1 |
edhill |
1.1 |
|
2 |
|
|
Dw=zeros(Nx,Ny,Nz); |
3 |
|
|
|
4 |
|
|
dz=-abs(dz); |
5 |
|
|
|
6 |
|
|
Dw(:,:,2:Nz-1)=D(:,:,2:Nz-1)*2*dz./(meantheta(:,:,3:Nz)-meantheta(:,:,1:Nz-2)); |
7 |
|
|
i=find(meantheta(:,:,3:Nz)==meantheta(:,:,1:Nz-2)); |
8 |
|
|
Dw(i)=0; |
9 |
|
|
|
10 |
|
|
%t0=input('Enter temperature : ') |
11 |
|
|
t0=0.5*(max(max(max(meantheta)))+min(min(min(meantheta(1:Nx-1,1:Ny-1,1:Nz-1))))); |
12 |
|
|
|
13 |
|
|
% Interpolate Dw on T=T0 surface |
14 |
|
|
|
15 |
|
|
h=zeros(Nx,Ny); |
16 |
|
|
Dh=zeros(Nx,Ny); |
17 |
|
|
dz=abs(dz); |
18 |
|
|
|
19 |
|
|
meantheta(:,:,Nz)=0.; |
20 |
|
|
for i=1:Nx |
21 |
|
|
for j=1:Ny |
22 |
|
|
kk=find(meantheta(i,j,:)<t0); |
23 |
|
|
|
24 |
|
|
if kk(1)>1 |
25 |
|
|
h(i,j)=(kk(1)-1)*dz+dz*(meantheta(i,j,kk(1)-1)-t0)/(meantheta(i,j,kk(1)-1)-meantheta(i,j,kk(1))); |
26 |
|
|
Dh(i,j)=Dw(i,j,kk(1)-1) ... |
27 |
|
|
+(Dw(i,j,kk(1))-Dw(i,j,kk(1)-1)) ... |
28 |
|
|
*(meantheta(i,j,kk(1)-1)-t0)/(meantheta(i,j,kk(1)-1)-meantheta(i,j,kk(1))); |
29 |
|
|
else |
30 |
|
|
h(i,j)=0; |
31 |
|
|
Dh(i,j)=0; |
32 |
|
|
end |
33 |
|
|
|
34 |
|
|
end |
35 |
|
|
end |
36 |
|
|
|
37 |
|
|
hmax=max(max(h)) |
38 |
|
|
|
39 |
|
|
figure |
40 |
|
|
|
41 |
|
|
pcolor(Dh.');shading flat; colorbar; axis square |
42 |
|
|
% title('mean Wstar'); |
43 |
|
|
% title(['mean Wstar from ' num2str(eval(itstart)) ' to 'num2str(eval(itend)) ' level of t=' num2str(t0) ]); |
44 |
|
|
|
45 |
|
|
figure |
46 |
|
|
|
47 |
|
|
pcolor(h.');shading flat; colorbar; axis square |
48 |
|
|
|