| 1 |
sumM=zeros(Nx,Ny); |
| 2 |
sumN=zeros(Nx,Ny); |
| 3 |
sumD=zeros(Nx,Ny); |
| 4 |
sumW=zeros(Nx,Ny); |
| 5 |
|
| 6 |
|
| 7 |
dz=0.005; |
| 8 |
|
| 9 |
% DEFINE BOX OF INTEGRATION |
| 10 |
Nx1=4; |
| 11 |
Nx2=Nx-3; |
| 12 |
Ny1=4; |
| 13 |
Ny2=Ny-3; |
| 14 |
Nz1=5; |
| 15 |
Nz2=Nz-4; |
| 16 |
|
| 17 |
|
| 18 |
for k=Nz1:Nz2 |
| 19 |
if k==Nz1 |
| 20 |
a=0.5; |
| 21 |
elseif k==Nz2 |
| 22 |
a=0.5; |
| 23 |
else |
| 24 |
a=1; |
| 25 |
end |
| 26 |
|
| 27 |
sumM(3:Nx-2,3:Ny-2)=sumM(3:Nx-2,3:Ny-2)+a*Mp(3:Nx-2,3:Ny-2,k)*dz; |
| 28 |
sumN(3:Nx-2,3:Ny-2)=sumN(3:Nx-2,3:Ny-2)+a*Np(3:Nx-2,3:Ny-2,k)*dz; |
| 29 |
sumD(3:Nx-2,3:Ny-2)=sumD(3:Nx-2,3:Ny-2)+a*Dp(3:Nx-2,3:Ny-2,k)*dz; |
| 30 |
end |
| 31 |
sumW(3:Nx-2,3:Ny-2)=meanw(3:Nx-2,3:Ny-2,Nz1).*pv(3:Nx-2,3:Ny-2,Nz1); |
| 32 |
|
| 33 |
|
| 34 |
for k=1:3 |
| 35 |
sumM1(:,:,k)=sumM(:,:); |
| 36 |
sumN1(:,:,k)=sumN(:,:); |
| 37 |
sumD1(:,:,k)=sumD(:,:); |
| 38 |
sumW1(:,:,k)=sumW(:,:); |
| 39 |
end |
| 40 |
|
| 41 |
for k=1:25 |
| 42 |
|
| 43 |
sumM1=smooth3(sumM1); |
| 44 |
sumD1=smooth3(sumD1); |
| 45 |
sumW1=smooth3(sumW1); |
| 46 |
end |
| 47 |
|
| 48 |
for k=1:10 |
| 49 |
sumN1=smooth3(sumN1); |
| 50 |
end |
| 51 |
|
| 52 |
v=zeros(25,1); |
| 53 |
v1=zeros(25,1); |
| 54 |
for i=1:25 |
| 55 |
% v(i)=-0.1*(i-0.5)*7; |
| 56 |
% v1(i)=0.1*(i-0.5)*7; |
| 57 |
v(i)=0.001*(i)*10; |
| 58 |
v1(i)=-0.001*(i)*10; |
| 59 |
end |
| 60 |
|
| 61 |
sumD1(4:Nx,Ny,1)=0; |
| 62 |
sumM1(4:Nx,Ny,1)=0; |
| 63 |
sumN1(4:Nx,Ny,1)=0; |
| 64 |
sumD1(4:Nx,Ny-1,1)=0; |
| 65 |
sumM1(4:Nx,Ny-1,1)=0; |
| 66 |
sumN1(4:Nx,Ny-1,1)=0; |
| 67 |
|
| 68 |
|
| 69 |
|
| 70 |
%V=[-10 10]; |
| 71 |
% title='Vorticity input'; |
| 72 |
% imagesc(lat,long,sumW1(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
| 73 |
% set(gca,'ydir','norm') |
| 74 |
% text(0,110,title); |
| 75 |
%figure |
| 76 |
% title='Buoyancy diffusion integral'; |
| 77 |
% imagesc(lat,long,sumD1(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
| 78 |
% set(gca,'ydir','norm') |
| 79 |
% text(0,110,title); |
| 80 |
%figure |
| 81 |
% title='Non-linear terms integral'; |
| 82 |
% imagesc(lat,long,sumN1(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
| 83 |
% set(gca,'ydir','norm') |
| 84 |
% text(0,110,title); |
| 85 |
%figure |
| 86 |
% title='Momentum diffusion integral'; |
| 87 |
