variables available for the various computations |
139 |
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
140 |
#ifdef SEAICE_ITD |
141 |
_RL tmpscal1itd(1:sNx,1:sNy), tmpscal2itd(1:sNx,1:sNy) |
142 |
_RL tmpscal3itd(1:sNx,1:sNy) |
143 |
#endif |
144 |
|
145 |
#ifdef ALLOW_SITRACER |
146 |
INTEGER iTr |
147 |
#ifdef ALLOW_DIAGNOSTICS |
148 |
CHARACTER*8 diagName |
149 |
#endif |
150 |
#ifdef SEAICE_GREASE |
151 |
INTEGER iTrGrease |
152 |
_RL greaseDecayTime |
153 |
_RL greaseNewFrazil |
154 |
_RL THIRD, TWOTHIRDS |
155 |
PARAMETER (THIRD = 1.0 _d 0 / 3.0 _d 0) |
156 |
PARAMETER (TWOTHIRDS = 2.0 _d 0 / 3.0 _d 0) |
157 |
#endif |
158 |
#endif /* ALLOW_SITRACER */ |
159 |
#ifdef ALLOW_AUTODIFF_TAMC |
160 |
INTEGER ilockey |
161 |
#endif |
162 |
|
163 |
C== local arrays == |
164 |
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
165 |
_RL TmixLoc (1:sNx,1:sNy) |
166 |
|
167 |
#ifndef SEAICE_ITD |
168 |
C actual ice thickness (with upper and lower limit) |
169 |
_RL heffActual (1:sNx,1:sNy) |
170 |
C actual snow thickness |
171 |
_RL hsnowActual (1:sNx,1:sNy) |
172 |
#endif |
173 |
C actual ice thickness (with lower limit only) Reciprocal |
174 |
_RL recip_heffActual (1:sNx,1:sNy) |
175 |
|
176 |
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
177 |
_RL AREApreTH (1:sNx,1:sNy) |
178 |
_RL HEFFpreTH (1:sNx,1:sNy) |
179 |
_RL HSNWpreTH (1:sNx,1:sNy) |
180 |
#ifdef SEAICE_ITD |
181 |
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
182 |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
183 |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
184 |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
185 |
#endif |
186 |
|
187 |
C wind speed |
188 |
_RL UG (1:sNx,1:sNy) |
189 |
|
190 |
C temporary variables available for the various computations |
191 |
_RL tmparr1 (1:sNx,1:sNy) |
192 |
#ifdef SEAICE_VARIABLE_SALINITY |
193 |
_RL saltFluxAdjust (1:sNx,1:sNy) |
194 |
#endif |
195 |
#ifdef SEAICE_GREASE |
196 |
_RL greaseLayerThick (1:sNx,1:sNy) |
197 |
_RL d_AREAbyGREASE (1:sNx,1:sNy) |
198 |
#endif |
199 |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
200 |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
201 |
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
202 |
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
203 |
#ifdef SEAICE_ITD |
204 |
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
205 |
#endif |
206 |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
207 |
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
208 |
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
209 |
#ifdef SEAICE_ITD |
210 |
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
211 |
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
212 |
C for lateral melt parameterization: |
213 |
_RL latMeltFrac (1:sNx,1:sNy,MULTDIM) |
214 |
_RL latMeltRate (1:sNx,1:sNy,MULTDIM) |
215 |
_RL floeAlpha |
216 |
_RL floeDiameter |
217 |
_RL floeDiameterMin |
218 |
_RL floeDiameterMax |
219 |
#endif |
220 |
|
221 |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
222 |
C the atmosphere and the ocean surface - for ice covered water |
223 |
C a_QbyATM_open :: same but for open water |
224 |
C r_QbyATM_cover :: residual of a_QbyATM_cover after freezing/melting processes |
225 |
C r_QbyATM_open :: same but for open water |
226 |
_RL a_QbyATM_cover (1:sNx,1:sNy) |
227 |
_RL a_QbyATM_open (1:sNx,1:sNy) |
228 |
_RL r_QbyATM_cover (1:sNx,1:sNy) |
229 |
_RL r_QbyATM_open (1:sNx,1:sNy) |
230 |
C a_QSWbyATM_open - short wave heat flux over ocean in W/m^2 |
231 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
232 |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
233 |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
234 |
C a_QbyOCN :: available heat (in W/m^2) due to the |
235 |
C interaction of the ice pack and the ocean surface |
236 |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
237 |
C processes have been accounted for |
238 |
_RL a_QbyOCN (1:sNx,1:sNy) |
239 |
_RL r_QbyOCN (1:sNx,1:sNy) |
240 |
|
241 |
C The change of mean ice thickness due to out-of-bounds values following |
242 |
C sea ice dyhnamics |
243 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
244 |
|
245 |
C The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
246 |
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
247 |
|
248 |
C The sum of mean ice thickness increments due to atmospheric fluxes over |
249 |
C the open water fraction and ice-covered fractions of the grid cell |
250 |
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
251 |
C The change of mean ice thickness due to flooding by snow |
252 |
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
253 |
|
254 |
C The mean ice thickness increments due to atmospheric fluxes over the open |
255 |
C water fraction and ice-covered fractions of the grid cell, respectively |
256 |
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
257 |
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
258 |
|
259 |
_RL d_HSNWbyNEG (1:sNx,1:sNy) |
260 |
_RL d_HSNWbyATMonSNW (1:sNx,1:sNy) |
261 |
_RL d_HSNWbyOCNonSNW (1:sNx,1:sNy) |
262 |
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
263 |
|
264 |
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
265 |
|
266 |
C a_FWbySublim :: fresh water flux implied by latent heat of |
267 |
C sublimation to atmosphere, same sign convention |
268 |
C as EVAP (positive upward) |
269 |
_RL a_FWbySublim (1:sNx,1:sNy) |
270 |
_RL r_FWbySublim (1:sNx,1:sNy) |
271 |
_RL d_HEFFbySublim (1:sNx,1:sNy) |
272 |
_RL d_HSNWbySublim (1:sNx,1:sNy) |
273 |
|
274 |
#ifdef SEAICE_CAP_SUBLIM |
275 |
C The latent heat flux which will sublimate all snow and ice |
276 |
C over one time step |
277 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
278 |
_RL latentHeatFluxMaxMult(1:sNx,1:sNy,MULTDIM) |
279 |
#endif |
280 |
|
281 |
#ifdef EXF_SEAICE_FRACTION |
282 |
C ICE/SNOW stocks tendency associated with relaxation towards observation |
283 |
_RL d_AREAbyRLX (1:sNx,1:sNy) |
284 |
C The change of mean ice thickness due to relaxation |
285 |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
286 |
#endif |
287 |
|
288 |
#ifdef SEAICE_ITD |
289 |
_RL d_HEFFbySublim_ITD (1:sNx,1:sNy,1:nITD) |
290 |
_RL d_HSNWbySublim_ITD (1:sNx,1:sNy,1:nITD) |
291 |
_RL d_HEFFbyOCNonICE_ITD (1:sNx,1:sNy,1:nITD) |
292 |
_RL d_HSNWbyATMonSNW_ITD (1:sNx,1:sNy,1:nITD) |
293 |
_RL d_HEFFbyATMonOCN_ITD (1:sNx,1:sNy,1:nITD) |
294 |
_RL d_HEFFbyATMonOCN_cover_ITD (1:sNx,1:sNy,1:nITD) |
295 |
_RL d_HEFFbyATMonOCN_open_ITD (1:sNx,1:sNy,1:nITD) |
296 |
_RL d_HSNWbyRAIN_ITD (1:sNx,1:sNy,1:nITD) |
297 |
_RL d_HSNWbyOCNonSNW_ITD (1:sNx,1:sNy,1:nITD) |
298 |
_RL d_HEFFbyFLOODING_ITD (1:sNx,1:sNy,1:nITD) |
299 |
#endif |
300 |
|
301 |
#ifdef ALLOW_DIAGNOSTICS |
302 |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
303 |
_RL d_AREAbyATM (1:sNx,1:sNy) |
304 |
_RL d_AREAbyOCN (1:sNx,1:sNy) |
305 |
_RL d_AREAbyICE (1:sNx,1:sNy) |
306 |
C Helper variables for diagnostics |
307 |
_RL DIAGarrayA (1:sNx,1:sNy) |
308 |
_RL DIAGarrayB (1:sNx,1:sNy) |
309 |
_RL DIAGarrayC (1:sNx,1:sNy) |
310 |
_RL DIAGarrayD (1:sNx,1:sNy) |
311 |
#endif /* ALLOW_DIAGNOSTICS */ |
312 |
|
313 |
_RL SItflux (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
314 |
_RL SIatmQnt (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
315 |
_RL SIatmFW (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
316 |
#ifdef ALLOW_BALANCE_FLUXES |
317 |
_RL FWFsiTile(nSx,nSy) |
318 |
_RL FWFsiGlob |
319 |
_RL HFsiTile(nSx,nSy) |
320 |
_RL HFsiGlob |
321 |
_RL FWF2HFsiTile(nSx,nSy) |
322 |
_RL FWF2HFsiGlob |
323 |
#endif |
324 |
|
325 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
326 |
|
327 |
C =================================================================== |
328 |
C =================PART 0: constants and initializations============= |
329 |
C =================================================================== |
330 |
|
331 |
IF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN |
332 |
kSurface = Nr |
333 |
ELSE |
334 |
kSurface = 1 |
335 |
ENDIF |
336 |
|
337 |
C avoid unnecessary divisions in loops |
338 |
recip_multDim = SEAICE_multDim |
339 |
recip_multDim = ONE / recip_multDim |
340 |
C above/below: double/single precision calculation of recip_multDim |
341 |
c recip_multDim = 1./float(SEAICE_multDim) |
342 |
recip_deltaTtherm = ONE / SEAICE_deltaTtherm |
343 |
recip_rhoIce = ONE / SEAICE_rhoIce |
344 |
|
345 |
C Cutoff for iceload |
346 |
heffTooHeavy=drF(kSurface) / 5. _d 0 |
347 |
|
348 |
C RATIO OF SEA ICE DENSITY to SNOW DENSITY |
349 |
ICE2SNOW = SEAICE_rhoIce/SEAICE_rhoSnow |
350 |
SNOW2ICE = ONE / ICE2SNOW |
351 |
|
352 |
C HEAT OF FUSION OF ICE (J/m^3) |
353 |
QI = SEAICE_rhoIce*SEAICE_lhFusion |
354 |
recip_QI = ONE / QI |
355 |
C HEAT OF FUSION OF SNOW (J/m^3) |
356 |
QS = SEAICE_rhoSnow*SEAICE_lhFusion |
357 |
|
358 |
C ICE LATENT HEAT CONSTANT |
359 |
lhSublim = SEAICE_lhEvap + SEAICE_lhFusion |
360 |
|
361 |
C regularization constants |
362 |
area_reg_sq = SEAICE_area_reg * SEAICE_area_reg |
363 |
hice_reg_sq = SEAICE_hice_reg * SEAICE_hice_reg |
364 |
|
365 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
366 |
convertQ2HI=SEAICE_deltaTtherm/QI |
367 |
convertHI2Q = ONE/convertQ2HI |
368 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
369 |
convertPRECIP2HI=SEAICE_deltaTtherm*rhoConstFresh/SEAICE_rhoIce |
370 |
convertHI2PRECIP = ONE/convertPRECIP2HI |
371 |
#ifdef SEAICE_ITD |
372 |
C constants for lateral melt parameterization: |
373 |
C following Steele (1992), Equ. 2 |
374 |
floeAlpha = 0.66 _d 0 |
375 |
C typical mean diameter used in CICE 4.1: |
376 |
C (this is currently computed as a function of ice concentration |
377 |
C following a suggestion by Luepkes at al. (2012)) |
378 |
C floeDiameter = 300. _d 0 |
379 |
C parameters needed for variable floe diameter following Luepkes et al. (2012): |
380 |
floeDiameterMin = 8. _d 0 |
381 |
floeDiameterMax = 300. _d 0 |
382 |
#endif |
383 |
|
384 |
DO bj=myByLo(myThid),myByHi(myThid) |
385 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
386 |
|
387 |
#ifdef ALLOW_AUTODIFF_TAMC |
388 |
act1 = bi - myBxLo(myThid) |
389 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
390 |
act2 = bj - myByLo(myThid) |
391 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
392 |
act3 = myThid - 1 |
393 |
max3 = nTx*nTy |
394 |
act4 = ikey_dynamics - 1 |
395 |
iicekey = (act1 + 1) + act2*max1 |
396 |
& + act3*max1*max2 |
397 |
& + act4*max1*max2*max3 |
398 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
399 |
|
400 |
#ifdef SEAICE_GREASE |
401 |
C time scale of grease ice decline by solidification, |
402 |
C with 50% grease ice becoming solid pancake ice within 1 day: |
403 |
greaseDecayTime=1.44*86400. _d 0 |
404 |
C memorize 'grease' tracer location in tracer array: |
405 |
iTrGrease=-1 |
406 |
DO iTr = 1, SItrNumInUse |
407 |
if (SItrName(iTr).EQ.'grease') iTrGrease=iTr |
408 |
ENDDO |
409 |
#endif |
410 |
|
411 |
C array initializations |
412 |
C ===================== |
413 |
|
414 |
DO J=1,sNy |
415 |
DO I=1,sNx |
416 |
a_QbyATM_cover (I,J) = 0.0 _d 0 |
417 |
a_QbyATM_open(I,J) = 0.0 _d 0 |
418 |
r_QbyATM_cover (I,J) = 0.0 _d 0 |
419 |
r_QbyATM_open (I,J) = 0.0 _d 0 |
420 |
|
421 |
a_QSWbyATM_open (I,J) = 0.0 _d 0 |
422 |
a_QSWbyATM_cover (I,J) = 0.0 _d 0 |
423 |
|
424 |
a_QbyOCN (I,J) = 0.0 _d 0 |
425 |
r_QbyOCN (I,J) = 0.0 _d 0 |
426 |
|
427 |
#ifdef ALLOW_DIAGNOSTICS |
428 |
d_AREAbyATM(I,J) = 0.0 _d 0 |
429 |
d_AREAbyICE(I,J) = 0.0 _d 0 |
430 |
d_AREAbyOCN(I,J) = 0.0 _d 0 |
431 |
#endif |
432 |
|
433 |
#ifdef EXF_SEAICE_FRACTION |
434 |
d_AREAbyRLX(I,J) = 0.0 _d 0 |
435 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
436 |
#endif |
437 |
|
438 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
439 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
440 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
441 |
d_HEFFbyFLOODING(I,J) = 0.0 _d 0 |
442 |
|
443 |
d_HEFFbyATMonOCN_open(I,J) = 0.0 _d 0 |
444 |
d_HEFFbyATMonOCN_cover(I,J) = 0.0 _d 0 |
445 |
|
446 |
d_HSNWbyNEG(I,J) = 0.0 _d 0 |
447 |
d_HSNWbyATMonSNW(I,J) = 0.0 _d 0 |
448 |
d_HSNWbyOCNonSNW(I,J) = 0.0 _d 0 |
449 |
d_HSNWbyRAIN(I,J) = 0.0 _d 0 |
450 |
a_FWbySublim(I,J) = 0.0 _d 0 |
451 |
r_FWbySublim(I,J) = 0.0 _d 0 |
452 |
d_HEFFbySublim(I,J) = 0.0 _d 0 |
453 |
d_HSNWbySublim(I,J) = 0.0 _d 0 |
454 |
#ifdef SEAICE_CAP_SUBLIM |
455 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
456 |
#endif |
457 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
458 |
tmparr1(I,J) = 0.0 _d 0 |
459 |
#ifdef SEAICE_VARIABLE_SALINITY |
460 |
saltFluxAdjust(I,J) = 0.0 _d 0 |
461 |
#endif |
462 |
#ifdef SEAICE_GREASE |
463 |
greaseLayerThick(I,J) = 0.0 _d 0 |
464 |
d_AREAbyGREASE(I,J) = 0.0 _d 0 |
465 |
#endif |
466 |
DO IT=1,SEAICE_multDim |
467 |
ticeInMult(I,J,IT) = 0.0 _d 0 |
468 |
ticeOutMult(I,J,IT) = 0.0 _d 0 |
469 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
470 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
471 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
472 |
#ifdef SEAICE_CAP_SUBLIM |
473 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
474 |
#endif |
475 |
#ifdef SEAICE_ITD |
476 |
d_HEFFbySublim_ITD(I,J,IT) = 0.0 _d 0 |
477 |
d_HSNWbySublim_ITD(I,J,IT) = 0.0 _d 0 |
478 |
d_HEFFbyOCNonICE_ITD(I,J,IT) = 0.0 _d 0 |
479 |
d_HSNWbyATMonSNW_ITD(I,J,IT) = 0.0 _d 0 |
480 |
d_HEFFbyATMonOCN_ITD(I,J,IT) = 0.0 _d 0 |
481 |
