1 |
% PV diagnostics 'DIAGtest' |
2 |
|
3 |
sumM=zeros(Nx,Ny); |
4 |
sumD=zeros(Nx,Ny); |
5 |
sumW=zeros(Nx,Ny); |
6 |
|
7 |
dz=0.005; |
8 |
|
9 |
% DEFINE BOX OF INTEGRATION |
10 |
Nx1=4; |
11 |
Nx2=Nx-3; |
12 |
Ny1=4; |
13 |
% for single gyre |
14 |
% Ny2=Ny-3; |
15 |
% for double-gyre |
16 |
Ny2=45; |
17 |
|
18 |
Nz1=5; |
19 |
Nz2=Nz-4; |
20 |
|
21 |
%Nx1=30; |
22 |
%Nx2=32; |
23 |
%Ny1=30; |
24 |
%Ny2=32; |
25 |
%Nz1=10; |
26 |
%Nz2=12; |
27 |
|
28 |
pv1=pv; |
29 |
Mp1=Mp; |
30 |
Dp1=Dp; |
31 |
|
32 |
% for kk=1:4 |
33 |
% pv1=smooth3(pv1); |
34 |
% Mp1=smooth3(Mp1); |
35 |
% Dp1=smooth3(Dp1); |
36 |
% end |
37 |
|
38 |
|
39 |
for k=Nz1:Nz2 |
40 |
|
41 |
if k==Nz1 |
42 |
a=0.5; |
43 |
elseif k==Nz2 |
44 |
a=0.5; |
45 |
else |
46 |
a=1; |
47 |
end |
48 |
|
49 |
sumM(3:Nx-2,3:Ny-2)=sumM(3:Nx-2,3:Ny-2)+a*Mp1(3:Nx-2,3:Ny-2,k)*dz; |
50 |
sumD(3:Nx-2,3:Ny-2)=sumD(3:Nx-2,3:Ny-2)+a*Dp1(3:Nx-2,3:Ny-2,k)*dz; |
51 |
end |
52 |
sumW(3:Nx-2,3:Ny-2)=meanw(3:Nx-2,3:Ny-2,Nz1).*pv1(3:Nx-2,3:Ny-2,Nz1); |
53 |
|
54 |
for k=1:3 |
55 |
sumM1(:,:,k)=sumM(:,:); |
56 |
sumD1(:,:,k)=sumD(:,:); |
57 |
sumW1(:,:,k)=sumW(:,:); |
58 |
end |
59 |
|
60 |
for k=1:15 |
61 |
|
62 |
sumM1=smooth3(sumM1); |
63 |
sumD1=smooth3(sumD1); |
64 |
sumW1=smooth3(sumW1); |
65 |
end |
66 |
|
67 |
V=[0.25*min(min(sumW(Nx1+2:Nx2,Ny1:Ny2-4))) 0]; |
68 |
|
69 |
% title='Vorticity input'; |
70 |
% imagesc(lat,long,sumW(Nx1:Nx2,Ny1:Ny2)');shading flat;caxis(V);axis image;colorbar('vertical'); |
71 |
% set(gca,'ydir','norm') |
72 |
% text(0,110,title); |
73 |
%figure |
74 |
v=zeros(10,1); |
75 |
v1=zeros(10,1); |
76 |
for i=1:10 |
77 |
%v(i)=-0.1*(i-0.5)*7; |
78 |
%v1(i)=0.1*(i-0.5)*7; |
79 |
v(i)=-0.01*(i); |
80 |
v1(i)=0.01*(i); |
81 |
end |
82 |
|
83 |
% contour(squeeze(sumW1(Nx1:Nx2,Ny1:Ny2,1))',v) |
84 |
% hold on |
85 |
% contour(squeeze(sumW1(Nx1:Nx2,Ny1:Ny2,1))',v1,'--') |
86 |
% hold off |
87 |
% text(20,0,'countour interval is 0.7 in the non-dimensional units'); |
88 |
% text(20,95,'Vorticity input','Fontsize',16); |
89 |
|
90 |
%figure |
91 |
|
92 |
%V=[-0.5*max(max(abs(sumD(Nx1:Nx2,Ny1:Ny2-4)))) 0.5*max(max(abs(sumD(Nx1:Nx2,Ny1:Ny2-4))))]; |
