| 1 | edhill | 1.1 | % PV diagnostics 'DIAGtest' | 
| 2 |  |  |  | 
| 3 |  |  | sumM=zeros(Nx,Ny); | 
| 4 |  |  | sumD=zeros(Nx,Ny); | 
| 5 |  |  | sumW=zeros(Nx,Ny); | 
| 6 |  |  |  | 
| 7 |  |  | dz=0.005; | 
| 8 |  |  |  | 
| 9 |  |  | % DEFINE BOX OF INTEGRATION | 
| 10 |  |  | Nx1=4; | 
| 11 |  |  | Nx2=Nx-3; | 
| 12 |  |  | Ny1=4; | 
| 13 |  |  | % for single gyre | 
| 14 |  |  | % Ny2=Ny-3; | 
| 15 |  |  | % for double-gyre | 
| 16 |  |  | Ny2=45; | 
| 17 |  |  |  | 
| 18 |  |  | Nz1=5; | 
| 19 |  |  | Nz2=Nz-4; | 
| 20 |  |  |  | 
| 21 |  |  | %Nx1=30; | 
| 22 |  |  | %Nx2=32; | 
| 23 |  |  | %Ny1=30; | 
| 24 |  |  | %Ny2=32; | 
| 25 |  |  | %Nz1=10; | 
| 26 |  |  | %Nz2=12; | 
| 27 |  |  |  | 
| 28 |  |  | pv1=pv; | 
| 29 |  |  | Mp1=Mp; | 
| 30 |  |  | Dp1=Dp; | 
| 31 |  |  |  | 
| 32 |  |  | %  for kk=1:4 | 
| 33 |  |  | %  pv1=smooth3(pv1); | 
| 34 |  |  | %  Mp1=smooth3(Mp1); | 
| 35 |  |  | %  Dp1=smooth3(Dp1); | 
| 36 |  |  | %  end | 
| 37 |  |  |  | 
| 38 |  |  |  | 
| 39 |  |  | for k=Nz1:Nz2 | 
| 40 |  |  |  | 
| 41 |  |  | if k==Nz1 | 
| 42 |  |  | a=0.5; | 
| 43 |  |  | elseif k==Nz2 | 
| 44 |  |  | a=0.5; | 
| 45 |  |  | else | 
| 46 |  |  | a=1; | 
| 47 |  |  | end | 
| 48 |  |  |  | 
| 49 |  |  | sumM(3:Nx-2,3:Ny-2)=sumM(3:Nx-2,3:Ny-2)+a*Mp1(3:Nx-2,3:Ny-2,k)*dz; | 
| 50 |  |  | sumD(3:Nx-2,3:Ny-2)=sumD(3:Nx-2,3:Ny-2)+a*Dp1(3:Nx-2,3:Ny-2,k)*dz; | 
| 51 |  |  | end | 
| 52 |  |  | sumW(3:Nx-2,3:Ny-2)=meanw(3:Nx-2,3:Ny-2,Nz1).*pv1(3:Nx-2,3:Ny-2,Nz1); | 
| 53 |  |  |  | 
| 54 |  |  | for k=1:3 | 
| 55 |  |  | sumM1(:,:,k)=sumM(:,:); | 
| 56 |  |  | sumD1(:,:,k)=sumD(:,:); | 
| 57 |  |  | sumW1(:,:,k)=sumW(:,:); | 
| 58 |  |  | end | 
| 59 |  |  |  | 
| 60 |  |  | for k=1:15 | 
| 61 |  |  |  | 
| 62 |  |  | sumM1=smooth3(sumM1); | 
| 63 |  |  | sumD1=smooth3(sumD1); | 
| 64 |  |  | sumW1=smooth3(sumW1); | 
| 65 |  |  | end | 
| 66 |  |  |  | 
| 67 |  |  | V=[0.25*min(min(sumW(Nx1+2:Nx2,Ny1:Ny2-4))) 0]; | 
| 68 |  |  |  | 
| 69 |  |  | %       title='Vorticity input'; | 
| 70 |  |  | %        imagesc(lat,long,sumW(Nx1:Nx2,Ny1:Ny2)');shading flat;caxis(V);axis image;colorbar('vertical'); | 
| 71 |  |  | %        set(gca,'ydir','norm') | 
| 72 |  |  | %        text(0,110,title); | 
| 73 |  |  | %figure | 
| 74 |  |  | v=zeros(10,1); | 
| 75 |  |  | v1=zeros(10,1); | 
| 76 |  |  | for i=1:10 | 