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = 0.0 _d 0 |
482 |
d_HEFFbyATMonOCN_open_ITD(I,J,IT) = 0.0 _d 0 |
483 |
d_HSNWbyRAIN_ITD(I,J,IT) = 0.0 _d 0 |
484 |
d_HSNWbyOCNonSNW_ITD(I,J,IT) = 0.0 _d 0 |
485 |
d_HEFFbyFLOODING_ITD(I,J,IT) = 0.0 _d 0 |
486 |
r_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
487 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
488 |
C for lateral melt parameterization: |
489 |
latMeltFrac(I,J,IT) = 0.0 _d 0 |
490 |
latMeltRate(I,J,IT) = 0.0 _d 0 |
491 |
#endif |
492 |
ENDDO |
493 |
ENDDO |
494 |
ENDDO |
495 |
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
496 |
DO J=1-oLy,sNy+oLy |
497 |
DO I=1-oLx,sNx+oLx |
498 |
frWtrAtm(I,J,bi,bj) = 0.0 _d 0 |
499 |
ENDDO |
500 |
ENDDO |
501 |
#endif |
502 |
|
503 |
C ===================================================================== |
504 |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
505 |
C ===================================================================== |
506 |
|
507 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
508 |
Cgf no dependency through pathological cases treatment |
509 |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
510 |
#endif |
511 |
|
512 |
#ifdef EXF_SEAICE_FRACTION |
513 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
514 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
515 |
C 0) relax sea ice concentration towards observation |
516 |
IF ( SEAICE_tauAreaObsRelax .GT. zeroRL ) THEN |
517 |
DO J=1,sNy |
518 |
DO I=1,sNx |
519 |
C d_AREAbyRLX(i,j) = 0. _d 0 |
520 |
C d_HEFFbyRLX(i,j) = 0. _d 0 |
521 |
IF ( exf_iceFraction(I,J,bi,bj).GT.AREA(I,J,bi,bj) ) THEN |
522 |
d_AREAbyRLX(i,j) = |
523 |
& SEAICE_deltaTtherm/SEAICE_tauAreaObsRelax |
524 |
& * (exf_iceFraction(I,J,bi,bj) - AREA(I,J,bi,bj)) |
525 |
ENDIF |
526 |
IF ( exf_iceFraction(I,J,bi,bj).GT.zeroRS .AND. |
527 |
& AREA(I,J,bi,bj).EQ.0. _d 0) THEN |
528 |
C d_HEFFbyRLX(i,j) = 1. _d 1 * siEps * d_AREAbyRLX(i,j) |
529 |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
530 |
ENDIF |
531 |
#ifdef SEAICE_ITD |
532 |
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
533 |
& + d_AREAbyRLX(i,j) |
534 |
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
535 |
& + d_HEFFbyRLX(i,j) |
536 |
#endif |
537 |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj) + d_AREAbyRLX(i,j) |
538 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + d_HEFFbyRLX(i,j) |
539 |
ENDDO |
540 |
ENDDO |
541 |
ENDIF |
542 |
#endif /* EXF_SEAICE_FRACTION */ |
543 |
|
544 |
C 1) treat the case of negative values: |
545 |
|
546 |
#ifdef ALLOW_AUTODIFF_TAMC |
547 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
548 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
549 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
550 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
551 |
#ifdef SEAICE_ITD |
552 |
DO IT=1,nITD |
553 |
#endif |
554 |
DO J=1,sNy |
555 |
DO I=1,sNx |
556 |
#ifdef SEAICE_ITD |
557 |
tmpscal2=0. _d 0 |
558 |
tmpscal3=0. _d 0 |
559 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
560 |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
561 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
562 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
563 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
564 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
565 |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
566 |
C AREA, HEFF, and HSNOW will be updated at end of PART 1 |
567 |
C by calling SEAICE_ITD_SUM |
568 |
#else |
569 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
570 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
571 |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
572 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
573 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
574 |
#endif |
575 |
ENDDO |
576 |
ENDDO |
577 |
#ifdef SEAICE_ITD |
578 |
ENDDO |
579 |
#endif |
580 |
|
581 |
C 1.25) treat the case of very thin ice: |
582 |
|
583 |
#ifdef ALLOW_AUTODIFF_TAMC |
584 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
585 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
586 |
#ifdef SEAICE_ITD |
587 |
DO IT=1,nITD |
588 |
#endif |
589 |
DO J=1,sNy |
590 |
DO I=1,sNx |
591 |
tmpscal2=0. _d 0 |
592 |
tmpscal3=0. _d 0 |
593 |
#ifdef SEAICE_ITD |
594 |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
595 |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
596 |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
597 |
TICES(I,J,IT,bi,bj)=celsius2K |
598 |
C TICE will be updated at end of Part 1 together with AREA and HEFF |
599 |
ENDIF |
600 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
601 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
602 |
#else |
603 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
604 |
tmpscal2=-HEFF(I,J,bi,bj) |
605 |
tmpscal3=-HSNOW(I,J,bi,bj) |
606 |
TICE(I,J,bi,bj)=celsius2K |
607 |
DO IT=1,SEAICE_multDim |
608 |
TICES(I,J,IT,bi,bj)=celsius2K |
609 |
ENDDO |
610 |
ENDIF |
611 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+tmpscal2 |
612 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
613 |
#endif |
614 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
615 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
616 |
ENDDO |
617 |
ENDDO |
618 |
#ifdef SEAICE_ITD |
619 |
ENDDO |
620 |
#endif |
621 |
|
622 |
C 1.5) treat the case of area but no ice/snow: |
623 |
|
624 |
#ifdef ALLOW_AUTODIFF_TAMC |
625 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
626 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
627 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
628 |
#ifdef SEAICE_ITD |
629 |
DO IT=1,nITD |
630 |
#endif |
631 |
DO J=1,sNy |
632 |
DO I=1,sNx |
633 |
#ifdef SEAICE_ITD |
634 |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
635 |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
636 |
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
637 |
#else |
638 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
639 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
640 |
#endif |
641 |
ENDDO |
642 |
ENDDO |
643 |
#ifdef SEAICE_ITD |
644 |
ENDDO |
645 |
#endif |
646 |
|
647 |
C 2) treat the case of very small area: |
648 |
|
649 |
#ifndef DISABLE_AREA_FLOOR |
650 |
#ifdef ALLOW_AUTODIFF_TAMC |
651 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
652 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
653 |
#ifdef SEAICE_ITD |
654 |
DO IT=1,nITD |
655 |
#endif |
656 |
DO J=1,sNy |
657 |
DO I=1,sNx |
658 |
#ifdef SEAICE_ITD |
659 |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
660 |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
661 |
C SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
662 |
C hence use SEAICE_area_floor devided by nITD |
663 |
C (or install a warning in e.g. seaice_readparms.F) |
664 |
AREAITD(I,J,IT,bi,bj)= |
665 |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
666 |
ENDIF |
667 |
#else |
668 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
669 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
670 |
ENDIF |
671 |
#endif |
672 |
ENDDO |
673 |
ENDDO |
674 |
#ifdef SEAICE_ITD |
675 |
ENDDO |
676 |
#endif |
677 |
#endif /* DISABLE_AREA_FLOOR */ |
678 |
|
679 |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
680 |
|
681 |
C for SEAICE_ITD this case is treated in SEAICE_ITD_REDIST, |
682 |
C which is called at end of PART 1 below |
683 |
#ifndef SEAICE_ITD |
684 |
#ifdef ALLOW_AUTODIFF_TAMC |
685 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
686 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
687 |
DO J=1,sNy |
688 |
DO I=1,sNx |
689 |
#ifdef ALLOW_DIAGNOSTICS |
690 |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
691 |
#endif |
692 |
#ifdef ALLOW_SITRACER |
693 |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
694 |
#endif |
695 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
696 |
ENDDO |
697 |
ENDDO |
698 |
#endif /* notSEAICE_ITD */ |
699 |
|
700 |
#ifdef SEAICE_ITD |
701 |
C catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
702 |
DO IT=1,nITD |
703 |
DO J=1,sNy |
704 |
DO I=1,sNx |
705 |
C TICES was changed above (item 1.25), now update TICE as ice volume |
706 |
C weighted average of TICES |
707 |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
708 |
IF (IT .eq. 1) THEN |
709 |
tmpscal1itd(i,j) = 0. _d 0 |
710 |
tmpscal2itd(i,j) = 0. _d 0 |
711 |
tmpscal3itd(i,j) = 0. _d 0 |
712 |
ENDIF |
713 |
tmpscal1itd(i,j)=tmpscal1itd(i,j) + TICES(I,J,IT,bi,bj) |
714 |
& * HEFFITD(I,J,IT,bi,bj) |
715 |
tmpscal2itd(i,j)=tmpscal2itd(i,j) + HEFFITD(I,J,IT,bi,bj) |
716 |
tmpscal3itd(i,j)=tmpscal3itd(i,j) + AREAITD(I,J,IT,bi,bj) |
717 |
IF (IT .eq. nITD) THEN |
718 |
IF ( tmpscal2itd(i,j).GT.zeroRL ) THEN |
719 |
TICE(I,J,bi,bj)=tmpscal1itd(i,j)/tmpscal2itd(i,j) |
720 |
ELSE |
721 |
TICE(I,J,bi,bj)=celsius2K |
722 |
ENDIF |
723 |
C lines of item 2.5 that were omitted: |
724 |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
725 |
C hence we execute them here before SEAICE_ITD_REDIST is called |
726 |
C although this means that AREA has not been completely regularized |
727 |
#ifdef ALLOW_DIAGNOSTICS |
728 |
DIAGarrayA(I,J) = tmpscal3itd(i,j) |
729 |
#endif |
730 |
#ifdef ALLOW_SITRACER |
731 |
SItrAREA(I,J,bi,bj,1)=tmpscal3itd(i,j) |
732 |
#endif |
733 |
ENDIF |
734 |
ENDDO |
735 |
ENDDO |
736 |
ENDDO |
737 |
|
738 |
C finally make sure that all categories meet their thickness limits |
739 |
C which includes ridging as in item 2.5 |
740 |
C and update AREA, HEFF, and HSNOW |
741 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
742 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
743 |
#endif /* SEAICE_ITD */ |
744 |
|
745 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
746 |
C end SEAICEadjMODE.EQ.0 statement: |
747 |
ENDIF |
748 |
#endif |
749 |
|
750 |
C 3) store regularized values of heff, hsnow, area at the onset of thermo. |
751 |
DO J=1,sNy |
752 |
DO I=1,sNx |
753 |
HEFFpreTH(I,J)=HEFF(I,J,bi,bj) |
754 |
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
755 |
AREApreTH(I,J)=AREA(I,J,bi,bj) |
756 |
#ifdef ALLOW_DIAGNOSTICS |
757 |
DIAGarrayB(I,J) = AREA(I,J,bi,bj) |
758 |
DIAGarrayC(I,J) = HEFF(I,J,bi,bj) |
759 |
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
760 |
#endif |
761 |
#ifdef ALLOW_SITRACER |
762 |
SItrHEFF(I,J,bi,bj,1)=HEFF(I,J,bi,bj) |
763 |
SItrAREA(I,J,bi,bj,2)=AREA(I,J,bi,bj) |
764 |
#endif |
765 |
ENDDO |
766 |
ENDDO |
767 |
#ifdef SEAICE_ITD |
768 |
DO IT=1,nITD |
769 |
DO J=1,sNy |
770 |
DO I=1,sNx |
771 |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
772 |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
773 |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
774 |
|
775 |
C memorize areal and volume fraction of each ITD category |
776 |
IF (AREA(I,J,bi,bj) .GT. ZERO) THEN |
777 |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
778 |
ELSE |
779 |
C if there is no ice, potential growth starts in 1st category |
780 |
IF (IT .EQ. 1) THEN |
781 |
areaFracFactor(I,J,IT)=ONE |
782 |
ELSE |
783 |
areaFracFactor(I,J,IT)=ZERO |
784 |
ENDIF |
785 |
ENDIF |
786 |
ENDDO |
787 |
ENDDO |
788 |
ENDDO |
789 |
#ifdef ALLOW_SITRACER |
790 |
C prepare SItrHEFF to be computed as cumulative sum |
791 |
DO iTr=2,5 |
792 |
DO J=1,sNy |
793 |
DO I=1,sNx |
794 |
SItrHEFF(I,J,bi,bj,iTr)=ZERO |
795 |
ENDDO |
796 |
ENDDO |
797 |
ENDDO |
798 |
C prepare SItrAREA to be computed as cumulative sum |
799 |
DO J=1,sNy |
800 |
DO I=1,sNx |
801 |
SItrAREA(I,J,bi,bj,3)=ZERO |
802 |
ENDDO |
803 |
ENDDO |
804 |
#endif |
805 |
#endif /* SEAICE_ITD */ |
806 |
|
807 |
C 4) treat sea ice salinity pathological cases |
808 |
#ifdef SEAICE_VARIABLE_SALINITY |
809 |
#ifdef ALLOW_AUTODIFF_TAMC |
810 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
811 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
812 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
813 |
DO J=1,sNy |
814 |
DO I=1,sNx |
815 |
IF ( (HSALT(I,J,bi,bj) .LT. 0.0).OR. |
816 |
& (HEFF(I,J,bi,bj) .EQ. 0.0) ) THEN |
817 |
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
818 |
& HSALT(I,J,bi,bj) * recip_deltaTtherm |
819 |
HSALT(I,J,bi,bj) = 0.0 _d 0 |
820 |
ENDIF |
821 |
ENDDO |
822 |
ENDDO |
823 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
824 |
|
825 |
#ifdef ALLOW_DIAGNOSTICS |
826 |
IF ( useDiagnostics ) THEN |
827 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIareaPR',0,1,3,bi,bj,myThid) |
828 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIareaPT',0,1,3,bi,bj,myThid) |
829 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIheffPT',0,1,3,bi,bj,myThid) |
830 |
CALL DIAGNOSTICS_FILL(DIAGarrayD,'SIhsnoPT',0,1,3,bi,bj,myThid) |
831 |
#ifdef ALLOW_SITRACER |
832 |
DO iTr = 1, SItrNumInUse |
833 |
WRITE(diagName,'(A4,I2.2,A2)') 'SItr',iTr,'PT' |
834 |
IF (SItrMate(iTr).EQ.'HEFF') THEN |
835 |
CALL DIAGNOSTICS_FRACT_FILL( |
836 |
I SItracer(1-OLx,1-OLy,bi,bj,iTr),HEFF(1-OLx,1-OLy,bi,bj), |
837 |
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
838 |
ELSE |
839 |
CALL DIAGNOSTICS_FRACT_FILL( |
840 |
I SItracer(1-OLx,1-OLy,bi,bj,iTr),AREA(1-OLx,1-OLy,bi,bj), |
841 |
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
842 |
ENDIF |
843 |
ENDDO |
844 |
#endif /* ALLOW_SITRACER */ |
845 |
ENDIF |
846 |
#endif /* ALLOW_DIAGNOSTICS */ |
847 |
|
848 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
849 |
Cgf no additional dependency of air-sea fluxes to ice |
