1 |
edhill |
1.1 |
clear path |
2 |
|
|
|
3 |
|
|
global Nx Ny Nz |
4 |
|
|
global lat long dz dm mdep |
5 |
|
|
global delt_su su_its t_su delt |
6 |
|
|
global descriptor this_path |
7 |
|
|
global f deltaf Q beta r_expt r_heat H |
8 |
|
|
global time rots it |
9 |
|
|
global g Cp rho_bar alpha |
10 |
|
|
global u v t w |
11 |
|
|
global iterations |
12 |
|
|
|
13 |
|
|
|
14 |
|
|
param_file_name = ... |
15 |
|
|
input(' Please enter the name of the m-file with the parameters for this run : ','s') ; |
16 |
|
|
feval(param_file_name) ; |
17 |
|
|
|
18 |
|
|
% iterations |
19 |
|
|
|
20 |
|
|
itstart = input(' Please enter start iteration : ','s') |
21 |
|
|
itend = input(' Please enter end iteration : ','s') |
22 |
|
|
|
23 |
|
|
|
24 |
|
|
sizeit=size(iterations); |
25 |
|
|
for i=1:sizeit(1) |
26 |
|
|
iter(i)=eval(iterations(i,1:10)); |
27 |
|
|
end |
28 |
|
|
nitstart=find(iter==eval(itstart)) |
29 |
|
|
nitend=find(iter==eval(itend)) |
30 |
|
|
|
31 |
|
|
path = this_path |
32 |
|
|
cmdstr=['cd ' path ]; |
33 |
|
|
eval(cmdstr); |
34 |
|
|
path=pwd |
35 |
|
|
|
36 |
|
|
sumtheta=zeros(Nx,Ny,Nz); |
37 |
|
|
sumu=zeros(Nx,Ny,Nz); |
38 |
|
|
sumv=zeros(Nx,Ny,Nz); |
39 |
|
|
sumw=zeros(Nx,Ny,Nz); |
40 |
|
|
counter=0; |
41 |
|
|
|
42 |
|
|
for i=nitstart:nitend |
43 |
|
|
tfilename=(['T.' iterations((i),1:10) ]) ; |
44 |
|
|
t=rdmds(tfilename,'b'); |
45 |
|
|
|
46 |
|
|
ufilename=(['U.' iterations((i),1:10) ]) ; |
47 |
|
|
u=rdmds(ufilename,'b'); |
48 |
|
|
|
49 |
|
|
vfilename=(['V.' iterations((i),1:10) ]) ; |
50 |
|
|
v=rdmds(vfilename,'b'); |
51 |
|
|
|
52 |
|
|
wfilename=(['W.' iterations((i),1:10) ]) ; |
53 |
|
|
w=rdmds(wfilename,'b'); |
54 |
|
|
|
55 |
|
|
sumtheta=sumtheta+t; |
56 |
|
|
sumu=sumu+u; |
57 |
|
|
sumv=sumv+v; |
58 |
|
|
sumw=sumw+w; |
59 |
|
|
counter=counter+1; |
60 |
|
|
end |
61 |
|
|
|
62 |
|
|
meantheta=sumtheta/counter; |
63 |
|
|
meanu=sumu/counter; |
64 |
|
|
meanv=sumv/counter; |
65 |
|
|
meanw=sumw/counter; |
66 |
|
|
|
67 |
|
|
sumut=zeros(Nx,Ny,Nz); |
68 |
|
|
sumvt=zeros(Nx,Ny,Nz); |
69 |
|
|
sumwt=zeros(Nx,Ny,Nz); |
70 |
|
|
|
71 |
|
|
sumuu=zeros(Nx,Ny,Nz); |
72 |
|
|
sumvu=zeros(Nx,Ny,Nz); |
73 |
|
|
sumwu=zeros(Nx,Ny,Nz); |
74 |
|
|
sumvv=zeros(Nx,Ny,Nz); |
75 |
|
|
sumwv=zeros(Nx,Ny,Nz); |
76 |
|
|
|
77 |
|
|
meanu=smooth3(meanu); |
78 |
|
|
meanv=smooth3(meanv); |
79 |
|
|
meanw=smooth3(meanw); |
80 |
|
|
meantheta=smooth3(meantheta); |
81 |
|
|
|
82 |
|
|
for i=nitstart:nitend |
83 |
|
|
i |
84 |
|
|
tfilename=(['T.' iterations((i),1:10) ]) ; |
85 |
|
|
t=rdmds(tfilename,'b'); |
86 |
|
|
|
87 |
|
|
ufilename=(['U.' iterations((i),1:10) ]) ; |
88 |
|
|
u=rdmds(ufilename,'b'); |
89 |
|
|
|
90 |
|
|
vfilename=(['V.' iterations((i),1:10) ]) ; |
91 |
|
|
v=rdmds(vfilename,'b'); |
92 |
|
|
|
93 |
|
|
wfilename=(['W.' iterations((i),1:10) ]) ; |
94 |
|
|
w=rdmds(wfilename,'b'); |
95 |
|
|
|
96 |
|
|
t=t-meantheta; |
97 |
|
|
u=u-meanu; |
98 |
|
|
v=v-meanv; |
99 |
|
|
w=w-meanw; |
100 |
|
|
|
101 |
|
|
sumut=sumut+u.*t; |
102 |
|
|
sumvt=sumvt+v.*t; |
103 |
|
|