| 77 |  |  | %v(i)=-0.1*(i-0.5)*7; | 
| 78 |  |  | %v1(i)=0.1*(i-0.5)*7; | 
| 79 |  |  | v(i)=-0.01*(i); | 
| 80 |  |  | v1(i)=0.01*(i); | 
| 81 |  |  | end | 
| 82 |  |  |  | 
| 83 |  |  | % contour(squeeze(sumW1(Nx1:Nx2,Ny1:Ny2,1))',v) | 
| 84 |  |  | % hold on | 
| 85 |  |  | % contour(squeeze(sumW1(Nx1:Nx2,Ny1:Ny2,1))',v1,'--') | 
| 86 |  |  | % hold off | 
| 87 |  |  | %        text(20,0,'countour interval is 0.7 in the non-dimensional units'); | 
| 88 |  |  | %        text(20,95,'Vorticity input','Fontsize',16); | 
| 89 |  |  |  | 
| 90 |  |  | %figure | 
| 91 |  |  |  | 
| 92 |  |  | %V=[-0.5*max(max(abs(sumD(Nx1:Nx2,Ny1:Ny2-4)))) 0.5*max(max(abs(sumD(Nx1:Nx2,Ny1:Ny2-4))))]; | 
| 93 |  |  | %       title='Buoyancy diffusion integral'; | 
| 94 |  |  | %        imagesc(lat,long,sumD(Nx1:Nx2,Ny1:Ny2)');shading flat;caxis(V);axis image;colorbar('vertical'); | 
| 95 |  |  | %        set(gca,'ydir','norm') | 
| 96 |  |  | %        text(0,110,title); | 
| 97 |  |  |  | 
| 98 |  |  |  | 
| 99 |  |  | % figure | 
| 100 |  |  | x=Nx1:Nx2; | 
| 101 |  |  | y=Ny1:Ny-2; | 
| 102 |  |  | subplot(2,1,1) | 
| 103 |  |  | contourf(x,y,squeeze(sumD1(Nx1:Nx2,Ny1:Ny-2,1))',10);colorbar; | 
| 104 |  |  | %       contour(x,y,squeeze(sumD1(Nx1:Nx2,Ny1:Ny2,1))',v) | 
| 105 |  |  | %hold on | 
| 106 |  |  | %       contour(x,y,squeeze(sumD1(Nx1:Nx2,Ny1:Ny2,1))',v1,'--') | 
| 107 |  |  | text(10,Ny2+5,'Buoyancy eddy-transfer','Fontsize',13); | 
| 108 |  |  | %hold off | 
| 109 |  |  | xlabel('X (gridpoints)') | 
| 110 |  |  | ylabel('Y (gridpoints)') | 
| 111 |  |  | set(gca,'DataAspectRatio',[2,2,2]) | 
| 112 |  |  |  | 
| 113 |  |  | %figure | 
| 114 |  |  | %V=[-0.5*max(max(abs(sumM(Nx1:Nx2,Ny1:Ny2-4)))) 0.5*max(max(abs(sumM(Nx1:Nx2,Ny1:Ny2-4))))]; | 
| 115 |  |  | %       title='Momentum eddy-transfer'; | 
| 116 |  |  | %        imagesc(lat,long,sumM(Nx1:Nx2,Ny1:Ny2)');shading flat;caxis(V);axis image;colorbar('vertical'); | 
| 117 |  |  | %        set(gca,'ydir','norm') | 
| 118 |  |  | %        text(0,110,title); | 
| 119 |  |  |  | 
| 120 |  |  | subplot(2,1,2) | 
| 121 |  |  | contourf(x,y,squeeze(sumM1(Nx1:Nx2,Ny1:Ny-2,1))',10);colorbar; | 
| 122 |  |  | %       contour(x,y,squeeze(sumM1(Nx1:Nx2,Ny1:Ny2,1))',v) | 
| 123 |  |  |  | 
| 124 |  |  | set(gca,'DataAspectRatio',[1,1,1]) | 