850 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
851 |
DO J=1,sNy |
852 |
DO I=1,sNx |
853 |
HEFFpreTH(I,J) = 0. _d 0 |
854 |
HSNWpreTH(I,J) = 0. _d 0 |
855 |
AREApreTH(I,J) = 0. _d 0 |
856 |
ENDDO |
857 |
ENDDO |
858 |
#ifdef SEAICE_ITD |
859 |
DO IT=1,nITD |
860 |
DO J=1,sNy |
861 |
DO I=1,sNx |
862 |
HEFFITDpreTH(I,J,IT) = 0. _d 0 |
863 |
HSNWITDpreTH(I,J,IT) = 0. _d 0 |
864 |
AREAITDpreTH(I,J,IT) = 0. _d 0 |
865 |
ENDDO |
866 |
ENDDO |
867 |
ENDDO |
868 |
#endif |
869 |
ENDIF |
870 |
#endif |
871 |
|
872 |
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
873 |
DO J=1,sNy |
874 |
DO I=1,sNx |
875 |
AREAforAtmFW(I,J,bi,bj) = AREApreTH(I,J) |
876 |
ENDDO |
877 |
ENDDO |
878 |
#endif |
879 |
|
880 |
C 4) COMPUTE ACTUAL ICE/SNOW THICKNESS; USE MIN/MAX VALUES |
881 |
C TO REGULARIZE SEAICE_SOLVE4TEMP/d_AREA COMPUTATIONS |
882 |
|
883 |
#ifdef ALLOW_AUTODIFF_TAMC |
884 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
885 |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
886 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
887 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
888 |
#ifdef SEAICE_ITD |
889 |
DO IT=1,nITD |
890 |
#endif |
891 |
DO J=1,sNy |
892 |
DO I=1,sNx |
893 |
|
894 |
#ifdef SEAICE_ITD |
895 |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
896 |
Cif regularize AREA with SEAICE_area_reg |
897 |
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
898 |
& + area_reg_sq) |
899 |
Cif heffActual calculated with the regularized AREA |
900 |
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
901 |
Cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
902 |
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
903 |
& + hice_reg_sq) |
904 |
Cif hsnowActual calculated with the regularized AREA |
905 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
906 |
Cif regularize the inverse of heffActual by hice_reg |
907 |
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
908 |
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
909 |
& + hice_reg_sq) |
910 |
Cif Do not regularize when HEFFpreTH = 0 |
911 |
ELSE |
912 |
heffActualMult(I,J,IT) = ZERO |
913 |
hsnowActualMult(I,J,IT) = ZERO |
914 |
recip_heffActualMult(I,J,IT) = ZERO |
915 |
ENDIF |
916 |
#else /* SEAICE_ITD */ |
917 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
918 |
Cif regularize AREA with SEAICE_area_reg |
919 |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
920 |
Cif heffActual calculated with the regularized AREA |
921 |
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
922 |
Cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
923 |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
924 |
Cif hsnowActual calculated with the regularized AREA |
925 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
926 |
Cif regularize the inverse of heffActual by hice_reg |
927 |
recip_heffActual(I,J) = AREApreTH(I,J) / |
928 |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
929 |
Cif Do not regularize when HEFFpreTH = 0 |
930 |
ELSE |
931 |
heffActual(I,J) = ZERO |
932 |
hsnowActual(I,J) = ZERO |
933 |
recip_heffActual(I,J) = ZERO |
934 |
ENDIF |
935 |
#endif /* SEAICE_ITD */ |
936 |
|
937 |
ENDDO |
938 |
ENDDO |
939 |
#ifdef SEAICE_ITD |
940 |
ENDDO |
941 |
#endif |
942 |
|
943 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
944 |
CALL ZERO_ADJ_1D( sNx*sNy, heffActual, myThid) |
945 |
CALL ZERO_ADJ_1D( sNx*sNy, hsnowActual, myThid) |
946 |
CALL ZERO_ADJ_1D( sNx*sNy, recip_heffActual, myThid) |
947 |
#endif |
948 |
|
949 |
#ifdef SEAICE_CAP_SUBLIM |
950 |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
951 |
C AND SNOW THICKNESS |
952 |
#ifdef SEAICE_ITD |
953 |
DO IT=1,nITD |
954 |
#endif |
955 |
DO J=1,sNy |
956 |
DO I=1,sNx |
957 |
C The latent heat flux over the sea ice which |
958 |
C will sublimate all of the snow and ice over one time |
959 |
C step (W/m^2) |
960 |
#ifdef SEAICE_ITD |
961 |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
962 |
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
963 |
& (HEFFITDpreTH(I,J,IT)*SEAICE_rhoIce + |
964 |
& HSNWITDpreTH(I,J,IT)*SEAICE_rhoSnow) |
965 |
& /AREAITDpreTH(I,J,IT) |
966 |
ELSE |
967 |
latentHeatFluxMaxMult(I,J,IT) = ZERO |
968 |
ENDIF |
969 |
#else |
970 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
971 |
latentHeatFluxMax(I,J) = lhSublim * recip_deltaTtherm * |
972 |
& (HEFFpreTH(I,J) * SEAICE_rhoIce + |
973 |
& HSNWpreTH(I,J) * SEAICE_rhoSnow)/AREApreTH(I,J) |
974 |
ELSE |
975 |
latentHeatFluxMax(I,J) = ZERO |
976 |
ENDIF |
977 |
#endif |
978 |
ENDDO |
979 |
ENDDO |
980 |
#ifdef SEAICE_ITD |
981 |
ENDDO |
982 |
#endif |
983 |
#endif /* SEAICE_CAP_SUBLIM */ |
984 |
|
985 |
C =================================================================== |
986 |
C ================PART 2: determine heat fluxes/stocks=============== |
987 |
C =================================================================== |
988 |
|
989 |
C determine available heat due to the atmosphere -- for open water |
990 |
C ================================================================ |
991 |
|
992 |
DO j=1,sNy |
993 |
DO i=1,sNx |
994 |
C ocean surface/mixed layer temperature |
995 |
TmixLoc(i,j) = theta(i,j,kSurface,bi,bj)+celsius2K |
996 |
C wind speed from exf |
997 |
UG(I,J) = MAX(SEAICE_EPS,wspeed(I,J,bi,bj)) |
998 |
ENDDO |
999 |
ENDDO |
1000 |
|
1001 |
#ifdef ALLOW_AUTODIFF_TAMC |
1002 |
CADJ STORE qnet(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
1003 |
CADJ STORE qsw(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
1004 |
cCADJ STORE UG = comlev1_bibj, key = iicekey,byte=isbyte |
1005 |
cCADJ STORE TmixLoc = comlev1_bibj, key = iicekey,byte=isbyte |
1006 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1007 |
|
1008 |
CALL SEAICE_BUDGET_OCEAN( |
1009 |
I UG, |
1010 |
I TmixLoc, |
1011 |
O a_QbyATM_open, a_QSWbyATM_open, |
1012 |
I bi, bj, myTime, myIter, myThid ) |
1013 |
|
1014 |
C determine available heat due to the atmosphere -- for ice covered water |
1015 |
C ======================================================================= |
1016 |
|
1017 |
IF (useRelativeWind.AND.useAtmWind) THEN |
1018 |
C Compute relative wind speed over sea ice. |
1019 |
DO J=1,sNy |
1020 |
DO I=1,sNx |
1021 |
SPEED_SQ = |
1022 |
& (uWind(I,J,bi,bj) |
1023 |
& +0.5 _d 0*(uVel(i,j,kSurface,bi,bj) |
1024 |
& +uVel(i+1,j,kSurface,bi,bj)) |
1025 |
& -0.5 _d 0*(uice(i,j,bi,bj)+uice(i+1,j,bi,bj)))**2 |
1026 |
& +(vWind(I,J,bi,bj) |
1027 |
& +0.5 _d 0*(vVel(i,j,kSurface,bi,bj) |
1028 |
& +vVel(i,j+1,kSurface,bi,bj)) |
1029 |
& -0.5 _d 0*(vice(i,j,bi,bj)+vice(i,j+1,bi,bj)))**2 |
1030 |
IF ( SPEED_SQ .LE. SEAICE_EPS_SQ ) THEN |
1031 |
UG(I,J)=SEAICE_EPS |
1032 |
ELSE |
1033 |
UG(I,J)=SQRT(SPEED_SQ) |
1034 |
ENDIF |
1035 |
ENDDO |
1036 |
ENDDO |
1037 |
ENDIF |
1038 |
|
1039 |
#ifdef ALLOW_AUTODIFF_TAMC |
1040 |
CADJ STORE tice(:,:,bi,bj) |
1041 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1042 |
CADJ STORE hsnowActual = comlev1_bibj, key = iicekey, byte = isbyte |
1043 |
CADJ STORE heffActual = comlev1_bibj, key = iicekey, byte = isbyte |
1044 |
CADJ STORE UG = comlev1_bibj, key = iicekey, byte = isbyte |
1045 |
CADJ STORE tices(:,:,:,bi,bj) |
1046 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1047 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1048 |
CADJ & key = iicekey, byte = isbyte |
1049 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1050 |
|
1051 |
C-- Start loop over multi-categories |
1052 |
#ifdef SEAICE_ITD |
1053 |
DO IT=1,nITD |
1054 |
DO J=1,sNy |
1055 |
DO I=1,sNx |
1056 |
C for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
1057 |
C (instead of heffActual and latentHeatFluxMax) |
1058 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1059 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1060 |
TICE(I,J,bi,bj) = ZERO |
1061 |
TICES(I,J,IT,bi,bj) = ZERO |
1062 |
ENDDO |
1063 |
ENDDO |
1064 |
ENDDO |
1065 |
#else |
1066 |
DO IT=1,SEAICE_multDim |
1067 |
C homogeneous distribution between 0 and 2 x heffActual |
1068 |
pFac = (2.0 _d 0*IT - 1.0 _d 0)*recip_multDim |
1069 |
pFacSnow = 1. _d 0 |
1070 |
IF ( SEAICE_useMultDimSnow ) pFacSnow=pFac |
1071 |
DO J=1,sNy |
1072 |
DO I=1,sNx |
1073 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
1074 |
hsnowActualMult(I,J,IT)=hsnowActual(I,J)*pFacSnow |
1075 |
#ifdef SEAICE_CAP_SUBLIM |
1076 |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
1077 |
#endif |
1078 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1079 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1080 |
TICE(I,J,bi,bj) = ZERO |
1081 |
TICES(I,J,IT,bi,bj) = ZERO |
1082 |
ENDDO |
1083 |
ENDDO |
1084 |
ENDDO |
1085 |
#endif |
1086 |
|
1087 |
#ifdef ALLOW_AUTODIFF_TAMC |
1088 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1089 |
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1090 |
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
1091 |
# ifdef SEAICE_CAP_SUBLIM |
1092 |
CADJ STORE latentHeatFluxMaxMult |
1093 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1094 |
# endif |
1095 |
CADJ STORE a_QbyATMmult_cover = |
1096 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1097 |
CADJ STORE a_QSWbyATMmult_cover = |
1098 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1099 |
CADJ STORE a_FWbySublimMult = |
1100 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1101 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1102 |
|
1103 |
DO IT=1,SEAICE_multDim |
1104 |
CALL SEAICE_SOLVE4TEMP( |
1105 |
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
1106 |
#ifdef SEAICE_CAP_SUBLIM |
1107 |
I latentHeatFluxMaxMult(1,1,IT), |
1108 |
#endif |
1109 |
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
1110 |
O a_QbyATMmult_cover(1,1,IT), |
1111 |
O a_QSWbyATMmult_cover(1,1,IT), |
1112 |
O a_FWbySublimMult(1,1,IT), |
1113 |
I bi, bj, myTime, myIter, myThid ) |
1114 |
ENDDO |
1115 |
|
1116 |
#ifdef ALLOW_AUTODIFF_TAMC |
1117 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1118 |
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1119 |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
1120 |
# ifdef SEAICE_CAP_SUBLIM |
1121 |
CADJ STORE latentHeatFluxMaxMult |
1122 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1123 |
# endif |
1124 |
CADJ STORE a_QbyATMmult_cover = |
1125 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1126 |
CADJ STORE a_QSWbyATMmult_cover = |
1127 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1128 |
CADJ STORE a_FWbySublimMult = |
1129 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1130 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1131 |
|
1132 |
DO IT=1,SEAICE_multDim |
1133 |
DO J=1,sNy |
1134 |
DO I=1,sNx |
1135 |
C update TICE & TICES |
1136 |
#ifdef SEAICE_ITD |
1137 |
C calculate area weighted mean |
1138 |
C (although the ice temperature relates to its energy content |
1139 |
C and hence should be averaged weighted by ice volume, |
1140 |
C the temperature here is a result of the fluxes through the ice surface |
1141 |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1142 |
C and hence is averaged area weighted [areaFracFactor]) |
1143 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1144 |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
1145 |
#else |
1146 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1147 |
& + ticeOutMult(I,J,IT)*recip_multDim |
1148 |
#endif |
1149 |
TICES(I,J,IT,bi,bj) = ticeOutMult(I,J,IT) |
1150 |
C average over categories |
1151 |
#ifdef SEAICE_ITD |
1152 |
C calculate area weighted mean |
1153 |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
1154 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1155 |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1156 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1157 |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1158 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1159 |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,IT) |
1160 |
#else |
1161 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1162 |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1163 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1164 |
& + a_QSWbyATMmult_cover(I,J,IT)*recip_multDim |
1165 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1166 |
& + a_FWbySublimMult(I,J,IT)*recip_multDim |
1167 |
#endif |
1168 |
ENDDO |
1169 |
ENDDO |
1170 |
ENDDO |
1171 |
|
1172 |
#ifdef SEAICE_CAP_SUBLIM |
1173 |
# ifdef ALLOW_DIAGNOSTICS |
1174 |
DO J=1,sNy |
1175 |
DO I=1,sNx |
1176 |
C The actual latent heat flux realized by SOLVE4TEMP |
1177 |
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
1178 |
ENDDO |
1179 |
ENDDO |
1180 |
Cif The actual vs. maximum latent heat flux |
1181 |
IF ( useDiagnostics ) THEN |
1182 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
1183 |
& 'SIactLHF',0,1,3,bi,bj,myThid) |
1184 |
CALL DIAGNOSTICS_FILL(latentHeatFluxMax, |
1185 |
& 'SImaxLHF',0,1,3,bi,bj,myThid) |
1186 |
ENDIF |
1187 |
# endif /* ALLOW_DIAGNOSTICS */ |
1188 |
#endif /* SEAICE_CAP_SUBLIM */ |
1189 |
|
1190 |
#ifdef ALLOW_AUTODIFF_TAMC |
1191 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1192 |
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1193 |
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
1194 |
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1195 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1196 |
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1197 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1198 |
