| 1 | 
clear path  | 
| 2 | 
 | 
| 3 | 
global Nx Ny Nz | 
| 4 | 
global lat long dz dm mdep | 
| 5 | 
global delt_su su_its t_su delt | 
| 6 | 
global descriptor this_path | 
| 7 | 
global f deltaf Q beta r_expt r_heat H | 
| 8 | 
global time rots it | 
| 9 | 
global g Cp rho_bar alpha | 
| 10 | 
global u v t w | 
| 11 | 
global iterations | 
| 12 | 
 | 
| 13 | 
 | 
| 14 | 
param_file_name =   ... | 
| 15 | 
   input(' Please enter the name of the m-file with the parameters for this run : ','s') ; | 
| 16 | 
feval(param_file_name) ; | 
| 17 | 
 | 
| 18 | 
% compute the E-W asymmetry of the thermocline and its depth | 
| 19 | 
 | 
| 20 | 
iterations | 
| 21 | 
 | 
| 22 | 
itstart = input(' Please enter start iteration : ','s')  | 
| 23 | 
itend = input(' Please enter end iteration : ','s')  | 
| 24 | 
 | 
| 25 | 
 | 
| 26 | 
sizeit=size(iterations); | 
| 27 | 
for i=1:sizeit(1) | 
| 28 | 
iter(i)=eval(iterations(i,1:10)); | 
| 29 | 
end | 
| 30 | 
nitstart=find(iter==eval(itstart)) | 
| 31 | 
nitend=find(iter==eval(itend)) | 
| 32 | 
 | 
| 33 | 
path   = this_path  | 
| 34 | 
cmdstr=['cd ' path ]; | 
| 35 | 
eval(cmdstr); | 
| 36 | 
path=pwd | 
| 37 | 
 | 
| 38 | 
sumtheta=zeros(Nx,Ny,Nz); | 
| 39 | 
counter=0; | 
| 40 | 
 | 
| 41 | 
for i=nitstart:nitend | 
| 42 | 
tfilename=(['T.' iterations((i),1:10) ]) ; | 
| 43 | 
t=rdmds(tfilename,'b'); | 
| 44 | 
sumtheta=sumtheta+t; | 
| 45 | 
counter=counter+1; | 
| 46 | 
end | 
| 47 | 
 | 
| 48 | 
meantheta=sumtheta/counter; | 
| 49 | 
 | 
| 50 | 
 | 
| 51 | 
 | 
| 52 | 
 | 
| 53 | 
h=zeros(Nx,Ny); | 
| 54 | 
hh=zeros(Nx,1); | 
| 55 | 
 | 
| 56 | 
t0=input('Enter temperature : ') | 
| 57 | 
% t0=20.5; | 
| 58 | 
meantheta(:,:,Nz)=0.; | 
| 59 | 
 | 
| 60 | 
for i=1:Nx, | 
| 61 | 
for j=1:Ny, | 
| 62 | 
kk=find(meantheta(i,j,:)<t0); | 
| 63 | 
if kk(1)>1 | 
| 64 | 
h(i,j)=(kk(1)-1)*dz+dz*(meantheta(i,j,kk(1)-1)-t0)/(meantheta(i,j,kk(1)-1)-meantheta(i,j,kk(1))); | 
| 65 | 
else | 
| 66 | 
h(i,j)=0; | 
| 67 | 
end | 
| 68 | 
end | 
| 69 | 
end | 
| 70 | 
 | 
| 71 | 
% hmax=max(max(h)) | 
| 72 | 
 | 
| 73 | 
% [I,J]=find(h==hmax) | 
| 74 | 
% NNN=J | 
| 75 | 
 | 
| 76 | 
 | 
| 77 | 
% | 
| 78 | 
NNN=Ny/2 | 
| 79 | 
% | 
| 80 | 
hh=h(:,NNN); | 
| 81 | 
hmax=max(hh); | 
| 82 | 
I=find(hh==hmax); | 
| 83 | 
 | 
| 84 | 
ii=find(h(:,NNN)>0); | 
| 85 | 
ii1=size(ii); | 
| 86 | 
istart=ii(1) | 
| 87 | 
iend=ii(ii1(1)) | 
| 88 | 
x0=(I-istart)/(iend-istart) | 
| 89 | 
 | 
| 90 | 
 | 
| 91 | 
plot(hh); |