| 125 |  |  | text(10,Ny2+5,'Momentum eddy-transfer integral','Fontsize',13); | 
| 126 |  |  | %hold on | 
| 127 |  |  | %       contour(x,y,squeeze(sumM1(Nx1:Nx2,Ny1:Ny2,1))',v1,'--') | 
| 128 |  |  | %hold off | 
| 129 |  |  | xlabel('X (gridpoints)') | 
| 130 |  |  | ylabel('Y (gridpoints)') | 
| 131 |  |  | %        text(40,-20,'countour interval - 0.01 (non-dimensional units)','FontSize',7); | 
| 132 |  |  | %        text(40,-30,'negative values - solid line','FontSize',7); | 
| 133 |  |  | %        text(40,-35,'positive values - dashed line','FontSize',7); | 
| 134 |  |  |  | 
| 135 |  |  |  | 
| 136 |  |  |  | 
| 137 |  |  | %-----TEST------------------------------------------------- | 
| 138 |  |  |  | 
| 139 |  |  | dz | 
| 140 |  |  |  | 
| 141 |  |  | bx=zeros(Nx,Ny,Nz); | 
| 142 |  |  | by=zeros(Nx,Ny,Nz); | 
| 143 |  |  | bz=zeros(Nx,Ny,Nz); | 
| 144 |  |  | zetax=zeros(Nx,Ny,Nz); | 
| 145 |  |  | zetay=zeros(Nx,Ny,Nz); | 
| 146 |  |  | zetaz=zeros(Nx,Ny,Nz); | 
| 147 |  |  |  | 
| 148 |  |  | bx(2:Nx-1,2:Ny-1,2:Nz-1)=(meantheta(3:Nx,2:Ny-1,2:Nz-1)-meantheta(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx); | 
| 149 |  |  | by(2:Nx-1,2:Ny-1,2:Nz-1)=(meantheta(2:Nx-1,3:Ny,2:Nz-1)-meantheta(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy); | 
| 150 |  |  | bz(2:Nx-1,2:Ny-1,2:Nz-1)=-(meantheta(2:Nx-1,2:Ny-1,3:Nz)-meantheta(2:Nx-1,2:Ny-1,1:Nz-2))/(2*abs(dz)); | 
| 151 |  |  |  | 
| 152 |  |  | zetax(2:Nx-1,2:Ny-1,2:Nz-1)=(meanv(2:Nx-1,2:Ny-1,3:Nz)-meanv(2:Nx-1,2:Ny-1,1:Nz-2))/(2*abs(dz)); | 
| 153 |  |  | zetay(2:Nx-1,2:Ny-1,2:Nz-1)=-(meanu(2:Nx-1,2:Ny-1,3:Nz)-meanu(2:Nx-1,2:Ny-1,1:Nz-2))/(2*abs(dz)); | 
| 154 |  |  | zetaz(2:Nx-1,2:Ny-1,2:Nz-1)=(meanv(3:Nx,2:Ny-1,2:Nz-1)/(2*dx)-meanv(1:Nx-2,2:Ny-1,2:Nz-1)/(2*dx) ... | 
| 155 |  |  | -meanu(2:Nx-1,3:Ny,2:Nz-1)/(2*dy)+meanu(2:Nx-1,1:Ny-2,2:Nz-1)/(2*dy) ... | 
| 156 |  |  | +ff(2:Nx-1,2:Ny-1,2:Nz-1)); | 
| 157 |  |  |  | 
| 158 |  |  |  | 
| 159 |  |  | sum=0; | 
| 160 |  |  | sumT=0; | 
| 161 |  |  | sumV=0; | 
| 162 |  |  | sumY=0; | 
| 163 |  |  | summ=0; | 
| 164 |  |  | sumd=0; | 
| 165 |  |  | for i=Nx1:Nx2 | 
| 166 |  |  | for j=Ny1:Ny2 | 
| 167 |  |  |  | 
| 168 |  |  | if i==Nx1 | 
| 169 |  |  | a=0.5; | 
| 170 |  |  | elseif i==Nx2 | 
| 171 |  |  | a=0.5; | 
| 172 |  |  | else | 
| 173 |  |  | a=1; | 
| 174 |  |  | end | 
| 175 |  |  |  | 