|
1199 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
1200 |
#ifdef SEAICE_ITD |
1201 |
DO IT=1,nITD |
1202 |
DO J=1,sNy |
1203 |
DO I=1,sNx |
1204 |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1205 |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1206 |
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
1207 |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1208 |
C and initialize r_QbyATMmult_cover |
1209 |
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
1210 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1211 |
C Negative sublimation is resublimation and will be added as snow. |
1212 |
#ifdef SEAICE_DISABLE_SUBLIM |
1213 |
a_FWbySublimMult(I,J,IT) = ZERO |
1214 |
#endif |
1215 |
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
1216 |
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
1217 |
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
1218 |
ENDDO |
1219 |
ENDDO |
1220 |
ENDDO |
1221 |
DO J=1,sNy |
1222 |
DO I=1,sNx |
1223 |
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1224 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1225 |
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1226 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1227 |
C and initialize r_QbyATM_open |
1228 |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1229 |
ENDDO |
1230 |
ENDDO |
1231 |
#else /* SEAICE_ITD */ |
1232 |
DO J=1,sNy |
1233 |
DO I=1,sNx |
1234 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J) |
1235 |
& * convertQ2HI * AREApreTH(I,J) |
1236 |
a_QSWbyATM_cover(I,J) = a_QSWbyATM_cover(I,J) |
1237 |
& * convertQ2HI * AREApreTH(I,J) |
1238 |
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1239 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1240 |
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1241 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1242 |
C and initialize r_QbyATM_cover/r_QbyATM_open |
1243 |
r_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
1244 |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1245 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1246 |
C Negative sublimation is resublimation and will be added as snow. |
1247 |
#ifdef SEAICE_DISABLE_SUBLIM |
1248 |
Cgf just for those who may need to omit this term to reproduce old results |
1249 |
a_FWbySublim(I,J) = ZERO |
1250 |
#endif /* SEAICE_DISABLE_SUBLIM */ |
1251 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
1252 |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
1253 |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
1254 |
ENDDO |
1255 |
ENDDO |
1256 |
#endif /* SEAICE_ITD */ |
1257 |
|
1258 |
#ifdef ALLOW_AUTODIFF_TAMC |
1259 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1260 |
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1261 |
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
1262 |
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1263 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1264 |
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1265 |
CADJ STORE r_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1266 |
CADJ STORE r_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1267 |
CADJ STORE r_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1268 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1269 |
|
1270 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1271 |
Cgf no additional dependency through ice cover |
1272 |
IF ( SEAICEadjMODE.GE.3 ) THEN |
1273 |
#ifdef SEAICE_ITD |
1274 |
DO IT=1,nITD |
1275 |
DO J=1,sNy |
1276 |
DO I=1,sNx |
1277 |
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1278 |
r_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1279 |
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
1280 |
ENDDO |
1281 |
ENDDO |
1282 |
ENDDO |
1283 |
#else |
1284 |
DO J=1,sNy |
1285 |
DO I=1,sNx |
1286 |
a_QbyATM_cover(I,J) = 0. _d 0 |
1287 |
r_QbyATM_cover(I,J) = 0. _d 0 |
1288 |
a_QSWbyATM_cover(I,J) = 0. _d 0 |
1289 |
ENDDO |
1290 |
ENDDO |
1291 |
#endif |
1292 |
ENDIF |
1293 |
#endif |
1294 |
|
1295 |
C determine available heat due to the ice pack tying the |
1296 |
C underlying surface water temperature to freezing point |
1297 |
C ====================================================== |
1298 |
|
1299 |
#ifdef ALLOW_AUTODIFF_TAMC |
1300 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
1301 |
CADJ & key = iicekey, byte = isbyte |
1302 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1303 |
CADJ & key = iicekey, byte = isbyte |
1304 |
#endif |
1305 |
|
1306 |
DO J=1,sNy |
1307 |
DO I=1,sNx |
1308 |
C FREEZING TEMP. OF SEA WATER (deg C) |
1309 |
tempFrz = SEAICE_tempFrz0 + |
1310 |
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
1311 |
C efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
1312 |
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
1313 |
tmpscal1 = SEAICE_mcPheePiston |
1314 |
ELSE |
1315 |
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
1316 |
ENDIF |
1317 |
C efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
1318 |
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1319 |
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
1320 |
MixedLayerTurbulenceFactor = ONE - |
1321 |
& SEAICE_mcPheeTaper * AREApreTH(I,J) |
1322 |
ELSEIF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1323 |
& (SEAICE_mcPheeStepFunc) ) THEN |
1324 |
MixedLayerTurbulenceFactor = ONE - SEAICE_mcPheeTaper |
1325 |
ELSE |
1326 |
MixedLayerTurbulenceFactor = ONE |
1327 |
ENDIF |
1328 |
C maximum turbulent flux, in ice meters |
1329 |
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
1330 |
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
1331 |
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
1332 |
C available turbulent flux |
1333 |
a_QbyOCN(i,j) = |
1334 |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
1335 |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
1336 |
ENDDO |
1337 |
ENDDO |
1338 |
|
1339 |
#ifdef SEAICE_ITD |
1340 |
C determine lateral melt rate at floe edges based on an |
1341 |
C average floe diameter or a floe size distribution |
1342 |
C following Steele (1992, Tab. 2) |
1343 |
C ====================================================== |
1344 |
DO J=1,sNy |
1345 |
DO I=1,sNx |
1346 |
tmpscal1=(theta(I,J,kSurface,bi,bj)-tempFrz) |
1347 |
tmpscal2=sqrt(0.87 + 0.067*UG(i,j)) * UG(i,j) |
1348 |
|
1349 |
C variable floe diameter following Luepkes et al. (2012, JGR, Equ. 26) with beta=1 |
1350 |
tmpscal3=ONE/(ONE-(floeDiameterMin/floeDiameterMax)) |
1351 |
floeDiameter = floeDiameterMin |
1352 |
& * (tmpscal3 / (tmpscal3-AREApreTH(I,J))) |
1353 |
DO IT=1,nITD |
1354 |
C following the idea of SEAICE_areaLossFormula == 1: |
1355 |
IF (a_QbyATMmult_cover(i,j,it).LT.ZERO .OR. |
1356 |
& a_QbyATM_open(i,j) .LT.ZERO .OR. |
1357 |
& a_QbyOCN(i,j) .LT.ZERO) THEN |
1358 |
C lateral melt rate as suggested by Perovich, 1983 (PhD thesis) |
1359 |
latMeltRate(i,j,it) = 1.6 _d -6 * tmpscal1**1.36 |
1360 |
C lateral melt rate as suggested by Maykut and Perovich, 1987 (JGR 92(C7)), Equ. 24 |
1361 |
c latMeltRate(i,j,it) = 13.5 _d -6 * tmpscal2 * tmpscal1**1.3 |
1362 |
C further suggestion by Maykut and Perovich to avoid latMeltRate -> 0 for UG -> 0 |
1363 |
c latMeltRate(i,j,it) = (1.6 _d -6 + 13.5 _d -6 * tmpscal2) |
1364 |
c & * tmpscal1**1.3 |
1365 |
C factor determining fraction of area and ice volume reduction |
1366 |
C due to lateral melt |
1367 |
latMeltFrac(i,j,it) = |
1368 |
& latMeltRate(i,j,it)*SEAICE_deltaTtherm*PI / |
1369 |
& (floeAlpha * floeDiameter) |
1370 |
latMeltFrac(i,j,it)=max(ZERO, min(latMeltFrac(i,j,it),ONE)) |
1371 |
ELSE |
1372 |
latMeltRate(i,j,it)=0.0 _d 0 |
1373 |
latMeltFrac(i,j,it)=0.0 _d 0 |
1374 |
ENDIF |
1375 |
ENDDO |
1376 |
ENDDO |
1377 |
ENDDO |
1378 |
#endif |
1379 |
|
1380 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1381 |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
1382 |
#endif |
1383 |
|
1384 |
C =================================================================== |
1385 |
C =========PART 3: determine effective thicknesses increments======== |
1386 |
C =================================================================== |
1387 |
|
1388 |
#ifdef SEAICE_GREASE |
1389 |
C convert SItracer 'grease' from ratio to grease ice volume: |
1390 |
C ========================================================== |
1391 |
DO J=1,sNy |
1392 |
DO I=1,sNx |
1393 |
SItracer(I,J,bi,bj,iTrGrease) = |
1394 |
& SItracer(I,J,bi,bj,iTrGrease) * HEFF(I,J,bi,bj) |
1395 |
ENDDO |
1396 |
ENDDO |
1397 |
C compute actual grease ice layer thickness |
1398 |
C as a function of wind stress |
1399 |
C ========================================= |
1400 |
DO J=1,sNy |
1401 |
DO I=1,sNx |
1402 |
C wind stress: |
1403 |
tmpscal1 = SQRT(uWind(I,J,bi,bj)**2 + vWind(I,J,bi,bj)**2) |
1404 |
tmpscal1 = SQRT( 1.4 _d 0 * 1.3 _d -3 / 100. _d 0) |
1405 |
& * tmpscal1 |
1406 |
C water stress: |
1407 |
tmpscal2 = SQRT( |
1408 |
& + (0.5 _d 0*(uVel(i ,j,kSurface,bi,bj) |
1409 |
& +uVel(i+1,j,kSurface,bi,bj)))**2 |
1410 |
& + (0.5 _d 0*(vVel(i,j ,kSurface,bi,bj) |
1411 |
& +vVel(i,j+1,kSurface,bi,bj)))**2) |
1412 |
tmpscal2 = SQRT(1027.0 _d 0 * 6.0 _d -3 / 100. _d 0) |
1413 |
& * tmpscal2 |
1414 |
C lead width = mean grid cell width between tracer points |
1415 |
C * open water fraction |
1416 |
tmpscal3 = 0.5 _d 0 * (dxC(I,J,bi,bj)+dyC(I,J,bi,bj)) |
1417 |
& * (1. _d 0 - AREApreTH(I,J)) |
1418 |
C |
1419 |
greaseLayerThick(I,J) = TWOTHIRDS |
1420 |
& * ( SItracer(I,J,bi,bj,iTrGrease) |
1421 |
C grease ice consists of 1 part frazil ice and 3 parts sea water: |
1422 |
C rho_g = 0.25 * rho_i + 0.75 rho_w |
1423 |
& * 4.4 _d 0 |
1424 |
& * tmpscal3 )**THIRD |
1425 |
& * (tmpscal1 + tmpscal2)**TWOTHIRDS |
1426 |
C assure a minimum thickness of 1 cm: |
1427 |
greaseLayerThick(I,J)=max(1. _d -2, greaseLayerThick(I,J)) |
1428 |
C ... and a maximum thickness of 3 m: |
1429 |
greaseLayerThick(I,J)=min(3. _d 0 , greaseLayerThick(I,J)) |
1430 |
ENDDO |
1431 |
ENDDO |
1432 |
#endif |
1433 |
|
1434 |
C compute snow/ice tendency due to sublimation |
1435 |
C ============================================ |
1436 |
|
1437 |
#ifdef ALLOW_AUTODIFF_TAMC |
1438 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1439 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1440 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1441 |
#ifdef SEAICE_ITD |
1442 |
DO IT=1,nITD |
1443 |
#endif |
1444 |
DO J=1,sNy |
1445 |
DO I=1,sNx |
1446 |
C First sublimate/deposite snow |
1447 |
tmpscal2 = |
1448 |
#ifdef SEAICE_ITD |
1449 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1450 |
& *SNOW2ICE),ZERO) |
1451 |
d_HSNWbySublim_ITD(I,J,IT) = - tmpscal2 * ICE2SNOW |
1452 |
C accumulate change over ITD categories |
1453 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1454 |
& *ICE2SNOW |
1455 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
1456 |
#else |
1457 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1458 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1459 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) - tmpscal2*ICE2SNOW |
1460 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1461 |
#endif |
1462 |
ENDDO |
1463 |
ENDDO |
1464 |
#ifdef ALLOW_AUTODIFF_TAMC |
1465 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1466 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1467 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1468 |
DO J=1,sNy |
1469 |
DO I=1,sNx |
1470 |
C If anything is left, sublimate ice |
1471 |
tmpscal2 = |
1472 |
#ifdef SEAICE_ITD |
1473 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1474 |
d_HEFFbySublim_ITD(I,J,IT) = - tmpscal2 |
1475 |
C accumulate change over ITD categories |
1476 |
d_HEFFbySublim(I,J) = d_HEFFbySublim(I,J) - tmpscal2 |
1477 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
1478 |
#else |
1479 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1480 |
d_HEFFbySublim(I,J) = - tmpscal2 |
1481 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) - tmpscal2 |
1482 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1483 |
#endif |
1484 |
ENDDO |
1485 |
ENDDO |
1486 |
DO J=1,sNy |
1487 |
DO I=1,sNx |
1488 |
C If anything is left, it will be evaporated from the ocean rather than sublimated. |
1489 |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1490 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1491 |
#ifdef SEAICE_ITD |
1492 |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1493 |
& - r_FWbySublimMult(I,J,IT) |
1494 |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1495 |
& - r_FWbySublimMult(I,J,IT) |
1496 |
#else |
1497 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1498 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1499 |
#endif |
1500 |
ENDDO |
1501 |
ENDDO |
1502 |
#ifdef SEAICE_ITD |
1503 |
C end IT loop |
1504 |
ENDDO |
1505 |
#endif |
1506 |
|
1507 |
C compute ice thickness tendency due to ice-ocean interaction |
1508 |
C =========================================================== |
1509 |
|
1510 |
#ifdef ALLOW_AUTODIFF_TAMC |
1511 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1512 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1513 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1514 |
|
1515 |
IF (.NOT.SEAICE_growMeltByConv) THEN |
1516 |
|
1517 |
#ifdef SEAICE_ITD |
1518 |
DO IT=1,nITD |
1519 |
DO J=1,sNy |
1520 |
DO I=1,sNx |
1521 |
C ice growth/melt due to ocean heat r_QbyOCN (W/m^2) is |