93 |
% title='Buoyancy diffusion integral'; |
94 |
% imagesc(lat,long,sumD(Nx1:Nx2,Ny1:Ny2)');shading flat;caxis(V);axis image;colorbar('vertical'); |
95 |
% set(gca,'ydir','norm') |
96 |
% text(0,110,title); |
97 |
|
98 |
|
99 |
% figure |
100 |
x=Nx1:Nx2; |
101 |
y=Ny1:Ny-2; |
102 |
subplot(2,1,1) |
103 |
contourf(x,y,squeeze(sumD1(Nx1:Nx2,Ny1:Ny-2,1))',10);colorbar; |
104 |
% contour(x,y,squeeze(sumD1(Nx1:Nx2,Ny1:Ny2,1))',v) |
105 |
%hold on |
106 |
% contour(x,y,squeeze(sumD1(Nx1:Nx2,Ny1:Ny2,1))',v1,'--') |
107 |
text(10,Ny2+5,'Buoyancy eddy-transfer','Fontsize',13); |
108 |
%hold off |
109 |
xlabel('X (gridpoints)') |
110 |
ylabel('Y (gridpoints)') |
111 |
set(gca,'DataAspectRatio',[2,2,2]) |
112 |
|
113 |
%figure |
114 |
%V=[-0.5*max(max(abs(sumM(Nx1:Nx2,Ny1:Ny2-4)))) 0.5*max(max(abs(sumM(Nx1:Nx2,Ny1:Ny2-4))))]; |
115 |
% title='Momentum eddy-transfer'; |
116 |
% imagesc(lat,long,sumM(Nx1:Nx2,Ny1:Ny2)');shading flat;caxis(V);axis image;colorbar('vertical'); |
117 |
% set(gca,'ydir','norm') |
118 |
% text(0,110,title); |
119 |
|
120 |
subplot(2,1,2) |
121 |
contourf(x,y,squeeze(sumM1(Nx1:Nx2,Ny1:Ny-2,1))',10);colorbar; |
122 |
% contour(x,y,squeeze(sumM1(Nx1:Nx2,Ny1:Ny2,1))',v) |
123 |
|
124 |
set(gca,'DataAspectRatio',[1,1,1]) |
125 |
text(10,Ny2+5,'Momentum eddy-transfer integral','Fontsize',13); |
126 |
%hold on |
127 |
% contour(x,y,squeeze(sumM1(Nx1:Nx2,Ny1:Ny2,1))',v1,'--') |
128 |
%hold off |
129 |
xlabel('X (gridpoints)') |
130 |
ylabel('Y (gridpoints)') |
131 |
% text(40,-20,'countour interval - 0.01 (non-dimensional units)','FontSize',7); |
132 |
% text(40,-30,'negative values - solid line','FontSize',7); |
133 |
% text(40,-35,'positive values - dashed line','FontSize',7); |
134 |
|
135 |
|
136 |
|
137 |
%-----TEST------------------------------------------------- |
138 |
|
139 |
dz |
140 |
|
141 |
bx=zeros(Nx,Ny,Nz); |
142 |
by=zeros(Nx,Ny,Nz); |
143 |
bz=zeros(Nx,Ny,Nz); |
144 |
zetax=zeros(Nx,Ny,Nz); |
145 |
zetay=zeros(Nx,Ny,Nz); |
146 |
zetaz=zeros(Nx,Ny,Nz); |
147 |
|
148 |
bx(2:Nx-1,2:Ny-1,2:Nz-1)=(meantheta(3:Nx,2:Ny-1,2:Nz-1)-meantheta(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx); |
