| 1 |
clear path |
| 2 |
|
| 3 |
global Nx Ny Nz |
| 4 |
global lat long dz dm mdep |
| 5 |
global delt_su su_its t_su delt |
| 6 |
global descriptor this_path |
| 7 |
global f deltaf Q beta r_expt r_heat H |
| 8 |
global time rots it |
| 9 |
global g Cp rho_bar alpha |
| 10 |
global u v t w |
| 11 |
global iterations |
| 12 |
|
| 13 |
|
| 14 |
param_file_name = ... |
| 15 |
input(' Please enter the name of the m-file with the parameters for this run : ','s') ; |
| 16 |
feval(param_file_name) ; |
| 17 |
|
| 18 |
% compute the E-W asymmetry of the thermocline and its depth |
| 19 |
|
| 20 |
iterations |
| 21 |
|
| 22 |
itstart = input(' Please enter start iteration : ','s') |
| 23 |
itend = input(' Please enter end iteration : ','s') |
| 24 |
|
| 25 |
|
| 26 |
sizeit=size(iterations); |
| 27 |
for i=1:sizeit(1) |
| 28 |
iter(i)=eval(iterations(i,1:10)); |
| 29 |
end |
| 30 |
nitstart=find(iter==eval(itstart)) |
| 31 |
nitend=find(iter==eval(itend)) |
| 32 |
|
| 33 |
path = this_path |
| 34 |
cmdstr=['cd ' path ]; |
| 35 |
eval(cmdstr); |
| 36 |
path=pwd |
| 37 |
|
| 38 |
sumtheta=zeros(Nx,Ny,Nz); |
| 39 |
counter=0; |
| 40 |
|
| 41 |
for i=nitstart:nitend |
| 42 |
tfilename=(['T.' iterations((i),1:10) ]) ; |
| 43 |
t=rdmds(tfilename,'b'); |
| 44 |
sumtheta=sumtheta+t; |
| 45 |
counter=counter+1; |
| 46 |
end |
| 47 |
meantheta=sumtheta/counter; |
| 48 |
meantheta(:,:,1)=20; |
| 49 |
meantheta(:,:,2)=20; |
| 50 |
meantheta(:,:,3)=20; |
| 51 |
|
| 52 |
|
| 53 |
%cmin=20; |
| 54 |
%cmax=24, |
| 55 |
%V=[cmin cmax]; |
| 56 |
%figure |
| 57 |
%caxis('manual') |
| 58 |
% |
| 59 |
%subplot(1,2,1) |
| 60 |
% title='average temperature at z=2'; |
| 61 |
% imagesc(lat,long,squeeze(meantheta(:,:,2))');shading flat;axis image;caxis(V);colorbar('horizontal'); |
| 62 |
% text(0,-30,descriptor);text(50,-30,num2str(nitend-nitstart+1));text(80,-30,'files'); |
| 63 |
% text(0,140,title); |
| 64 |
% text(0,-20,'from timestep');text(50,-20,num2str(itstart)); |
| 65 |
% text(0,-10,'to'); text(50,-10,num2str(itend)); |
| 66 |
% |
| 67 |
%subplot(1,2,2) |
| 68 |
% contour(flipud(squeeze(meantheta(:,Ny/2,:))'),50);caxis(V);colorbar;grid |
| 69 |
% text(0,-2,'average temperature at mid-tank') |
| 70 |
% |
| 71 |
|
| 72 |
|
| 73 |
% |
| 74 |
NNN=Ny/2 |
| 75 |
% |
| 76 |
|
| 77 |
tx=zeros(Nx,1); |
| 78 |
|
| 79 |
for i=1:Nx, |
| 80 |
|
| 81 |
for k=1:Nz, |
| 82 |
for j=NNN-10:NNN+10, |
| 83 |
tx(i)=tx(i)+meantheta(i,j,k); |
| 84 |
end |
| 85 |
end |
| 86 |
tx(i)=tx(i)/Nz; |
| 87 |
tx(i)=tx(i)/21; |
| 88 |
end |
| 89 |
|
| 90 |
i=find(tx<20); |
| 91 |
tx(i)=20; |
| 92 |
|
| 93 |
tmax=max(tx); |
| 94 |
|
| 95 |
lmax=find(tx==tmax); |
| 96 |
|
| 97 |
|
| 98 |
tmin=min(tx); |
| 99 |
|
| 100 |
te=tmin+(tmax-tmin)/2.71; |
| 101 |
|
| 102 |
tsign=zeros(Nx-1,1); |
| 103 |
|
| 104 |
for i=1:Nx-1 |
| 105 |
tsign(i)=(tx(i)-te)*(tx(i+1)-te); |
| 106 |
end |
| 107 |
|
| 108 |
ii=find(tsign<0); |
| 109 |
|
| 110 |
xw=ii(1)+0.5; |
| 111 |
xe=ii(2)+0.5; |
| 112 |
|
| 113 |
x0=(lmax-xw)/(xe-xw) |
| 114 |
|
| 115 |
txe=zeros(Nx,1); |
| 116 |
txe(:)=te; |
| 117 |
|
| 118 |
plot(tx) |
| 119 |
hold on |
| 120 |
plot(txe,'--') |
| 121 |
hold off |
| 122 |
|
| 123 |
% Depth |
| 124 |
% |
| 125 |
%tz=zeros(Nz,1); |
| 126 |
%for k=1:Nz, |
| 127 |
%for i=1:Nx, |
| 128 |
%tz(k)=tz(k)+meantheta(i,NNN,k); |
| 129 |
%end |
| 130 |
%tz(k)=tz(k)/Nx; |
| 131 |
%end |
| 132 |
% |
| 133 |
%tzmax=max(tz); |
| 134 |
%tzmin=min(tz); |
| 135 |
% |
| 136 |
%kk=zeros(Nz-5,1); |
| 137 |
%tza=zeros(Nz-5,1); |
| 138 |
%for k=1:Nz-5 |
| 139 |
%kk(k)=k; |
| 140 |
%tza(k)=tz(k)-tzmin; |
| 141 |
%end |
| 142 |
% |
| 143 |
%logp1=polyfit(kk,log(tza),1); |
| 144 |
%logpred1=2.71.^polyval(logp1,kk); |
| 145 |
%figure |
| 146 |
%semilogy(kk,logpred1,'-',kk,tza,'+'); |
| 147 |
%grid on |
| 148 |
% |
| 149 |
%h0=-1/logp1(1) |
| 150 |
|