1522 |
C equally distributed under the ice and hence weighted by |
1523 |
C fractional area of each thickness category |
1524 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1525 |
& -HEFFITD(I,J,IT,bi,bj)) |
1526 |
d_HEFFbyOCNonICE_ITD(I,J,IT)=tmpscal1 |
1527 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1528 |
ENDDO |
1529 |
ENDDO |
1530 |
ENDDO |
1531 |
#ifdef ALLOW_SITRACER |
1532 |
DO J=1,sNy |
1533 |
DO I=1,sNx |
1534 |
SItrHEFF(I,J,bi,bj,2) = HEFFpreTH(I,J) |
1535 |
& + d_HEFFbySublim(I,J) |
1536 |
& + d_HEFFbyOCNonICE(I,J) |
1537 |
ENDDO |
1538 |
ENDDO |
1539 |
#endif |
1540 |
DO J=1,sNy |
1541 |
DO I=1,sNx |
1542 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1543 |
ENDDO |
1544 |
ENDDO |
1545 |
#else /* SEAICE_ITD */ |
1546 |
DO J=1,sNy |
1547 |
DO I=1,sNx |
1548 |
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
1549 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1550 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj) + d_HEFFbyOCNonICE(I,J) |
1551 |
#ifdef ALLOW_SITRACER |
1552 |
SItrHEFF(I,J,bi,bj,2)=HEFF(I,J,bi,bj) |
1553 |
#endif |
1554 |
ENDDO |
1555 |
ENDDO |
1556 |
#endif /* SEAICE_ITD */ |
1557 |
|
1558 |
ENDIF !SEAICE_growMeltByConv |
1559 |
|
1560 |
C compute snow melt tendency due to snow-atmosphere interaction |
1561 |
C ================================================================== |
1562 |
|
1563 |
#ifdef ALLOW_AUTODIFF_TAMC |
1564 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1565 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1566 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1567 |
|
1568 |
#ifdef SEAICE_ITD |
1569 |
DO IT=1,nITD |
1570 |
DO J=1,sNy |
1571 |
DO I=1,sNx |
1572 |
C Convert to standard units (meters of ice) rather than to meters |
1573 |
C of snow. This appears to be more robust. |
1574 |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,IT), |
1575 |
& -HSNOWITD(I,J,IT,bi,bj)*SNOW2ICE) |
1576 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1577 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1578 |
Cgf no additional dependency through snow |
1579 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1580 |
#endif |
1581 |
d_HSNWbyATMonSNW_ITD(I,J,IT) = tmpscal2*ICE2SNOW |
1582 |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1583 |
& + tmpscal2*ICE2SNOW |
1584 |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1585 |
& - tmpscal2 |
1586 |
ENDDO |
1587 |
ENDDO |
1588 |
ENDDO |
1589 |
#else /* SEAICE_ITD */ |
1590 |
DO J=1,sNy |
1591 |
DO I=1,sNx |
1592 |
C Convert to standard units (meters of ice) rather than to meters |
1593 |
C of snow. This appears to be more robust. |
1594 |
tmpscal1=MAX(r_QbyATM_cover(I,J),-HSNOW(I,J,bi,bj)*SNOW2ICE) |
1595 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1596 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1597 |
Cgf no additional dependency through snow |
1598 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1599 |
#endif |
1600 |
d_HSNWbyATMonSNW(I,J)= tmpscal2*ICE2SNOW |
1601 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + tmpscal2*ICE2SNOW |
1602 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1603 |
ENDDO |
1604 |
ENDDO |
1605 |
#endif /* SEAICE_ITD */ |
1606 |
|
1607 |
C compute ice thickness tendency due to the atmosphere |
1608 |
C ==================================================== |
1609 |
|
1610 |
#ifdef ALLOW_AUTODIFF_TAMC |
1611 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1612 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1613 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1614 |
|
1615 |
Cgf note: this block is not actually tested by lab_sea |
1616 |
Cgf where all experiments start in January. So even though |
1617 |
Cgf the v1.81=>v1.82 revision would change results in |
1618 |
Cgf warming conditions, the lab_sea results were not changed. |
1619 |
|
1620 |
#ifdef SEAICE_ITD |
1621 |
DO IT=1,nITD |
1622 |
DO J=1,sNy |
1623 |
DO I=1,sNx |
1624 |
tmpscal1 = HEFFITDpreTH(I,J,IT) |
1625 |
& + d_HEFFbySublim_ITD(I,J,IT) |
1626 |
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1627 |
tmpscal2 = MAX(-tmpscal1, |
1628 |
& r_QbyATMmult_cover(I,J,IT) |
1629 |
C Limit ice growth by potential melt by ocean |
1630 |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1631 |
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = tmpscal2 |
1632 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1633 |
& + tmpscal2 |
1634 |
d_HEFFbyATMonOCN_ITD(I,J,IT) = d_HEFFbyATMonOCN_ITD(I,J,IT) |
1635 |
& + tmpscal2 |
1636 |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1637 |
& + tmpscal2 |
1638 |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1639 |
& - tmpscal2 |
1640 |
ENDDO |
1641 |
ENDDO |
1642 |
ENDDO |
1643 |
#ifdef ALLOW_SITRACER |
1644 |
DO J=1,sNy |
1645 |
DO I=1,sNx |
1646 |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,2) |
1647 |
& + d_HEFFbyATMonOCN_cover(I,J) |
1648 |
ENDDO |
1649 |
ENDDO |
1650 |
#endif |
1651 |
#else /* SEAICE_ITD */ |
1652 |
DO J=1,sNy |
1653 |
DO I=1,sNx |
1654 |
|
1655 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
1656 |
C Limit ice growth by potential melt by ocean |
1657 |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
1658 |
|
1659 |
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
1660 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
1661 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J)-tmpscal2 |
1662 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal2 |
1663 |
|
1664 |
#ifdef ALLOW_SITRACER |
1665 |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
1666 |
#endif |
1667 |
ENDDO |
1668 |
ENDDO |
1669 |
#endif /* SEAICE_ITD */ |
1670 |
|
1671 |
C add snow precipitation to HSNOW. |
1672 |
C ================================================= |
1673 |
#ifdef ALLOW_AUTODIFF_TAMC |
1674 |
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1675 |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1676 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1677 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1678 |
IF ( snowPrecipFile .NE. ' ' ) THEN |
1679 |
C add snowPrecip to HSNOW |
1680 |
DO J=1,sNy |
1681 |
DO I=1,sNx |
1682 |
d_HSNWbyRAIN(I,J) = convertPRECIP2HI * ICE2SNOW * |
1683 |
& snowPrecip(i,j,bi,bj) * AREApreTH(I,J) |
1684 |
d_HFRWbyRAIN(I,J) = -convertPRECIP2HI * |
1685 |
& ( PRECIP(I,J,bi,bj) - snowPrecip(I,J,bi,bj) ) * |
1686 |
& AREApreTH(I,J) |
1687 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1688 |
ENDDO |
1689 |
ENDDO |
1690 |
ELSE |
1691 |
C attribute precip to fresh water or snow stock, |
1692 |
C depending on atmospheric conditions. |
1693 |
DO J=1,sNy |
1694 |
DO I=1,sNx |
1695 |
C possible alternatives to the a_QbyATM_cover criterium |
1696 |
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
1697 |
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
1698 |
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
1699 |
C add precip as snow |
1700 |
d_HFRWbyRAIN(I,J)=0. _d 0 |
1701 |
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
1702 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1703 |
ELSE |
1704 |
C add precip to the fresh water bucket |
1705 |
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
1706 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1707 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
1708 |
ENDIF |
1709 |
ENDDO |
1710 |
ENDDO |
1711 |
#ifdef SEAICE_ITD |
1712 |
DO IT=1,nITD |
1713 |
DO J=1,sNy |
1714 |
DO I=1,sNx |
1715 |
d_HSNWbyRAIN_ITD(I,J,IT) |
1716 |
& = d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1717 |
ENDDO |
1718 |
ENDDO |
1719 |
ENDDO |
1720 |
#else |
1721 |
DO J=1,sNy |
1722 |
DO I=1,sNx |
1723 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1724 |
ENDDO |
1725 |
ENDDO |
1726 |
#endif |
1727 |
Cgf note: this does not affect air-sea heat flux, |
1728 |
Cgf since the implied air heat gain to turn |
1729 |
Cgf rain to snow is not a surface process. |
1730 |
C end of IF statement snowPrecipFile: |
1731 |
ENDIF |
1732 |
|
1733 |
C compute snow melt due to heat available from ocean. |
1734 |
C ================================================================= |
1735 |
|
1736 |
Cgf do we need to keep this comment and cpp bracket? |
1737 |
Cph( very sensitive bit here by JZ |
1738 |
#ifndef SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING |
1739 |
#ifdef ALLOW_AUTODIFF_TAMC |
1740 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1741 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1742 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1743 |
|
1744 |
IF (.NOT.SEAICE_growMeltByConv) THEN |
1745 |
|
1746 |
#ifdef SEAICE_ITD |
1747 |
DO IT=1,nITD |
1748 |
DO J=1,sNy |
1749 |
DO I=1,sNx |
1750 |
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1751 |
& + d_HSNWbySublim_ITD(I,J,IT) |
1752 |
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1753 |
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1754 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1755 |
& -tmpscal4) |
1756 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1757 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1758 |
Cgf no additional dependency through snow |
1759 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1760 |
#endif |
1761 |
d_HSNWbyOCNonSNW_ITD(I,J,IT) = tmpscal2 |
1762 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1763 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
1764 |
ENDDO |
1765 |
ENDDO |
1766 |
ENDDO |
1767 |
#else /* SEAICE_ITD */ |
1768 |
DO J=1,sNy |
1769 |
DO I=1,sNx |
1770 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
1771 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1772 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1773 |
Cgf no additional dependency through snow |
1774 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1775 |
#endif |
1776 |
d_HSNWbyOCNonSNW(I,J) = tmpscal2 |
1777 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) |
1778 |
& -d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
1779 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
1780 |
ENDDO |
1781 |
ENDDO |
1782 |
#endif /* SEAICE_ITD */ |
1783 |
|
1784 |
ENDIF !SEAICE_growMeltByConv |
1785 |
|
1786 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1787 |
Cph) |
1788 |
|
1789 |
C gain of new ice over open water |
1790 |
C =============================== |
1791 |
#ifdef ALLOW_AUTODIFF_TAMC |
1792 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1793 |
CADJ STORE r_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1794 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1795 |
CADJ STORE a_QSWbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1796 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1797 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1798 |
|
1799 |
DO J=1,sNy |
1800 |
DO I=1,sNx |
1801 |
#ifdef SEAICE_ITD |
1802 |
C HEFF will be updated at the end of PART 3, |
1803 |
C hence sum of tendencies so far is needed |
1804 |
tmpscal4 = HEFFpreTH(I,J) |
1805 |
& + d_HEFFbySublim(I,J) |
1806 |
& + d_HEFFbyOCNonICE(I,J) |
1807 |
& + d_HEFFbyATMonOCN(I,J) |
1808 |
#else |
1809 |
C HEFF is updated step by step throughout seaice_growth |
1810 |
tmpscal4 = HEFF(I,J,bi,bj) |
1811 |
#endif |
1812 |
C Initial ice growth is triggered by open water |
1813 |
C heat flux overcoming potential melt by ocean |
1814 |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
1815 |
& (1.0 _d 0 - AREApreTH(I,J)) |
1816 |
C Penetrative shortwave flux beyond first layer |
1817 |
C that is therefore not available to ice growth/melt |
1818 |
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
1819 |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
1820 |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1821 |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
1822 |
& -tmpscal4*facOpenMelt)*HEFFM(I,J,bi,bj) |
1823 |
#ifdef SEAICE_GREASE |
1824 |
C Grease ice is a tracer or "bucket" for newly formed frazil ice |
1825 |
C that instead of becoming solid sea ice instantly has a half-time |
1826 |
C of 1 day (see greaseDecayTime) before solidifying. |
1827 |
C The most important effect is that for fluxes the grease ice area/volume |
1828 |
C acts like open water. |
1829 |
C |
1830 |
C memorize freezing/melting condition: |
1831 |
greaseNewFrazil = max(0.0 _d 0, tmpscal3) |
1832 |
C |
1833 |
C 1) mechanical removal of grease by ridging: |
1834 |
C if there is no open water left after advection, there cannot be any grease ice |
1835 |
if ((1.0 _d 0 - AREApreTH(I,J)).LE.siEps) then |
1836 |
tmpscal3 = tmpscal3 + SItracer(I,J,bi,bj,iTrGrease) |
1837 |
SItracer(I,J,bi,bj,iTrGrease) = 0. _d 0 |
1838 |
endif |
1839 |
if (greaseNewFrazil .GT. 0. _d 0) then |
1840 |
C 2) solidification of "old" grease ice |
1841 |
C (only when cold enough for ice growth) |
1842 |
C |
1843 |
C time scale dependent solidification |
1844 |
C (50% of grease ice area become solid ice within 24h): |
1845 |
tmpscal1=exp(-SEAICE_deltaTtherm/greaseDecayTime) |
1846 |
C loss of grease ice (tracer) volume to solid sea ice |
1847 |
tmpscal2 = SItracer(I,J,bi,bj,iTrGrease) |
1848 |
& * (1.0 _d 0 - tmpscal1) |
1849 |
SItracer(I,J,bi,bj,iTrGrease) = |
1850 |
& SItracer(I,J,bi,bj,iTrGrease) * tmpscal1 |
1851 |
C the solidified grease ice volume needs to be added to HEFF: |
1852 |
SItrBucket(I,J,bi,bj,iTrGrease) = |
1853 |
& SItrBucket(I,J,bi,bj,iTrGrease) + tmpscal2 |
1854 |
C gain in solid sea ice area due to solidified grease: |