149 |
by(2:Nx-1,2:Ny-1,2:Nz-1)=(meantheta(2:Nx-1,3:Ny,2:Nz-1)-meantheta(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy); |
150 |
bz(2:Nx-1,2:Ny-1,2:Nz-1)=-(meantheta(2:Nx-1,2:Ny-1,3:Nz)-meantheta(2:Nx-1,2:Ny-1,1:Nz-2))/(2*abs(dz)); |
151 |
|
152 |
zetax(2:Nx-1,2:Ny-1,2:Nz-1)=(meanv(2:Nx-1,2:Ny-1,3:Nz)-meanv(2:Nx-1,2:Ny-1,1:Nz-2))/(2*abs(dz)); |
153 |
zetay(2:Nx-1,2:Ny-1,2:Nz-1)=-(meanu(2:Nx-1,2:Ny-1,3:Nz)-meanu(2:Nx-1,2:Ny-1,1:Nz-2))/(2*abs(dz)); |
154 |
zetaz(2:Nx-1,2:Ny-1,2:Nz-1)=(meanv(3:Nx,2:Ny-1,2:Nz-1)/(2*dx)-meanv(1:Nx-2,2:Ny-1,2:Nz-1)/(2*dx) ... |
155 |
-meanu(2:Nx-1,3:Ny,2:Nz-1)/(2*dy)+meanu(2:Nx-1,1:Ny-2,2:Nz-1)/(2*dy) ... |
156 |
+ff(2:Nx-1,2:Ny-1,2:Nz-1)); |
157 |
|
158 |
|
159 |
sum=0; |
160 |
sumT=0; |
161 |
sumV=0; |
162 |
sumY=0; |
163 |
summ=0; |
164 |
sumd=0; |
165 |
for i=Nx1:Nx2 |
166 |
for j=Ny1:Ny2 |
167 |
|
168 |
if i==Nx1 |
169 |
a=0.5; |
170 |
elseif i==Nx2 |
171 |
a=0.5; |
172 |
else |
173 |
a=1; |
174 |
end |
175 |
|
176 |
if j==Ny1 |
177 |
b=0.5; |
178 |
elseif j==Ny2 |
179 |
b=0.5; |
180 |
else |
181 |
b=1; |
182 |
end |
183 |
|
184 |
|
185 |
summ=summ+a*b*(Mu(i,j,Nz1)*by(i,j,Nz1)-Mv(i,j,Nz1)*bx(i,j,Nz1))*dx*dy; |
186 |
summ=summ-a*b*(Mu(i,j,Nz2)*by(i,j,Nz2)-Mv(i,j,Nz2)*bx(i,j,Nz2))*dx*dy; |
187 |
sumd=sumd+a*b*zetaz(i,j,Nz1)*D(i,j,Nz1)*dx*dy; |
188 |
sumd=sumd-a*b*zetaz(i,j,Nz2)*D(i,j,Nz2)*dx*dy; |
189 |
sum=sum+a*b*meanw(i,j,Nz1)*pv(i,j,Nz1)*dx*dy; |
190 |
sumT=sum-a*b*meanw(i,j,Nz2)*pv(i,j,Nz2)*dx*dy; |
191 |
sumV=sumV+a*b*meanw(i,j,Nz1)*dx*dy; |
192 |
sumV=sumV-a*b*meanw(i,j,Nz2)*dx*dy; |
193 |
end |
194 |
end |
195 |
|
196 |
'xy' |
197 |
summ |
198 |
sumV |
199 |
sumd |
200 |
|
201 |
for j=Ny1:Ny2 |
202 |
for k=Nz1:Nz2 |
203 |
|
204 |
if k==Nz1 |
205 |
a=0.5; |
206 |
elseif k==Nz2 |
207 |
a=0.5; |
208 |
else |
209 |
a=1; |
210 |
end |
211 |
|
212 |
if j==Ny1 |
213 |
b=0.5; |
214 |
elseif j==Ny2 |
215 |
b=0.5; |
216 |
else |
217 |
b=1; |
218 |
end |
219 |
|
220 |
|
221 |
|
222 |
summ=summ+a*b*Mv(Nx2,j,k)*bz(Nx2,j,k)*dz*dy; |
223 |
summ=summ-a*b*Mv(Nx1,j,k)*bz(Nx1,j,k)*dz*dy; |
224 |
sumd=sumd+a*b*zetax(Nx2,j,k)*D(Nx2,j,k)*dz*dy; |