% imagesc(lat,long,sumM1(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
| 88 |
% set(gca,'ydir','norm') |
| 89 |
% text(0,110,title); |
| 90 |
subplot(3,1,1) |
| 91 |
contour(squeeze(sumD1(4:Nx,1:Ny,1))',v,'k') |
| 92 |
hold on |
| 93 |
contour(squeeze(sumD1(4:Nx,1:Ny,1))',v1,'k--') |
| 94 |
text(10,107,'Buoyancy transfer','Fontsize',14); |
| 95 |
text(-20,90,'a)','Fontsize',18); |
| 96 |
hold off |
| 97 |
xlabel('X ') |
| 98 |
ylabel('Y ') |
| 99 |
set(gca,'XtickLabel','||') |
| 100 |
set(gca,'YtickLabel','||') |
| 101 |
|
| 102 |
set(gca,'DataAspectRatio',[1,1.6,2]) |
| 103 |
|
| 104 |
subplot(3,1,2) |
| 105 |
contour(squeeze(sumM1(4:Nx,1:Ny,1))',v,'k') |
| 106 |
|
| 107 |
set(gca,'DataAspectRatio',[1,1.6,1]) |
| 108 |
text(10,107,'Momentum transfer','Fontsize',14); |
| 109 |
text(-20,90,'b)','Fontsize',18); |
| 110 |
hold on |
| 111 |
contour(squeeze(sumM1(4:Nx,1:Ny,1))',v1,'k--') |
| 112 |
hold off |
| 113 |
xlabel('X ') |
| 114 |
ylabel('Y ') |
| 115 |
set(gca,'XtickLabel','||') |
| 116 |
set(gca,'YtickLabel','||') |
| 117 |
|
| 118 |
|
| 119 |
|
| 120 |
subplot(3,1,3) |
| 121 |
contour(squeeze(sumN1(4:Nx,1:Ny,1))',v,'k') |
| 122 |
|
| 123 |
set(gca,'DataAspectRatio',[1,1.6,1]) |
| 124 |
text(10,107,'Inertial term ','Fontsize',14); |
| 125 |
text(-20,90,'c)','Fontsize',18); |
| 126 |
hold on |
| 127 |
contour(squeeze(sumN1(4:Nx,1:Ny,1))',v1,'k--') |
| 128 |
hold off |
| 129 |
xlabel('X ') |
| 130 |
ylabel('Y ') |
| 131 |
set(gca,'XtickLabel','||') |
| 132 |
set(gca,'YtickLabel','||') |
| 133 |
|
| 134 |
|
| 135 |
% text(40,-25,'countour interval - 1.5 (non-dimensional units)','FontSize',7); |
| 136 |
% text(40,-30,'negative values - solid line','FontSize',7); |
| 137 |
% text(40,-35,'positive values - dashed line','FontSize',7); |
| 138 |
figure |
| 139 |
contour(squeeze(sumN1(1:Nx,1:Ny,1))',v) |
| 140 |
hold on |
| 141 |
contour(squeeze(sumN1(1:Nx,1:Ny,1))',v1,'--') |
| 142 |
hold off |
| 143 |
|
| 144 |
|
| 145 |
|
| 146 |
|
| 147 |
%-----TEST------------------------------------------------- |
| 148 |
|
| 149 |
sum=0; |
| 150 |
sumT=0; |
| 151 |
for i=Nx1:Nx2 |
| 152 |
for j=Ny1:Ny2 |
| 153 |
if i==Nx1 |
| 154 |
a=0.5; |
| 155 |
elseif i==Nx2 |
| 156 |
a=0.5; |
| 157 |
else |
| 158 |
a=1; |
| 159 |
end |
| 160 |
|
| 161 |
if j==Ny1 |
| 162 |
b=0.5; |
| 163 |
elseif j==Ny2 |