1855 |
d_AREAbyGREASE(I,J) = tmpscal2 / greaseLayerThick(I,J) |
1856 |
d_AREAbyGREASE(I,J) = |
1857 |
& min(1.0 _d 0 - AREApreTH(I,J), d_AREAbyGREASE(I,J)) |
1858 |
C |
1859 |
C 3) grease ice growth from new frazil ice: |
1860 |
C |
1861 |
SItracer(i,j,bi,bj,iTrGrease) = |
1862 |
& SItracer(i,j,bi,bj,iTrGrease) + greaseNewFrazil |
1863 |
c & SItracer(i,j,bi,bj,iTrGrease) + tmpscal3 |
1864 |
c tmpscal3=0. _d 0 |
1865 |
endif |
1866 |
C 4) mapping SItrBucket to external variable, in this case HEFF, ... |
1867 |
tmpscal3=tmpscal3+SItrBucket(I,J,bi,bj,iTrGrease) |
1868 |
C ... and empty SItrBucket for tracer 'grease' |
1869 |
SItrBucket(I,J,bi,bj,iTrGrease)=0. _d 0 |
1870 |
#endif |
1871 |
#ifdef SEAICE_ITD |
1872 |
C ice growth in open water adds to first category |
1873 |
d_HEFFbyATMonOCN_open_ITD(I,J,1)=tmpscal3 |
1874 |
d_HEFFbyATMonOCN_ITD(I,J,1) =d_HEFFbyATMonOCN_ITD(I,J,1) |
1875 |
& +tmpscal3 |
1876 |
#endif |
1877 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1878 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1879 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
1880 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
1881 |
ENDDO |
1882 |
ENDDO |
1883 |
|
1884 |
#ifdef ALLOW_SITRACER |
1885 |
DO J=1,sNy |
1886 |
DO I=1,sNx |
1887 |
C needs to be here to allow use also with LEGACY branch |
1888 |
#ifdef SEAICE_ITD |
1889 |
SItrHEFF(I,J,bi,bj,4)=SItrHEFF(I,J,bi,bj,3) |
1890 |
& +d_HEFFbyATMonOCN_open(I,J) |
1891 |
#else |
1892 |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1893 |
#endif |
1894 |
ENDDO |
1895 |
ENDDO |
1896 |
#endif /* ALLOW_SITRACER */ |
1897 |
|
1898 |
C convert snow to ice if submerged. |
1899 |
C ================================= |
1900 |
|
1901 |
C note: in legacy, this process is done at the end |
1902 |
#ifdef ALLOW_AUTODIFF_TAMC |
1903 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1904 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1905 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1906 |
IF ( SEAICEuseFlooding ) THEN |
1907 |
#ifdef SEAICE_ITD |
1908 |
DO IT=1,nITD |
1909 |
DO J=1,sNy |
1910 |
DO I=1,sNx |
1911 |
tmpscal3 = HEFFITDpreTH(I,J,IT) |
1912 |
& + d_HEFFbySublim_ITD(I,J,IT) |
1913 |
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1914 |
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1915 |
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1916 |
& + d_HSNWbySublim_ITD(I,J,IT) |
1917 |
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1918 |
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1919 |
tmpscal0 = (tmpscal4*SEAICE_rhoSnow |
1920 |
& + tmpscal3*SEAICE_rhoIce) |
1921 |
& * recip_rhoConst |
1922 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - tmpscal3) |
1923 |
d_HEFFbyFLOODING_ITD(I,J,IT) = tmpscal1 |
1924 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1925 |
ENDDO |
1926 |
ENDDO |
1927 |
ENDDO |
1928 |
#else |
1929 |
DO J=1,sNy |
1930 |
DO I=1,sNx |
1931 |
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1932 |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
1933 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
1934 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
1935 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1936 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1937 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1938 |
ENDDO |
1939 |
ENDDO |
1940 |
#endif |
1941 |
ENDIF |
1942 |
|
1943 |
#ifdef SEAICE_ITD |
1944 |
C apply ice and snow thickness changes |
1945 |
C ================================================================= |
1946 |
DO IT=1,nITD |
1947 |
DO J=1,sNy |
1948 |
DO I=1,sNx |
1949 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) |
1950 |
& + d_HEFFbySublim_ITD(I,J,IT) |
1951 |
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1952 |
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1953 |
& + d_HEFFbyFLOODING_ITD(I,J,IT) |
1954 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1955 |
& + d_HSNWbySublim_ITD(I,J,IT) |
1956 |
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1957 |
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1958 |
& + d_HSNWbyOCNonSNW_ITD(I,J,IT) |
1959 |
& - d_HEFFbyFLOODING_ITD(I,J,IT) |
1960 |
& * ICE2SNOW |
1961 |
ENDDO |
1962 |
ENDDO |
1963 |
ENDDO |
1964 |
#endif |
1965 |
|
1966 |
C =================================================================== |
1967 |
C ==========PART 4: determine ice cover fraction increments=========- |
1968 |
C =================================================================== |
1969 |
|
1970 |
#ifdef ALLOW_AUTODIFF_TAMC |
1971 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1972 |
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1973 |
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
1974 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
1975 |
CADJ STORE recip_heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
1976 |
CADJ STORE d_hsnwbyatmonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
1977 |
cph( |
1978 |
cphCADJ STORE d_AREAbyATM = comlev1_bibj,key=iicekey,byte=isbyte |
1979 |
cphCADJ STORE d_AREAbyICE = comlev1_bibj,key=iicekey,byte=isbyte |
1980 |
cphCADJ STORE d_AREAbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1981 |
cph) |
1982 |
CADJ STORE a_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1983 |
CADJ STORE heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
1984 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1985 |
CADJ STORE HEFF(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1986 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1987 |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1988 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1989 |
|
1990 |
#ifdef SEAICE_ITD |
1991 |
C-- in thinnest category account for lateral ice growth and melt the "non-ITD" way, |
1992 |
C-- so that the ITD simulation with nITD=1 is identical with the non-ITD simulation; |
1993 |
C-- use HEFF, ARE, HSNOW, etc. as temporal storage for 1st category |
1994 |
DO J=1,sNy |
1995 |
DO I=1,sNx |
1996 |
HEFF(I,J,bi,bj)=HEFFITD(I,J,1,bi,bj) |
1997 |
AREA(I,J,bi,bj)=AREAITD(I,J,1,bi,bj) |
1998 |
HSNOW(I,J,bi,bj)=HSNOWITD(I,J,1,bi,bj) |
1999 |
HEFFpreTH(I,J)=HEFFITDpreTH(I,J,1) |
2000 |
AREApreTH(I,J)=AREAITDpreTH(I,J,1) |
2001 |
recip_heffActual(I,J)=recip_heffActualMult(I,J,1) |
2002 |
ENDDO |
2003 |
ENDDO |
2004 |
#endif |
2005 |
DO J=1,sNy |
2006 |
DO I=1,sNx |
2007 |
|
2008 |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
2009 |
recip_HO=1. _d 0 / HO_south |
2010 |
ELSE |
2011 |
recip_HO=1. _d 0 / HO |
2012 |
ENDIF |
2013 |
recip_HH = recip_heffActual(I,J) |
2014 |
|
2015 |
C gain of ice over open water : computed from |
2016 |
C (SEAICE_areaGainFormula.EQ.1) from growth by ATM |
2017 |
C (SEAICE_areaGainFormula.EQ.2) from predicted growth by ATM |
2018 |
IF (SEAICE_areaGainFormula.EQ.1) THEN |
2019 |
tmpscal4 = MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
2020 |
ELSE |
2021 |
tmpscal4=MAX(ZERO,a_QbyATM_open(I,J)) |
2022 |
ENDIF |
2023 |
#ifdef SEAICE_GREASE |
2024 |
tmpscal4 = d_AREAbyGREASE(I,J)/recip_HO |
2025 |
#endif |
2026 |
|
2027 |
C loss of ice cover by melting : computed from |
2028 |
C (SEAICE_areaLossFormula.EQ.1) from all but only melt conributions by ATM and OCN |
2029 |
C (SEAICE_areaLossFormula.EQ.2) from net melt-growth>0 by ATM and OCN |
2030 |
C (SEAICE_areaLossFormula.EQ.3) from predicted melt by ATM |
2031 |
IF (SEAICE_areaLossFormula.EQ.1) THEN |
2032 |
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) ) |
2033 |
& + MIN( 0. _d 0 , d_HEFFbyATMonOCN_open(I,J) ) |
2034 |
& + MIN( 0. _d 0 , d_HEFFbyOCNonICE(I,J) ) |
2035 |
ELSEIF (SEAICE_areaLossFormula.EQ.2) THEN |
2036 |
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) |
2037 |
& + d_HEFFbyATMonOCN_open(I,J) + d_HEFFbyOCNonICE(I,J) ) |
2038 |
ELSE |
2039 |
C compute heff after ice melt by ocn: |
2040 |
tmpscal0=HEFF(I,J,bi,bj) - d_HEFFbyATMonOCN(I,J) |
2041 |
C compute available heat left after snow melt by atm: |
2042 |
tmpscal1= a_QbyATM_open(I,J)+a_QbyATM_cover(I,J) |
2043 |
& - d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2044 |
C could not melt more than all the ice |
2045 |
tmpscal2 = MAX(-tmpscal0,tmpscal1) |
2046 |
tmpscal3 = MIN(ZERO,tmpscal2) |
2047 |
ENDIF |
2048 |
|
2049 |
C apply tendency |
2050 |
IF ( (HEFF(i,j,bi,bj).GT.0. _d 0).OR. |
2051 |
& (HSNOW(i,j,bi,bj).GT.0. _d 0) ) THEN |
2052 |
AREA(I,J,bi,bj)=MAX(0. _d 0, |
2053 |
& MIN( SEAICE_area_max, AREA(I,J,bi,bj) |
2054 |
& + recip_HO*tmpscal4+HALF*recip_HH*tmpscal3 )) |
2055 |
ELSE |
2056 |
AREA(I,J,bi,bj)=0. _d 0 |
2057 |
ENDIF |
2058 |
#ifdef ALLOW_SITRACER |
2059 |
SItrAREA(I,J,bi,bj,3)=AREA(I,J,bi,bj) |
2060 |
#endif /* ALLOW_SITRACER */ |
2061 |
#ifdef ALLOW_DIAGNOSTICS |
2062 |
d_AREAbyATM(I,J)= |
2063 |
& recip_HO*MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
2064 |
& +HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_open(I,J)) |
2065 |
d_AREAbyICE(I,J)= |
2066 |
& HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_cover(I,J)) |
2067 |
d_AREAbyOCN(I,J)= |
2068 |
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
2069 |
#endif /* ALLOW_DIAGNOSTICS */ |
2070 |
ENDDO |
2071 |
ENDDO |
2072 |
#ifdef SEAICE_ITD |
2073 |
C transfer 1st category values back into ITD variables |
2074 |
DO J=1,sNy |
2075 |
DO I=1,sNx |
2076 |
HEFFITD(I,J,1,bi,bj)=HEFF(I,J,bi,bj) |
2077 |
AREAITD(I,J,1,bi,bj)=AREA(I,J,bi,bj) |
2078 |
HSNOWITD(I,J,1,bi,bj)=HSNOW(I,J,bi,bj) |
2079 |
ENDDO |
2080 |
ENDDO |
2081 |
C now melt ice laterally in all other thickness categories |
2082 |
C (areal growth, i.e. new ice formation, only occurrs in 1st category) |
2083 |
IF (nITD .gt. 1) THEN |
2084 |
DO IT=2,nITD |
2085 |
DO J=1,sNy |
2086 |
DO I=1,sNx |
2087 |
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
2088 |
C when thickness is zero, area should be zero, too: |
2089 |
AREAITD(I,J,IT,bi,bj)=ZERO |
2090 |
ELSE |
2091 |
C actual ice thickness from before thermodynamic changes: |
2092 |
tmpscal1=HEFFITDpreTH(I,J,IT)/AREAITDpreTH(I,J,IT) |
2093 |
C melt ice laterally based on an average floe sice |
2094 |
C following Steele (1992) |
2095 |
AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
2096 |
& * (ONE - latMeltFrac(I,J,IT)) |
2097 |
AREAITD(I,J,IT,bi,bj) = max(ZERO,AREAITD(I,J,IT,bi,bj)) |
2098 |
C limit area reduction so that actual ice thickness does not increase |
2099 |
AREAITD(I,J,IT,bi,bj) = max(AREAITD(I,J,IT,bi,bj), |
2100 |
& HEFFITD(I,J,IT,bi,bj)/tmpscal1) |
2101 |
ENDIF |
2102 |
#ifdef ALLOW_SITRACER |
2103 |
SItrAREA(I,J,bi,bj,3)=SItrAREA(I,J,bi,bj,3) |
2104 |
& +AREAITD(I,J,IT,bi,bj) |
2105 |
#endif /* ALLOW_SITRACER */ |
2106 |
ENDDO |
2107 |
ENDDO |
2108 |
ENDDO |
2109 |
ENDIF |
2110 |
#endif |
2111 |
|
2112 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
2113 |
Cgf 'bulk' linearization of area=f(HEFF) |
2114 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
2115 |
#ifdef SEAICE_ITD |
2116 |
DO IT=1,nITD |
2117 |
DO J=1,sNy |
2118 |
DO I=1,sNx |
2119 |
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
2120 |
& ( HEFFITD(I,J,IT,bi,bj) - HEFFITDpreTH(I,J,IT) ) |
2121 |
ENDDO |
2122 |
ENDDO |
2123 |
ENDDO |
2124 |
#else |
2125 |
DO J=1,sNy |
2126 |
DO I=1,sNx |
2127 |
C AREA(I,J,bi,bj) = 0.1 _d 0 * HEFF(I,J,bi,bj) |
2128 |
AREA(I,J,bi,bj) = AREApreTH(I,J) + 0.1 _d 0 * |
2129 |
& ( HEFF(I,J,bi,bj) - HEFFpreTH(I,J) ) |
2130 |
ENDDO |
2131 |
ENDDO |
2132 |
#endif |
2133 |
ENDIF |
2134 |
#endif |
2135 |
#ifdef SEAICE_ITD |
2136 |
C check categories for consistency with limits after growth/melt ... |
2137 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
2138 |
C ... and update total AREA, HEFF, HSNOW |
2139 |
C (the updated HEFF is used below for ice salinity increments) |
2140 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
2141 |
#endif |
2142 |
#ifdef SEAICE_GREASE |
2143 |
C convert SItracer 'grease' from grease ice volume back to ratio: |
2144 |
C =============================================================== |
2145 |
DO J=1,sNy |
2146 |
DO I=1,sNx |
2147 |
if (HEFF(I,J,bi,bj).GT.siEps) then |
2148 |
SItracer(I,J,bi,bj,iTrGrease) = |
2149 |
& SItracer(I,J,bi,bj,iTrGrease) / HEFF(I,J,bi,bj) |
2150 |
else |
2151 |
SItracer(I,J,bi,bj,iTrGrease) = 0. _d 0 |
2152 |
endif |
2153 |
ENDDO |
2154 |
ENDDO |
2155 |
#endif |
2156 |
|
2157 |
C =================================================================== |
2158 |
C =============PART 5: determine ice salinity increments============= |
2159 |
C =================================================================== |
2160 |
|
2161 |
#ifndef SEAICE_VARIABLE_SALINITY |
2162 |
# if (defined ALLOW_AUTODIFF_TAMC && defined ALLOW_SALT_PLUME) |
2163 |
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2164 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
2165 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
2166 |
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
2167 |
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
2168 |
CADJ STORE d_HEFFbyFLOODING = comlev1_bibj,key=iicekey,byte=isbyte |
2169 |
CADJ STORE d_HEFFbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
2170 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
2171 |
CADJ & key = iicekey, byte = isbyte |
2172 |
# endif /* ALLOW_AUTODIFF_TAMC and ALLOW_SALT_PLUME */ |
2173 |
DO J=1,sNy |
2174 |
DO I=1,sNx |
2175 |
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
2176 |