225 |
sumd=sumd-a*b*zetax(Nx1,j,k)*D(Nx1,j,k)*dz*dy; |
226 |
sumT=sumT+a*b*meanu(Nx2,j,k)*pv(Nx2,j,k)*dz*dy; |
227 |
sumT=sumT-a*b*meanu(Nx1,j,k)*pv(Nx1,j,k)*dz*dy; |
228 |
sumV=sumV+a*b*meanu(Nx2,j,k)*dz*dy; |
229 |
sumV=sumV-a*b*meanu(Nx1,j,k)*dz*dy; |
230 |
end |
231 |
end |
232 |
|
233 |
'xy+yz' |
234 |
summ |
235 |
sumd |
236 |
|
237 |
for i=Nx1:Nx2 |
238 |
for k=Nz1:Nz2 |
239 |
|
240 |
if k==Nz1 |
241 |
a=0.5; |
242 |
elseif k==Nz2 |
243 |
a=0.5; |
244 |
else |
245 |
a=1; |
246 |
end |
247 |
|
248 |
if i==Nx1 |
249 |
b=0.5; |
250 |
elseif i==Nx2 |
251 |
b=0.5; |
252 |
else |
253 |
b=1; |
254 |
end |
255 |
|
256 |
|
257 |
summ=summ-a*b*Mu(i,Ny2,k)*bz(i,Ny2,k)*dz*dx; |
258 |
summ=summ+a*b*Mu(i,Ny1,k)*bz(i,Ny1,k)*dz*dx; |
259 |
sumd=sumd+a*b*zetay(i,Ny2,k)*D(i,Ny2,k)*dz*dx; |
260 |
sumd=sumd-a*b*zetay(i,Ny1,k)*D(i,Ny1,k)*dz*dx; |
261 |
sumT=sumT+a*b*meanv(i,Ny2,k)*pv(i,Ny2,k)*dz*dx; |
262 |
sumY=sumY+a*b*meanv(i,Ny2,k)*pv(i,Ny2,k)*dz*dx; |
263 |
sumT=sumT-a*b*meanv(i,Ny1,k)*pv(i,Ny1,k)*dz*dx; |
264 |
sumV=sumV+a*b*meanv(i,Ny2,k)*dz*dx; |
265 |
sumV=sumV-a*b*meanv(i,Ny1,k)*dz*dx; |
266 |
end |
267 |
end |
268 |
'TOTAL' |
269 |
sum |
270 |
sumY |
271 |
sumT |
272 |
sumV |
273 |
summ |
274 |
sumd |
275 |
|
276 |
|
277 |
sum=0; |
278 |
for i=Nx1:Nx2 |
279 |
for j=Ny1:Ny2 |
280 |
|
281 |
if i==Nx1 |
282 |
a=0.5; |
283 |
elseif i==Nx2 |
284 |
a=0.5; |
285 |
else |
286 |
a=1; |
287 |
end |
288 |
|
289 |
if j==Ny1 |
290 |
b=0.5; |
291 |
elseif j==Ny2 |
292 |
b=0.5; |
293 |
else |
294 |
b=1; |
295 |
end |
296 |
|
297 |
sum=sum+a*b*sumD(i,j)*dx*dy; |
298 |
end |
299 |
end |
300 |
'DISSIPATION BY EDDY-DIFFUSIVITY' |
301 |
sum |
302 |
|
303 |
sum=0; |
304 |
for i=Nx1:Nx2 |
305 |
for j=Ny1:Ny2 |
306 |
|
307 |
if i==Nx1 |
308 |
a=0.5; |
309 |
elseif i==Nx2 |
310 |
a=0.5; |
311 |
else |
312 |
a=1; |
313 |
end |
314 |
|
315 |
if j==Ny1 |
316 |
b=0.5; |
317 |
elseif j==Ny2 |
318 |
b=0.5; |
319 |
else |
320 |
b=1; |
321 |
end |
322 |
|
323 |
sum=sum+a*b*sumM(i,j)*dx*dy; |
324 |
end |
325 |
end |
326 |
'DISSIPATION BY EDDY-VISCOSITY' |
327 |
sum |
328 |
|
329 |
'IMBALANCE' |
330 |
(sumT-(summ+sumd))/sumd |