| 164 |
b=0.5; |
| 165 |
else |
| 166 |
b=1; |
| 167 |
end |
| 168 |
|
| 169 |
sum=sum+a*b*meanw(i,j,Nz1)*pv(i,j,Nz1)*dx*dy; |
| 170 |
sumT=sum-a*b*meanw(i,j,Nz2)*pv(i,j,Nz2)*dx*dy; |
| 171 |
end |
| 172 |
end |
| 173 |
|
| 174 |
for j=Ny1:Ny2 |
| 175 |
for k=Nz1:Nz2 |
| 176 |
if k==Nz1 |
| 177 |
a=0.5; |
| 178 |
elseif k==Nz2 |
| 179 |
a=0.5; |
| 180 |
else |
| 181 |
a=1; |
| 182 |
end |
| 183 |
|
| 184 |
if j==Ny1 |
| 185 |
b=0.5; |
| 186 |
elseif j==Ny2 |
| 187 |
b=0.5; |
| 188 |
else |
| 189 |
b=1; |
| 190 |
end |
| 191 |
|
| 192 |
sumT=sumT+a*b*meanu(Nx2,j,k)*pv(Nx2,j,k)*dz*dy; |
| 193 |
sumT=sumT-a*b*meanu(Nx1,j,k)*pv(Nx1,j,k)*dz*dy; |
| 194 |
end |
| 195 |
end |
| 196 |
|
| 197 |
for i=Nx1:Nx2 |
| 198 |
for k=Nz1:Nz2 |
| 199 |
if k==Nz1 |
| 200 |
a=0.5; |
| 201 |
elseif k==Nz2 |
| 202 |
a=0.5; |
| 203 |
else |
| 204 |
a=1; |
| 205 |
end |
| 206 |
|
| 207 |
if i==Nx1 |
| 208 |
b=0.5; |
| 209 |
elseif i==Nx2 |
| 210 |
b=0.5; |
| 211 |
else |
| 212 |
b=1; |
| 213 |
end |
| 214 |
|
| 215 |
sumT=sumT+a*b*meanv(i,Ny2,k)*pv(i,Ny2,k)*dz*dx; |
| 216 |
sumT=sumT-a*b*meanv(i,Ny1,k)*pv(i,Ny1,k)*dz*dx; |
| 217 |
end |
| 218 |
end |
| 219 |
'VORTICITY GENERATION' |
| 220 |
sum |
| 221 |
sumT |
| 222 |
|
| 223 |
|
| 224 |
sum=0; |
| 225 |
for i=Nx1:Nx2 |
| 226 |
for j=Ny1:Ny2 |
| 227 |
if i==Nx1 |
| 228 |
a=0.5; |
| 229 |
elseif i==Nx2 |
| 230 |
a=0.5; |
| 231 |
else |
| 232 |
a=1; |
| 233 |
end |
| 234 |
|
| 235 |
if j==Ny1 |
| 236 |
b=0.5; |
| 237 |
elseif j==Ny2 |
| 238 |
b=0.5; |
| 239 |
else |
| 240 |
b=1; |
| 241 |
end |
| 242 |
|
| 243 |
sum=sum+a*b*sumD(i,j)*dx*dy; |
| 244 |
end |
| 245 |
end |
| 246 |
'DISSIPATION BY EDDY-DIFFUSIVITY' |
| 247 |
sum |
| 248 |
|
| 249 |
sum=0; |
| 250 |
for i=Nx1:Nx2 |
| 251 |
for j=Ny1:Ny2 |
| 252 |
if i==Nx1 |
| 253 |
a=0.5; |
| 254 |
elseif i==Nx2 |
| 255 |
a=0.5; |
| 256 |
else |
| 257 |
a=1; |
| 258 |
end |
| 259 |
|
| 260 |
if j==Ny1 |
| 261 |
b=0.5; |
| 262 |
elseif j==Ny2 |
| 263 |
b=0.5; |
| 264 |
else |
| 265 |
b=1; |
| 266 |
end |
| 267 |
|
| 268 |
sum=sum+a*b*sumM(i,j)*dx*dy; |
| 269 |
end |
| 270 |
end |
| 271 |
'DISSIPATION BY EDDY-VISCOSITY' |
| 272 |
sum |
| 273 |
|
| 274 |
sum=0; |
| 275 |
for i=Nx1:Nx2 |
| 276 |
for j=Ny1:Ny2 |
| 277 |
sum=sum+sumN(i,j)*dx*dy; |
| 278 |
end |
| 279 |
end |
| 280 |
'NONLINEARITY' |
| 281 |
sum |