1 |
edhill |
1.1 |
clear path |
2 |
|
|
|
3 |
|
|
global Nx Ny Nz |
4 |
|
|
global lat long dz dm mdep |
5 |
|
|
global delt_su su_its t_su delt |
6 |
|
|
global descriptor this_path |
7 |
|
|
global f deltaf Q beta r_expt r_heat H |
8 |
|
|
global time rots it |
9 |
|
|
global g Cp rho_bar alpha |
10 |
|
|
global u v t w |
11 |
|
|
global iterations |
12 |
|
|
|
13 |
|
|
|
14 |
|
|
param_file_name = ... |
15 |
|
|
input(' Please enter the name of the m-file with the parameters for this run : ','s') ; |
16 |
|
|
feval(param_file_name) ; |
17 |
|
|
|
18 |
|
|
% compute the E-W asymmetry of the thermocline and its depth |
19 |
|
|
|
20 |
|
|
iterations |
21 |
|
|
|
22 |
|
|
itstart = input(' Please enter start iteration : ','s') |
23 |
|
|
itend = input(' Please enter end iteration : ','s') |
24 |
|
|
|
25 |
|
|
|
26 |
|
|
sizeit=size(iterations); |
27 |
|
|
for i=1:sizeit(1) |
28 |
|
|
iter(i)=eval(iterations(i,1:10)); |
29 |
|
|
end |
30 |
|
|
nitstart=find(iter==eval(itstart)) |
31 |
|
|
nitend=find(iter==eval(itend)) |
32 |
|
|
|
33 |
|
|
path = this_path |
34 |
|
|
cmdstr=['cd ' path ]; |
35 |
|
|
eval(cmdstr); |
36 |
|
|
path=pwd |
37 |
|
|
|
38 |
|
|
sumtheta=zeros(Nx,Ny,Nz); |
39 |
|
|
counter=0; |
40 |
|
|
|
41 |
|
|
for i=nitstart:nitend |
42 |
|
|
tfilename=(['T.' iterations((i),1:10) ]) ; |
43 |
|
|
t=rdmds(tfilename,'b'); |
44 |
|
|
sumtheta=sumtheta+t; |
45 |
|
|
counter=counter+1; |
46 |
|
|
end |
47 |
|
|
meantheta=sumtheta/counter; |
48 |
|
|
meantheta(:,:,1)=20; |
49 |
|
|
meantheta(:,:,2)=20; |
50 |
|
|
meantheta(:,:,3)=20; |
51 |
|
|
|
52 |
|
|
|
53 |
|
|
%cmin=20; |
54 |
|
|
%cmax=24, |
55 |
|
|
%V=[cmin cmax]; |
56 |
|
|
%figure |
57 |
|
|
%caxis('manual') |
58 |
|
|
% |
59 |
|
|
%subplot(1,2,1) |
60 |
|
|
% title='average temperature at z=2'; |
61 |
|
|
% imagesc(lat,long,squeeze(meantheta(:,:,2))');shading flat;axis image;caxis(V);colorbar('horizontal'); |
62 |
|
|
% text(0,-30,descriptor);text(50,-30,num2str(nitend-nitstart+1));text(80,-30,'files'); |
63 |
|
|
% text(0,140,title); |
64 |
|
|
% text(0,-20,'from timestep');text(50,-20,num2str(itstart)); |
65 |
|
|
% text(0,-10,'to'); text(50,-10,num2str(itend)); |
66 |
|
|
% |
67 |
|
|
%subplot(1,2,2) |
68 |
|
|
% contour(flipud(squeeze(meantheta(:,Ny/2,:))'),50);caxis(V);colorbar;grid |
69 |
|
|
% text(0,-2,'average temperature at mid-tank') |
70 |
|
|
% |
71 |
|
|
|
72 |
|
|
|
73 |
|
|
% |
74 |
|
|
NNN=Ny/2 |
75 |
|
|
% |
76 |
|
|
|
77 |
|
|
tx=zeros(Nx,1); |
78 |
|
|
|
79 |
|
|
for i=1:Nx, |
80 |
|
|
|
81 |
|
|
for k=1:Nz, |
82 |
|
|
for j=NNN-10:NNN+10, |
83 |
|
|
tx(i)=tx(i)+meantheta(i,j,k); |
84 |
|
|
end |
85 |
|
|
end |
86 |
|
|
tx(i)=tx(i)/Nz; |
87 |
|
|
tx(i)=tx(i)/21; |
88 |
|
|
end |
89 |
|
|
|
90 |
|
|
i=find(tx<20); |
91 |
|
|
tx(i)=20; |
92 |
|
|
|
93 |
|
|
tmax=max(tx); |
94 |
|
|
|
95 |
|
|
lmax=find(tx==tmax); |
96 |
|
|
|
97 |
|
|
|
98 |
|
|
tmin=min(tx); |
99 |
|
|
|
100 |
|
|
te=tmin+(tmax-tmin)/2.71; |
101 |
|
|
|
102 |
|
|
tsign=zeros(Nx-1,1); |
103 |
|
|
|
104 |
|
|
for i=1:Nx-1 |
105 |
|
|
tsign(i)=(tx(i)-te)*(tx(i+1)-te); |
106 |
|
|
end |
107 |
|
|
|
108 |
|
|
ii=find(tsign<0); |
109 |
|
|
|
110 |
|
|
xw=ii(1)+0.5; |
111 |
|
|
xe=ii(2)+0.5; |
112 |
|
|
|
113 |
|
|
x0=(lmax-xw)/(xe-xw) |
114 |
|
|
|
115 |
|
|
txe=zeros(Nx,1); |
116 |
|
|
txe(:)=te; |
117 |
|
|
|
118 |
|
|
plot(tx) |
119 |
|
|
hold on |
120 |
|
|
plot(txe,'--') |
121 |
|
|
hold off |
122 |
|
|
|
123 |
|
|
% Depth |
124 |
|
|
% |
125 |
|
|
%tz=zeros(Nz,1); |
126 |
|
|
%for k=1:Nz, |
127 |
|
|
%for i=1:Nx, |
128 |
|
|
%tz(k)=tz(k)+meantheta(i,NNN,k); |
129 |
|
|
%end |
130 |
|
|
%tz(k)=tz(k)/Nx; |
131 |
|
|
%end |
132 |
|
|
% |
133 |
|
|
%tzmax=max(tz); |
134 |
|
|
%tzmin=min(tz); |
135 |
|
|
% |
136 |
|
|
%kk=zeros(Nz-5,1); |
137 |
|
|
%tza=zeros(Nz-5,1); |
138 |
|
|
%for k=1:Nz-5 |
139 |
|
|
%kk(k)=k; |
140 |
|
|
%tza(k)=tz(k)-tzmin; |
141 |
|
|
%end |
142 |
|
|
% |
143 |
|
|
%logp1=polyfit(kk,log(tza),1); |
144 |
|
|
%logpred1=2.71.^polyval(logp1,kk); |
145 |
|
|
%figure |
146 |
|
|
%semilogy(kk,logpred1,'-',kk,tza,'+'); |
147 |
|
|
%grid on |
148 |
|
|
% |
149 |
|
|
%h0=-1/logp1(1) |
150 |
|
|
|