| 176 |  |  | if j==Ny1 | 
| 177 |  |  | b=0.5; | 
| 178 |  |  | elseif j==Ny2 | 
| 179 |  |  | b=0.5; | 
| 180 |  |  | else | 
| 181 |  |  | b=1; | 
| 182 |  |  | end | 
| 183 |  |  |  | 
| 184 |  |  |  | 
| 185 |  |  | summ=summ+a*b*(Mu(i,j,Nz1)*by(i,j,Nz1)-Mv(i,j,Nz1)*bx(i,j,Nz1))*dx*dy; | 
| 186 |  |  | summ=summ-a*b*(Mu(i,j,Nz2)*by(i,j,Nz2)-Mv(i,j,Nz2)*bx(i,j,Nz2))*dx*dy; | 
| 187 |  |  | sumd=sumd+a*b*zetaz(i,j,Nz1)*D(i,j,Nz1)*dx*dy; | 
| 188 |  |  | sumd=sumd-a*b*zetaz(i,j,Nz2)*D(i,j,Nz2)*dx*dy; | 
| 189 |  |  | sum=sum+a*b*meanw(i,j,Nz1)*pv(i,j,Nz1)*dx*dy; | 
| 190 |  |  | sumT=sum-a*b*meanw(i,j,Nz2)*pv(i,j,Nz2)*dx*dy; | 
| 191 |  |  | sumV=sumV+a*b*meanw(i,j,Nz1)*dx*dy; | 
| 192 |  |  | sumV=sumV-a*b*meanw(i,j,Nz2)*dx*dy; | 
| 193 |  |  | end | 
| 194 |  |  | end | 
| 195 |  |  |  | 
| 196 |  |  | 'xy' | 
| 197 |  |  | summ | 
| 198 |  |  | sumV | 
| 199 |  |  | sumd | 
| 200 |  |  |  | 
| 201 |  |  | for j=Ny1:Ny2 | 
| 202 |  |  | for k=Nz1:Nz2 | 
| 203 |  |  |  | 
| 204 |  |  | if k==Nz1 | 
| 205 |  |  | a=0.5; | 
| 206 |  |  | elseif k==Nz2 | 
| 207 |  |  | a=0.5; | 
| 208 |  |  | else | 
| 209 |  |  | a=1; | 
| 210 |  |  | end | 
| 211 |  |  |  | 
| 212 |  |  | if j==Ny1 | 
| 213 |  |  | b=0.5; | 
| 214 |  |  | elseif j==Ny2 | 
| 215 |  |  | b=0.5; | 
| 216 |  |  | else | 
| 217 |  |  | b=1; | 
| 218 |  |  | end | 
| 219 |  |  |  | 
| 220 |  |  |  | 
| 221 |  |  |  | 
| 222 |  |  | summ=summ+a*b*Mv(Nx2,j,k)*bz(Nx2,j,k)*dz*dy; | 
| 223 |  |  | summ=summ-a*b*Mv(Nx1,j,k)*bz(Nx1,j,k)*dz*dy; | 
| 224 |  |  | sumd=sumd+a*b*zetax(Nx2,j,k)*D(Nx2,j,k)*dz*dy; | 
| 225 |  |  | sumd=sumd-a*b*zetax(Nx1,j,k)*D(Nx1,j,k)*dz*dy; | 
| 226 |  |  | sumT=sumT+a*b*meanu(Nx2,j,k)*pv(Nx2,j,k)*dz*dy; | 
| 227 |  |  | sumT=sumT-a*b*meanu(Nx1,j,k)*pv(Nx1,j,k)*dz*dy; | 
| 228 |  |  | sumV=sumV+a*b*meanu(Nx2,j,k)*dz*dy; | 
| 229 |  |  | sumV=sumV-a*b*meanu(Nx1,j,k)*dz*dy; | 
| 230 |  |  | end | 
| 231 |  |  | end | 
| 232 |  |  |  | 
| 233 |  |  | 'xy+yz' | 
| 234 |  |  | summ | 
| 235 |  |  | sumd | 
| 236 |  |  |  | 
| 237 |  |  | for i=Nx1:Nx2 | 
| 238 |  |  | for k=Nz1:Nz2 | 
| 239 |  |  |  | 
| 240 |  |  | if k==Nz1 | 
| 241 |  |  | a=0.5; | 
| 242 |  |  | elseif k==Nz2 | 
| 243 |  |  | a=0.5; | 
| 244 |  |  | else | 
| 245 |  |  | a=1; | 
| 246 |  |  | end | 
| 247 |  |  |  | 
| 248 |  |  | if i==Nx1 | 
