1 |
edhill |
1.1 |
clear path |
2 |
|
|
|
3 |
|
|
global Nx Ny Nz |
4 |
|
|
global lat long dz dm mdep |
5 |
|
|
global delt_su su_its t_su delt |
6 |
|
|
global descriptor this_path |
7 |
|
|
global f deltaf Q beta r_expt r_heat H |
8 |
|
|
global time rots it |
9 |
|
|
global g Cp rho_bar alpha |
10 |
|
|
global u v t w |
11 |
|
|
global iterations |
12 |
|
|
|
13 |
|
|
|
14 |
|
|
param_file_name = ... |
15 |
|
|
input(' Please enter the name of the m-file with the parameters for this run : ','s') ; |
16 |
|
|
feval(param_file_name) ; |
17 |
|
|
|
18 |
|
|
% compute the E-W asymmetry of the thermocline and its depth |
19 |
|
|
|
20 |
|
|
iterations |
21 |
|
|
|
22 |
|
|
itstart = input(' Please enter start iteration : ','s') |
23 |
|
|
itend = input(' Please enter end iteration : ','s') |
24 |
|
|
|
25 |
|
|
|
26 |
|
|
sizeit=size(iterations); |
27 |
|
|
for i=1:sizeit(1) |
28 |
|
|
iter(i)=eval(iterations(i,1:10)); |
29 |
|
|
end |
30 |
|
|
nitstart=find(iter==eval(itstart)) |
31 |
|
|
nitend=find(iter==eval(itend)) |
32 |
|
|
|
33 |
|
|
path = this_path |
34 |
|
|
cmdstr=['cd ' path ]; |
35 |
|
|
eval(cmdstr); |
36 |
|
|
path=pwd |
37 |
|
|
|
38 |
|
|
sumtheta=zeros(Nx,Ny,Nz); |
39 |
|
|
counter=0; |
40 |
|
|
|
41 |
|
|
for i=nitstart:nitend |
42 |
|
|
tfilename=(['T.' iterations((i),1:10) ]) ; |
43 |
|
|
t=rdmds(tfilename,'b'); |
44 |
|
|
sumtheta=sumtheta+t; |
45 |
|
|
counter=counter+1; |
46 |
|
|
end |
47 |
|
|
|
48 |
|
|
meantheta=sumtheta/counter; |
49 |
|
|
|
50 |
|
|
|
51 |
|
|
|
52 |
|
|
|
53 |
|
|
h=zeros(Nx,Ny); |
54 |
|
|
hh=zeros(Nx,1); |
55 |
|
|
|
56 |
|
|
t0=input('Enter temperature : ') |
57 |
|
|
% t0=20.5; |
58 |
|
|
meantheta(:,:,Nz)=0.; |
59 |
|
|
|
60 |
|
|
for i=1:Nx, |
61 |
|
|
for j=1:Ny, |
62 |
|
|
kk=find(meantheta(i,j,:)<t0); |
63 |
|
|
if kk(1)>1 |
64 |
|
|
h(i,j)=(kk(1)-1)*dz+dz*(meantheta(i,j,kk(1)-1)-t0)/(meantheta(i,j,kk(1)-1)-meantheta(i,j,kk(1))); |
65 |
|
|
else |
66 |
|
|
h(i,j)=0; |
67 |
|
|
end |
68 |
|
|
end |
69 |
|
|
end |
70 |
|
|
|
71 |
|
|
% hmax=max(max(h)) |
72 |
|
|
|
73 |
|
|
% [I,J]=find(h==hmax) |
74 |
|
|
% NNN=J |
75 |
|
|
|
76 |
|
|
|
77 |
|
|
% |
78 |
|
|
NNN=Ny/2 |
79 |
|
|
% |
80 |
|
|
hh=h(:,NNN); |
81 |
|
|
hmax=max(hh); |
82 |
|
|
I=find(hh==hmax); |
83 |
|
|
|
84 |
|
|
ii=find(h(:,NNN)>0); |
85 |
|
|
ii1=size(ii); |
86 |
|
|
istart=ii(1) |
87 |
|
|
iend=ii(ii1(1)) |
88 |
|
|
x0=(I-istart)/(iend-istart) |
89 |
|
|
|
90 |
|
|
|
91 |
|
|
plot(hh); |