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
2177 |
& + d_HEFFbySublim(I,J) |
2178 |
#ifdef EXF_SEAICE_FRACTION |
2179 |
& + d_HEFFbyRLX(I,J) |
2180 |
#endif |
2181 |
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
2182 |
& * recip_deltaTtherm * SEAICE_rhoIce |
2183 |
saltFlux(I,J,bi,bj) = tmpscal2 |
2184 |
#ifdef ALLOW_SALT_PLUME |
2185 |
tmpscal3 = tmpscal1*salt(I,J,kSurface,bi,bj)*HEFFM(I,J,bi,bj) |
2186 |
& * recip_deltaTtherm * SEAICE_rhoIce |
2187 |
saltPlumeFlux(I,J,bi,bj) = MAX( tmpscal3-tmpscal2 , 0. _d 0) |
2188 |
& *SPsalFRAC |
2189 |
#endif /* ALLOW_SALT_PLUME */ |
2190 |
ENDDO |
2191 |
ENDDO |
2192 |
#endif /* ndef SEAICE_VARIABLE_SALINITY */ |
2193 |
|
2194 |
#ifdef SEAICE_VARIABLE_SALINITY |
2195 |
|
2196 |
#ifdef ALLOW_AUTODIFF_TAMC |
2197 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2198 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2199 |
|
2200 |
DO J=1,sNy |
2201 |
DO I=1,sNx |
2202 |
C sum up the terms that affect the salt content of the ice pack |
2203 |
tmpscal1=d_HEFFbyOCNonICE(I,J)+d_HEFFbyATMonOCN(I,J) |
2204 |
|
2205 |
C recompute HEFF before thermodynamic updates (which is not AREApreTH in legacy code) |
2206 |
tmpscal2=HEFF(I,J,bi,bj)-tmpscal1-d_HEFFbyFLOODING(I,J) |
2207 |
C tmpscal1 > 0 : m of sea ice that is created |
2208 |
IF ( tmpscal1 .GE. 0.0 ) THEN |
2209 |
saltFlux(I,J,bi,bj) = |
2210 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2211 |
& *SEAICE_saltFrac*salt(I,J,kSurface,bi,bj) |
2212 |
& *tmpscal1*SEAICE_rhoIce |
2213 |
#ifdef ALLOW_SALT_PLUME |
2214 |
C saltPlumeFlux is defined only during freezing: |
2215 |
saltPlumeFlux(I,J,bi,bj)= |
2216 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2217 |
& *(ONE-SEAICE_saltFrac)*salt(I,J,kSurface,bi,bj) |
2218 |
& *tmpscal1*SEAICE_rhoIce |
2219 |
& *SPsalFRAC |
2220 |
C if SaltPlumeSouthernOcean=.FALSE. turn off salt plume in Southern Ocean |
2221 |
IF ( .NOT. SaltPlumeSouthernOcean ) THEN |
2222 |
IF ( YC(I,J,bi,bj) .LT. 0.0 _d 0 ) |
2223 |
& saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2224 |
ENDIF |
2225 |
#endif /* ALLOW_SALT_PLUME */ |
2226 |
|
2227 |
C tmpscal1 < 0 : m of sea ice that is melted |
2228 |
ELSE |
2229 |
saltFlux(I,J,bi,bj) = |
2230 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2231 |
& *HSALT(I,J,bi,bj) |
2232 |
& *tmpscal1/tmpscal2 |
2233 |
#ifdef ALLOW_SALT_PLUME |
2234 |
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2235 |
#endif /* ALLOW_SALT_PLUME */ |
2236 |
ENDIF |
2237 |
C update HSALT based on surface saltFlux |
2238 |
HSALT(I,J,bi,bj) = HSALT(I,J,bi,bj) + |
2239 |
& saltFlux(I,J,bi,bj) * SEAICE_deltaTtherm |
2240 |
saltFlux(I,J,bi,bj) = |
2241 |
& saltFlux(I,J,bi,bj) + saltFluxAdjust(I,J) |
2242 |
ENDDO |
2243 |
ENDDO |
2244 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
2245 |
|
2246 |
#ifdef ALLOW_SITRACER |
2247 |
DO J=1,sNy |
2248 |
DO I=1,sNx |
2249 |
C needs to be here to allow use also with LEGACY branch |
2250 |
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
2251 |
ENDDO |
2252 |
ENDDO |
2253 |
#endif /* ALLOW_SITRACER */ |
2254 |
|
2255 |
C =================================================================== |
2256 |
C ==============PART 7: determine ocean model forcing================ |
2257 |
C =================================================================== |
2258 |
|
2259 |
C compute net heat flux leaving/entering the ocean, |
2260 |
C accounting for the part used in melt/freeze processes |
2261 |
C ===================================================== |
2262 |
|
2263 |
#ifdef SEAICE_ITD |
2264 |
C compute total of "mult" fluxes for ocean forcing |
2265 |
DO J=1,sNy |
2266 |
DO I=1,sNx |
2267 |
a_QbyATM_cover(I,J) = 0.0 _d 0 |
2268 |
r_QbyATM_cover(I,J) = 0.0 _d 0 |
2269 |
a_QSWbyATM_cover(I,J) = 0.0 _d 0 |
2270 |
r_FWbySublim(I,J) = 0.0 _d 0 |
2271 |
ENDDO |
2272 |
ENDDO |
2273 |
DO IT=1,nITD |
2274 |
DO J=1,sNy |
2275 |
DO I=1,sNx |
2276 |
C if fluxes in W/m^2 then use: |
2277 |
c a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2278 |
c & + a_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2279 |
c r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2280 |
c & + r_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2281 |
c a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2282 |
c & + a_QSWbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2283 |
c r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2284 |
c & + r_FWbySublimMult(I,J,IT) * areaFracFactor(I,J,IT) |
2285 |
C if fluxes in effective ice meters, i.e. ice volume per area, then use: |
2286 |
a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2287 |
& + a_QbyATMmult_cover(I,J,IT) |
2288 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2289 |
& + r_QbyATMmult_cover(I,J,IT) |
2290 |
a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2291 |
& + a_QSWbyATMmult_cover(I,J,IT) |
2292 |
r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2293 |
& + r_FWbySublimMult(I,J,IT) |
2294 |
ENDDO |
2295 |
ENDDO |
2296 |
ENDDO |
2297 |
#endif |
2298 |
|
2299 |
#ifdef ALLOW_AUTODIFF_TAMC |
2300 |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
2301 |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
2302 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2303 |
|
2304 |
DO J=1,sNy |
2305 |
DO I=1,sNx |
2306 |
QNET(I,J,bi,bj) = r_QbyATM_cover(I,J) + r_QbyATM_open(I,J) |
2307 |
& + a_QSWbyATM_cover(I,J) |
2308 |
& - ( d_HEFFbyOCNonICE(I,J) |
2309 |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2310 |
& + d_HEFFbyNEG(I,J) |
2311 |
#ifdef EXF_SEAICE_FRACTION |
2312 |
& + d_HEFFbyRLX(I,J) |
2313 |
#endif |
2314 |
& + d_HSNWbyNEG(I,J)*SNOW2ICE |
2315 |
& - convertPRECIP2HI * |
2316 |
& snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) |
2317 |
& ) * maskC(I,J,kSurface,bi,bj) |
2318 |
ENDDO |
2319 |
ENDDO |
2320 |
DO J=1,sNy |
2321 |
DO I=1,sNx |
2322 |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
2323 |
ENDDO |
2324 |
ENDDO |
2325 |
|
2326 |
C switch heat fluxes from 'effective' ice meters to W/m2 |
2327 |
C ====================================================== |
2328 |
|
2329 |
DO J=1,sNy |
2330 |
DO I=1,sNx |
2331 |
QNET(I,J,bi,bj) = QNET(I,J,bi,bj)*convertHI2Q |
2332 |
QSW(I,J,bi,bj) = QSW(I,J,bi,bj)*convertHI2Q |
2333 |
ENDDO |
2334 |
ENDDO |
2335 |
|
2336 |
#ifndef SEAICE_DISABLE_HEATCONSFIX |
2337 |
C treat advective heat flux by ocean to ice water exchange (at 0decC) |
2338 |
C =================================================================== |
2339 |
# ifdef ALLOW_AUTODIFF_TAMC |
2340 |
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2341 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
2342 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
2343 |
CADJ STORE d_HSNWbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2344 |
CADJ STORE d_HSNWbyOCNonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
2345 |
CADJ STORE d_HSNWbyATMonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
2346 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
2347 |
CADJ & key = iicekey, byte = isbyte |
2348 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2349 |
Cgf Unlike for evap and precip, the temperature of gained/lost |
2350 |
C ocean liquid water due to melt/freeze of solid water cannot be chosen |
2351 |
C arbitrarily to be e.g. the ocean SST. Indeed the present seaice model |
2352 |
C implies a constant ice temperature of 0degC. If melt/freeze water is exchanged |
2353 |
C at a different temperature, it leads to a loss of conservation in the |
2354 |
C ocean+ice system. While this is mostly a serious issue in the |
2355 |
C real fresh water + non linear free surface framework, a mismatch |
2356 |
C between ice and ocean boundary condition can result in all cases. |
2357 |
C Below we therefore anticipate on external_forcing_surf.F |
2358 |
C to diagnoze and/or apply the correction to QNET. |
2359 |
DO J=1,sNy |
2360 |
DO I=1,sNx |
2361 |
C ocean water going to ice/snow, in precip units |
2362 |
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)*( |
2363 |
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2364 |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2365 |
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
2366 |
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
2367 |
& * convertHI2PRECIP |
2368 |
& - snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) ) |
2369 |
C factor in the heat content as done in external_forcing_surf.F |
2370 |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND. |
2371 |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2372 |
tmpscal1 = - tmpscal3* |
2373 |
& HeatCapacity_Cp * temp_EvPrRn |
2374 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND. |
2375 |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2376 |
tmpscal1 = - tmpscal3* |
2377 |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2378 |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2379 |
tmpscal1 = - tmpscal3*HeatCapacity_Cp* |
2380 |
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2381 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2382 |
tmpscal1 = ZERO |
2383 |
ENDIF |
2384 |
#ifdef ALLOW_DIAGNOSTICS |
2385 |
C in all cases, diagnoze the boundary condition mismatch to SIaaflux |
2386 |
DIAGarrayA(I,J)=tmpscal1 |
2387 |
#endif |
2388 |
C remove the mismatch when real fresh water is exchanged (at 0degC here) |
2389 |
IF ( useRealFreshWaterFlux.AND.(nonlinFreeSurf.GT.0) |
2390 |
& .AND.SEAICEheatConsFix ) |
2391 |
& QNET(I,J,bi,bj)=QNET(I,J,bi,bj)+tmpscal1 |
2392 |
ENDDO |
2393 |
ENDDO |
2394 |
#ifdef ALLOW_DIAGNOSTICS |
2395 |
IF ( useDiagnostics ) THEN |
2396 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2397 |
& 'SIaaflux',0,1,3,bi,bj,myThid) |
2398 |
ENDIF |
2399 |
#endif |
2400 |
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
2401 |
|
2402 |
C compute the net heat flux, incl. adv. by water, entering ocean+ice |
2403 |
C =================================================================== |
2404 |
DO J=1,sNy |
2405 |
DO I=1,sNx |
2406 |
Cgf 1) SIatmQnt (analogous to qnet; excl. adv. by water exch.) |
2407 |
CML If I consider the atmosphere above the ice, the surface flux |
2408 |
CML which is relevant for the air temperature dT/dt Eq |
2409 |
CML accounts for sensible and radiation (with different treatment |
2410 |
CML according to wave-length) fluxes but not for "latent heat flux", |
2411 |
CML since it does not contribute to heating the air. |
2412 |
CML So this diagnostic is only good for heat budget calculations within |
2413 |
CML the ice-ocean system. |
2414 |
SIatmQnt(I,J,bi,bj) = |
2415 |
& maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
2416 |
& a_QSWbyATM_cover(I,J) + |
2417 |
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
2418 |
Cgf 2) SItflux (analogous to tflux; includes advection by water |
2419 |
C exchanged between atmosphere and ocean+ice) |
2420 |
C solid water going to atm, in precip units |
2421 |
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
2422 |
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
2423 |
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
2424 |
C liquid water going to atm, in precip units |
2425 |
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
2426 |
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2427 |
& * ( ONE - AREApreTH(I,J) ) |
2428 |
#ifdef ALLOW_RUNOFF |
2429 |
& - RUNOFF(I,J,bi,bj) |
2430 |
#endif /* ALLOW_RUNOFF */ |
2431 |
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
2432 |
& *convertHI2PRECIP ) |
2433 |
C In real fresh water flux + nonlinFS, we factor in the advected specific |
2434 |
C energy (referenced to 0 for 0deC liquid water). In virtual salt flux or |
2435 |
C linFS, rain/evap get a special treatment (see external_forcing_surf.F). |
2436 |
tmpscal1= - tmpscal1* |
2437 |
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
2438 |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND. |
2439 |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2440 |
tmpscal2= - tmpscal2* |
2441 |
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2442 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND. |
2443 |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2444 |
tmpscal2= - tmpscal2* |
2445 |
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2446 |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2447 |
tmpscal2= - tmpscal2*HeatCapacity_Cp* |
2448 |
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2449 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2450 |
tmpscal2= ZERO |
2451 |
ENDIF |
2452 |
SItflux(I,J,bi,bj)= SIatmQnt(I,J,bi,bj)-tmpscal1-tmpscal2 |
2453 |
ENDDO |
2454 |
ENDDO |
2455 |
|
2456 |
C compute net fresh water flux leaving/entering |
2457 |
C the ocean, accounting for fresh/salt water stocks. |
2458 |
C ================================================== |
2459 |
|
2460 |
DO J=1,sNy |
2461 |
DO I=1,sNx |
2462 |
tmpscal1= d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2463 |
& +d_HFRWbyRAIN(I,J) |
2464 |
& +d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2465 |
& +d_HEFFbyOCNonICE(I,J) |
2466 |
& +d_HEFFbyATMonOCN(I,J) |
2467 |
& +d_HEFFbyNEG(I,J) |
2468 |
#ifdef EXF_SEAICE_FRACTION |
2469 |
& +d_HEFFbyRLX(I,J) |
2470 |
#endif |
2471 |
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
2472 |
C If r_FWbySublim>0, then it is evaporated from ocean. |
2473 |
& +r_FWbySublim(I,J) |
2474 |
EmPmR(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2475 |
& ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2476 |
& * ( ONE - AREApreTH(I,J) ) |
2477 |
#ifdef ALLOW_RUNOFF |
2478 |
& - RUNOFF(I,J,bi,bj) |
2479 |
#endif /* ALLOW_RUNOFF */ |
2480 |
& + tmpscal1*convertHI2PRECIP |
2481 |
& )*rhoConstFresh |
2482 |
C and the flux leaving/entering the ocean+ice |
2483 |
SIatmFW(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2484 |
& EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2485 |
& - PRECIP(I,J,bi,bj) |
2486 |
#ifdef ALLOW_RUNOFF |
2487 |
& - RUNOFF(I,J,bi,bj) |
2488 |
#endif /* ALLOW_RUNOFF */ |
2489 |
& )*rhoConstFresh |
2490 |
& + a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2491 |
|
2492 |
ENDDO |
2493 |
ENDDO |
2494 |
|
2495 |
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
2496 |
C-- |
2497 |
DO J=1,sNy |
2498 |
DO I=1,sNx |
2499 |
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2500 |
& PRECIP(I,J,bi,bj) |
2501 |
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2502 |
# ifdef ALLOW_RUNOFF |
2503 |
& + RUNOFF(I,J,bi,bj) |
2504 |
# endif /* ALLOW_RUNOFF */ |
2505 |
& )*rhoConstFresh |
2506 |
# ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
2507 |
& - a_FWbySublim(I,J)*AREApreTH(I,J) |
2508 |
# endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
2509 |
ENDDO |
2510 |
ENDDO |
2511 |
C-- |
2512 |
#else /* ndef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
2513 |
C-- |
2514 |
# ifdef ALLOW_MEAN_SFLUX_COST_CONTRIBUTION |
2515 |
DO J=1,sNy |
2516 |
DO I=1,sNx |
2517 |
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2518 |
& PRECIP(I,J,bi,bj) |
2519 |
& - EVAP(I,J,bi,bj) |
2520 |
& *( ONE - AREApreTH(I,J) ) |
2521 |
# ifdef ALLOW_RUNOFF |
2522 |
& + RUNOFF(I,J,bi,bj) |
2523 |
# endif /* ALLOW_RUNOFF */ |
2524 |
& )*rhoConstFresh |
2525 |
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2526 |
ENDDO |
2527 |
ENDDO |
2528 |
# endif |
2529 |
C-- |
2530 |
#endif /* ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
2531 |
|
2532 |
#ifdef SEAICE_DEBUG |
2533 |
CALL PLOT_FIELD_XYRL( QSW,'Current QSW ', myIter, myThid ) |
2534 |
CALL PLOT_FIELD_XYRL( QNET,'Current QNET ', myIter, myThid ) |
2535 |
CALL PLOT_FIELD_XYRL( EmPmR,'Current EmPmR ', myIter, myThid ) |
2536 |
#endif /* SEAICE_DEBUG */ |
2537 |
|
2538 |
C Sea Ice Load on the sea surface. |
2539 |
C ================================= |
2540 |
|
2541 |
#ifdef ALLOW_AUTODIFF_TAMC |
2542 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2543 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2544 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2545 |
|
2546 |
IF ( useRealFreshWaterFlux ) THEN |
2547 |
DO J=1,sNy |
2548 |
DO I=1,sNx |
2549 |
#ifdef SEAICE_CAP_ICELOAD |
2550 |
tmpscal1 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
2551 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2552 |
tmpscal2 = MIN(tmpscal1,heffTooHeavy*rhoConst) |
2553 |
#else |
2554 |
tmpscal2 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
2555 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2556 |
#endif |
2557 |
sIceLoad(i,j,bi,bj) = tmpscal2 |
2558 |
ENDDO |
2559 |
ENDDO |
2560 |
ENDIF |
2561 |
|
2562 |
#ifdef ALLOW_BALANCE_FLUXES |
2563 |
C Compute tile integrals of heat/fresh water fluxes to/from atm. |
2564 |
C ============================================================== |
2565 |
FWFsiTile(bi,bj) = 0. _d 0 |
2566 |
IF ( balanceEmPmR ) THEN |
2567 |
DO j=1,sNy |
2568 |
DO i=1,sNx |
2569 |
FWFsiTile(bi,bj) = |
2570 |
& FWFsiTile(bi,bj) + SIatmFW(i,j,bi,bj) |
2571 |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2572 |
ENDDO |
2573 |
ENDDO |
2574 |
ENDIF |
2575 |
C to translate global mean FWF adjustements (see below) we may need : |
2576 |
FWF2HFsiTile(bi,bj) = 0. _d 0 |
2577 |
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2578 |
DO j=1,sNy |
2579 |
DO i=1,sNx |
2580 |
FWF2HFsiTile(bi,bj) = FWF2HFsiTile(bi,bj) + |
2581 |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2582 |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2583 |
ENDDO |
2584 |
ENDDO |
2585 |
ENDIF |
2586 |
HFsiTile(bi,bj) = 0. _d 0 |
2587 |
IF ( balanceQnet ) THEN |
2588 |
DO j=1,sNy |
2589 |
DO i=1,sNx |
2590 |
HFsiTile(bi,bj) = |
2591 |
& HFsiTile(bi,bj) + SItflux(i,j,bi,bj) |
2592 |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2593 |
ENDDO |
2594 |
ENDDO |
2595 |
ENDIF |
2596 |
#endif /* ALLOW_BALANCE_FLUXES */ |
2597 |
|
2598 |
C =================================================================== |
2599 |
C ======================PART 8: diagnostics========================== |
2600 |
C =================================================================== |
2601 |
|
2602 |
#ifdef ALLOW_DIAGNOSTICS |
2603 |
IF ( useDiagnostics ) THEN |
2604 |
tmpscal1=1. _d 0 * recip_deltaTtherm |
2605 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_cover, |
2606 |
& tmpscal1,1,'SIaQbATC',0,1,3,bi,bj,myThid) |
2607 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_open, |
2608 |
& tmpscal1,1,'SIaQbATO',0,1,3,bi,bj,myThid) |
2609 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyOCN, |
2610 |
& tmpscal1,1,'SIaQbOCN',0,1,3,bi,bj,myThid) |
2611 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyOCNonICE, |
2612 |
& tmpscal1,1,'SIdHbOCN',0,1,3,bi,bj,myThid) |
2613 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_cover, |
2614 |
& tmpscal1,1,'SIdHbATC',0,1,3,bi,bj,myThid) |
2615 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_open, |
2616 |
& tmpscal1,1,'SIdHbATO',0,1,3,bi,bj,myThid) |
2617 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyFLOODING, |
2618 |
& tmpscal1,1,'SIdHbFLO',0,1,3,bi,bj,myThid) |
2619 |
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyOCNonSNW, |
2620 |
& tmpscal1,1,'SIdSbOCN',0,1,3,bi,bj,myThid) |
2621 |
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyATMonSNW, |
2622 |
& tmpscal1,1,'SIdSbATC',0,1,3,bi,bj,myThid) |
2623 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyATM, |
2624 |
& tmpscal1,1,'SIdAbATO',0,1,3,bi,bj,myThid) |
2625 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyICE, |
2626 |
& tmpscal1,1,'SIdAbATC',0,1,3,bi,bj,myThid) |
2627 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyOCN, |
2628 |
& tmpscal1,1,'SIdAbOCN',0,1,3,bi,bj,myThid) |
2629 |
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_open, |
2630 |
& convertHI2Q,1, 'SIqneto ',0,1,3,bi,bj,myThid) |
2631 |
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_cover, |
2632 |
& convertHI2Q,1, 'SIqneti ',0,1,3,bi,bj,myThid) |
2633 |
C three that actually need intermediate storage |
2634 |
DO J=1,sNy |
2635 |
DO I=1,sNx |
2636 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2637 |
& * d_HSNWbyRAIN(I,J)*SEAICE_rhoSnow*recip_deltaTtherm |
2638 |
DIAGarrayB(I,J) = AREA(I,J,bi,bj)-AREApreTH(I,J) |
2639 |
ENDDO |
2640 |
ENDDO |
2641 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2642 |
& 'SIsnPrcp',0,1,3,bi,bj,myThid) |
2643 |
CALL DIAGNOSTICS_SCALE_FILL(DIAGarrayB, |
2644 |
& tmpscal1,1,'SIdA ',0,1,3,bi,bj,myThid) |
2645 |
DO J=1,sNy |
2646 |
DO I=1,sNx |
2647 |
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
2648 |
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2649 |
ENDDO |
2650 |
ENDDO |
2651 |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
2652 |
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
2653 |
C |
2654 |
DO J=1,sNy |
2655 |
DO I=1,sNx |
2656 |
C the actual Freshwater flux of sublimated ice, >0 decreases ice |
2657 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2658 |
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
2659 |
& * SEAICE_rhoIce * recip_deltaTtherm |
2660 |
C the residual Freshwater flux of sublimated ice |
2661 |
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
2662 |
& * r_FWbySublim(I,J) |
2663 |
& * SEAICE_rhoIce * recip_deltaTtherm |
2664 |
C the latent heat flux |
2665 |
tmpscal1= EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2666 |
& + r_FWbySublim(I,J)*convertHI2PRECIP |
2667 |
tmpscal2= ( a_FWbySublim(I,J)-r_FWbySublim(I,J) ) |
2668 |
& * convertHI2PRECIP |
2669 |
tmpscal3= SEAICE_lhEvap+SEAICE_lhFusion |
2670 |
DIAGarrayB(I,J) = -maskC(I,J,kSurface,bi,bj)*rhoConstFresh |
2671 |
& * ( tmpscal1*SEAICE_lhEvap + tmpscal2*tmpscal3 ) |
2672 |
ENDDO |
2673 |
ENDDO |
2674 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
2675 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
2676 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
2677 |
|
2678 |
ENDIF |
2679 |
#endif /* ALLOW_DIAGNOSTICS */ |
2680 |
|
2681 |
C close bi,bj loops |
2682 |
ENDDO |
2683 |
ENDDO |
2684 |
|
2685 |
C =================================================================== |
2686 |
C =========PART 9: HF/FWF global integrals and balancing============= |
2687 |
C =================================================================== |
2688 |
|
2689 |
#ifdef ALLOW_BALANCE_FLUXES |
2690 |
|
2691 |
C 1) global sums |
2692 |
# ifdef ALLOW_AUTODIFF_TAMC |
2693 |
CADJ STORE FWFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2694 |
CADJ STORE HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2695 |
CADJ STORE FWF2HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2696 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2697 |
FWFsiGlob=0. _d 0 |
2698 |
IF ( balanceEmPmR ) |
2699 |
& CALL GLOBAL_SUM_TILE_RL( FWFsiTile, FWFsiGlob, myThid ) |
2700 |
FWF2HFsiGlob=0. _d 0 |
2701 |
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2702 |
CALL GLOBAL_SUM_TILE_RL(FWF2HFsiTile, FWF2HFsiGlob, myThid) |
2703 |
ELSEIF ( balanceEmPmR ) THEN |
2704 |
FWF2HFsiGlob=HeatCapacity_Cp * temp_EvPrRn * globalArea |
2705 |
ENDIF |
2706 |
HFsiGlob=0. _d 0 |
2707 |
IF ( balanceQnet ) |
2708 |
& CALL GLOBAL_SUM_TILE_RL( HFsiTile, HFsiGlob, myThid ) |
2709 |
|
2710 |
C 2) global means |
2711 |
C mean SIatmFW |
2712 |
tmpscal0=FWFsiGlob / globalArea |
2713 |
C corresponding mean advection by atm to ocean+ice water exchange |
2714 |
C (if mean SIatmFW was removed uniformely from ocean) |
2715 |
tmpscal1=FWFsiGlob / globalArea * FWF2HFsiGlob / globalArea |
2716 |
C mean SItflux (before potential adjustement due to SIatmFW) |
2717 |
tmpscal2=HFsiGlob / globalArea |
2718 |
C mean SItflux (after potential adjustement due to SIatmFW) |
2719 |
IF ( balanceEmPmR ) tmpscal2=tmpscal2-tmpscal1 |
2720 |
|
2721 |
C 3) balancing adjustments |
2722 |
IF ( balanceEmPmR ) THEN |
2723 |
DO bj=myByLo(myThid),myByHi(myThid) |
2724 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
2725 |
DO j=1-OLy,sNy+OLy |
2726 |
DO i=1-OLx,sNx+OLx |
2727 |
empmr(i,j,bi,bj) = empmr(i,j,bi,bj) - tmpscal0 |
2728 |
SIatmFW(i,j,bi,bj) = SIatmFW(i,j,bi,bj) - tmpscal0 |
2729 |
C adjust SItflux consistently |
2730 |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND. |
2731 |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2732 |
tmpscal1= |
2733 |
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2734 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND. |
2735 |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2736 |
tmpscal1= |
2737 |
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2738 |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2739 |
tmpscal1= |
2740 |
& HeatCapacity_Cp*(temp_EvPrRn - theta(I,J,kSurface,bi,bj)) |
2741 |
ELSE |
2742 |
tmpscal1=ZERO |
2743 |
ENDIF |
2744 |
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal0*tmpscal1 |
2745 |
C no qnet or tflux adjustement is needed |
2746 |
ENDDO |
2747 |
ENDDO |
2748 |
ENDDO |
2749 |
ENDDO |
2750 |
IF ( balancePrintMean ) THEN |
2751 |
_BEGIN_MASTER( myThid ) |
2752 |
WRITE(msgBuf,'(a,a,e24.17)') 'rm Global mean of ', |
2753 |
& 'SIatmFW = ', tmpscal0 |
2754 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2755 |
& SQUEEZE_RIGHT, myThid ) |
2756 |
_END_MASTER( myThid ) |
2757 |
ENDIF |
2758 |
ENDIF |
2759 |
IF ( balanceQnet ) THEN |
2760 |
DO bj=myByLo(myThid),myByHi(myThid) |
2761 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
2762 |
DO j=1-OLy,sNy+OLy |
2763 |
DO i=1-OLx,sNx+OLx |
2764 |
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal2 |
2765 |
qnet(i,j,bi,bj) = qnet(i,j,bi,bj) - tmpscal2 |
2766 |
SIatmQnt(i,j,bi,bj) = SIatmQnt(i,j,bi,bj) - tmpscal2 |
2767 |
ENDDO |
2768 |
ENDDO |
2769 |
ENDDO |
2770 |
ENDDO |
2771 |
IF ( balancePrintMean ) THEN |
2772 |
_BEGIN_MASTER( myThid ) |
2773 |
WRITE(msgBuf,'(a,a,e24.17)') 'rm Global mean of ', |
2774 |
& 'SItflux = ', tmpscal2 |
2775 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2776 |
& SQUEEZE_RIGHT, myThid ) |
2777 |
_END_MASTER( myThid ) |
2778 |
ENDIF |
2779 |
ENDIF |
2780 |
#endif /* ALLOW_BALANCE_FLUXES */ |
2781 |
|
2782 |
#ifdef ALLOW_DIAGNOSTICS |
2783 |
IF ( useDiagnostics ) THEN |
2784 |
C these diags need to be done outside of the bi,bj loop so that |
2785 |
C we may do potential global mean adjustement to them consistently. |
2786 |
CALL DIAGNOSTICS_FILL(SItflux, |
2787 |
& 'SItflux ',0,1,0,1,1,myThid) |
2788 |
CALL DIAGNOSTICS_FILL(SIatmQnt, |
2789 |
& 'SIatmQnt',0,1,0,1,1,myThid) |
2790 |
C SIatmFW follows the same convention as empmr -- SIatmFW diag does not |
2791 |
tmpscal1= - 1. _d 0 |
2792 |
CALL DIAGNOSTICS_SCALE_FILL(SIatmFW, |
2793 |
& tmpscal1,1,'SIatmFW ',0,1,0,1,1,myThid) |
2794 |
ENDIF |
2795 |
#endif /* ALLOW_DIAGNOSTICS */ |
2796 |
|
2797 |
#else /* ALLOW_EXF and ALLOW_ATM_TEMP */ |
2798 |
STOP 'SEAICE_GROWTH not compiled without EXF and ALLOW_ATM_TEMP' |
2799 |
#endif /* ALLOW_EXF and ALLOW_ATM_TEMP */ |
2800 |
|
2801 |
RETURN |
2802 |
END |