| 249 |  |  | b=0.5; | 
| 250 |  |  | elseif i==Nx2 | 
| 251 |  |  | b=0.5; | 
| 252 |  |  | else | 
| 253 |  |  | b=1; | 
| 254 |  |  | end | 
| 255 |  |  |  | 
| 256 |  |  |  | 
| 257 |  |  | summ=summ-a*b*Mu(i,Ny2,k)*bz(i,Ny2,k)*dz*dx; | 
| 258 |  |  | summ=summ+a*b*Mu(i,Ny1,k)*bz(i,Ny1,k)*dz*dx; | 
| 259 |  |  | sumd=sumd+a*b*zetay(i,Ny2,k)*D(i,Ny2,k)*dz*dx; | 
| 260 |  |  | sumd=sumd-a*b*zetay(i,Ny1,k)*D(i,Ny1,k)*dz*dx; | 
| 261 |  |  | sumT=sumT+a*b*meanv(i,Ny2,k)*pv(i,Ny2,k)*dz*dx; | 
| 262 |  |  | sumY=sumY+a*b*meanv(i,Ny2,k)*pv(i,Ny2,k)*dz*dx; | 
| 263 |  |  | sumT=sumT-a*b*meanv(i,Ny1,k)*pv(i,Ny1,k)*dz*dx; | 
| 264 |  |  | sumV=sumV+a*b*meanv(i,Ny2,k)*dz*dx; | 
| 265 |  |  | sumV=sumV-a*b*meanv(i,Ny1,k)*dz*dx; | 
| 266 |  |  | end | 
| 267 |  |  | end | 
| 268 |  |  | 'TOTAL' | 
| 269 |  |  | sum | 
| 270 |  |  | sumY | 
| 271 |  |  | sumT | 
| 272 |  |  | sumV | 
| 273 |  |  | summ | 
| 274 |  |  | sumd | 
| 275 |  |  |  | 
| 276 |  |  |  | 
| 277 |  |  | sum=0; | 
| 278 |  |  | for i=Nx1:Nx2 | 
| 279 |  |  | for j=Ny1:Ny2 | 
| 280 |  |  |  | 
| 281 |  |  | if i==Nx1 | 
| 282 |  |  | a=0.5; | 
| 283 |  |  | elseif i==Nx2 | 
| 284 |  |  | a=0.5; | 
| 285 |  |  | else | 
| 286 |  |  | a=1; | 
| 287 |  |  | end | 
| 288 |  |  |  | 
| 289 |  |  | if j==Ny1 | 
| 290 |  |  | b=0.5; | 
| 291 |  |  | elseif j==Ny2 | 
| 292 |  |  | b=0.5; | 
| 293 |  |  | else | 
| 294 |  |  | b=1; | 
| 295 |  |  | end | 
| 296 |  |  |  | 
| 297 |  |  | sum=sum+a*b*sumD(i,j)*dx*dy; | 
| 298 |  |  | end | 
| 299 |  |  | end | 
| 300 |  |  | 'DISSIPATION BY EDDY-DIFFUSIVITY' | 
| 301 |  |  | sum | 
| 302 |  |  |  | 
| 303 |  |  | sum=0; | 
| 304 |  |  | for i=Nx1:Nx2 | 
| 305 |  |  | for j=Ny1:Ny2 | 
| 306 |  |  |  | 
| 307 |  |  | if i==Nx1 | 
| 308 |  |  | a=0.5; | 
| 309 |  |  | elseif i==Nx2 | 
| 310 |  |  | a=0.5; | 
| 311 |  |  | else | 
| 312 |  |  | a=1; | 
| 313 |  |  | end | 
| 314 |  |  |  | 
| 315 |  |  | if j==Ny1 | 
| 316 |  |  | b=0.5; | 
| 317 |  |  | elseif j==Ny2 | 
| 318 |  |  | b=0.5; | 
| 319 |  |  | else | 
| 320 |  |  | b=1; | 
| 321 |  |  | end | 
| 322 |  |  |  | 
| 323 |  |  | sum=sum+a*b*sumM(i,j)*dx*dy; | 
| 324 |  |  | end | 
| 325 |  |  | end | 
| 326 |  |  | 'DISSIPATION BY EDDY-VISCOSITY' | 
| 327 |  |  | sum | 
| 328 |  |  |  | 
| 329 |  |  | 'IMBALANCE' | 
| 330 |  |  | (sumT-(summ+sumd))/sumd |