| 1 |
edhill |
1.1 |
clear path |
| 2 |
|
|
|
| 3 |
|
|
global Nx Ny Nz |
| 4 |
|
|
global lat long dz dm mdep |
| 5 |
|
|
global delt_su su_its t_su delt |
| 6 |
|
|
global descriptor this_path |
| 7 |
|
|
global f deltaf Q beta r_expt r_heat H |
| 8 |
|
|
global time rots it |
| 9 |
|
|
global g Cp rho_bar alpha |
| 10 |
|
|
global u v t w |
| 11 |
|
|
global iterations |
| 12 |
|
|
|
| 13 |
|
|
|
| 14 |
|
|
param_file_name = ... |
| 15 |
|
|
input(' Please enter the name of the m-file with the parameters for this run : ','s') ; |
| 16 |
|
|
feval(param_file_name) ; |
| 17 |
|
|
|
| 18 |
|
|
% compute the E-W asymmetry of the thermocline and its depth |
| 19 |
|
|
|
| 20 |
|
|
iterations |
| 21 |
|
|
|
| 22 |
|
|
itstart = input(' Please enter start iteration : ','s') |
| 23 |
|
|
itend = input(' Please enter end iteration : ','s') |
| 24 |
|
|
|
| 25 |
|
|
|
| 26 |
|
|
sizeit=size(iterations); |
| 27 |
|
|
for i=1:sizeit(1) |
| 28 |
|
|
iter(i)=eval(iterations(i,1:10)); |
| 29 |
|
|
end |
| 30 |
|
|
nitstart=find(iter==eval(itstart)) |
| 31 |
|
|
nitend=find(iter==eval(itend)) |
| 32 |
|
|
|
| 33 |
|
|
path = this_path |
| 34 |
|
|
cmdstr=['cd ' path ]; |
| 35 |
|
|
eval(cmdstr); |
| 36 |
|
|
path=pwd |
| 37 |
|
|
|
| 38 |
|
|
sumtheta=zeros(Nx,Ny,Nz); |
| 39 |
|
|
counter=0; |
| 40 |
|
|
|
| 41 |
|
|
for i=nitstart:nitend |
| 42 |
|
|
tfilename=(['T.' iterations((i),1:10) ]) ; |
| 43 |
|
|
t=rdmds(tfilename,'b'); |
| 44 |
|
|
sumtheta=sumtheta+t; |
| 45 |
|
|
counter=counter+1; |
| 46 |
|
|
end |
| 47 |
|
|
|
| 48 |
|
|
meantheta=sumtheta/counter; |
| 49 |
|
|
|
| 50 |
|
|
|
| 51 |
|
|
|
| 52 |
|
|
|
| 53 |
|
|
h=zeros(Nx,Ny); |
| 54 |
|
|
hh=zeros(Nx,1); |
| 55 |
|
|
|
| 56 |
|
|
t0=input('Enter temperature : ') |
| 57 |
|
|
% t0=20.5; |
| 58 |
|
|
meantheta(:,:,Nz)=0.; |
| 59 |
|
|
|
| 60 |
|
|
for i=1:Nx, |
| 61 |
|
|
for j=1:Ny, |
| 62 |
|
|
kk=find(meantheta(i,j,:)<t0); |
| 63 |
|
|
if kk(1)>1 |
| 64 |
|
|
h(i,j)=(kk(1)-1)*dz+dz*(meantheta(i,j,kk(1)-1)-t0)/(meantheta(i,j,kk(1)-1)-meantheta(i,j,kk(1))); |
| 65 |
|
|
else |
| 66 |
|
|
h(i,j)=0; |
| 67 |
|
|
end |
| 68 |
|
|
end |
| 69 |
|
|
end |
| 70 |
|
|
|
| 71 |
|
|
% hmax=max(max(h)) |
| 72 |
|
|
|
| 73 |
|
|
% [I,J]=find(h==hmax) |
| 74 |
|
|
% NNN=J |
| 75 |
|
|
|
| 76 |
|
|
|
| 77 |
|
|
% |
| 78 |
|
|
NNN=Ny/2 |
| 79 |
|
|
% |
| 80 |
|
|
hh=h(:,NNN); |
| 81 |
|
|
hmax=max(hh); |
| 82 |
|
|
I=find(hh==hmax); |
| 83 |
|
|
|
| 84 |
|
|
ii=find(h(:,NNN)>0); |
| 85 |
|
|
ii1=size(ii); |
| 86 |
|
|
istart=ii(1) |
| 87 |
|
|
iend=ii(ii1(1)) |
| 88 |
|
|
x0=(I-istart)/(iend-istart) |
| 89 |
|
|
|
| 90 |
|
|
|
| 91 |
|
|
plot(hh); |