sumwt=sumwt+w.*t; |
104 |
|
|
|
105 |
|
|
sumuu=sumuu+u.*u; |
106 |
|
|
sumvu=sumvu+v.*u; |
107 |
|
|
sumwu=sumwu+w.*u; |
108 |
|
|
sumvv=sumvv+v.*v; |
109 |
|
|
sumwv=sumwv+w.*v; |
110 |
|
|
end |
111 |
|
|
|
112 |
|
|
sumut=sumut/counter; |
113 |
|
|
sumvt=sumvt/counter; |
114 |
|
|
sumwt=sumwt/counter; |
115 |
|
|
|
116 |
|
|
sumuu=sumuu/counter; |
117 |
|
|
sumvu=sumvu/counter; |
118 |
|
|
sumwu=sumwu/counter; |
119 |
|
|
sumvv=sumvv/counter; |
120 |
|
|
sumwv=sumwv/counter; |
121 |
|
|
|
122 |
|
|
Mu=zeros(Nx,Ny,Nz); |
123 |
|
|
Mv=zeros(Nx,Ny,Nz); |
124 |
|
|
Nu=zeros(Nx,Ny,Nz); |
125 |
|
|
Nv=zeros(Nx,Ny,Nz); |
126 |
|
|
D=zeros(Nx,Ny,Nz); |
127 |
|
|
|
128 |
|
|
dx=dm; |
129 |
|
|
dy=dm; |
130 |
|
|
dz=-dz; |
131 |
|
|
|
132 |
|
|
Mu(2:Nx-1,2:Ny-1,2:Nz-1)=-(sumuu(3:Nx,2:Ny-1,2:Nz-1)-sumuu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... |
133 |
|
|
-(sumvu(2:Nx-1,3:Ny,2:Nz-1)-sumvu(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... |
134 |
|
|
-(sumwu(2:Nx-1,2:Ny-1,3:Nz)-sumwu(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
135 |
|
|
|
136 |
|
|
Mv(2:Nx-1,2:Ny-1,2:Nz-1)=-(sumvu(3:Nx,2:Ny-1,2:Nz-1)-sumvu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... |
137 |
|
|
-(sumvv(2:Nx-1,3:Ny,2:Nz-1)-sumvv(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... |
138 |
|
|
-(sumwv(2:Nx-1,2:Ny-1,3:Nz)-sumwv(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
139 |
|
|
|
140 |
|
|
Nu(2:Nx-1,2:Ny-1,2:Nz-1)=-(meanu(3:Nx,2:Ny-1,2:Nz-1).*meanu(3:Nx,2:Ny-1,2:Nz-1) ... |
141 |
|
|
-meanu(1:Nx-2,2:Ny-1,2:Nz-1).*meanu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... |
142 |
|
|
-(meanv(2:Nx-1,3:Ny,2:Nz-1).*meanu(2:Nx-1,3:Ny,2:Nz-1) ... |
143 |
|
|
-meanv(2:Nx-1,1:Ny-2,2:Nz-1).*meanu(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... |
144 |
|
|
-(meanw(2:Nx-1,2:Ny-1,3:Nz).*meanu(2:Nx-1,2:Ny-1,3:Nz) ... |
145 |
|
|
-meanw(2:Nx-1,2:Ny-1,1:Nz-2).*meanu(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
146 |
|
|
|
147 |
|
|
Nv(2:Nx-1,2:Ny-1,2:Nz-1)=-(meanv(3:Nx,2:Ny-1,2:Nz-1).*meanu(3:Nx,2:Ny-1,2:Nz-1) ... |
148 |
|
|
-meanv(1:Nx-2,2:Ny-1,2:Nz-1).*meanu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... |
149 |
|
|
-(meanv(2:Nx-1,3:Ny,2:Nz-1).*meanv(2:Nx-1,3:Ny,2:Nz-1) ... |
150 |
|
|
-meanv(2:Nx-1,1:Ny-2,2:Nz-1).*meanv(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... |
151 |
|
|
-(meanw(2:Nx-1,2:Ny-1,3:Nz).*meanv(2:Nx-1,2:Ny-1,3:Nz) ... |
152 |
|
|
-meanw(2:Nx-1,2:Ny-1,1:Nz-2).*meanv(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
153 |
|
|
|
154 |
|
|
D(2:Nx-1,2:Ny-1,2:Nz-1)=-(sumut(3:Nx,2:Ny-1,2:Nz-1)-sumut(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... |
155 |
|
|
-(sumvt(2:Nx-1,3:Ny,2:Nz-1)-sumvt(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... |
156 |
|
|
-(sumwt(2:Nx-1,2:Ny-1,3:Nz)-sumwt(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
157 |
|
|
|
158 |
|
|
pv=zeros(Nx,Ny,Nz); |
159 |
|
|
ff=zeros(Nx,Ny,Nz); |
160 |
|
|
|
161 |
|
|
|
162 |
|
|
for j=1:Ny |
163 |
|
|
ff(:,j,:)=f+(j-1)*dy*beta; |
164 |
|
|
end |
165 |
|
|
|
166 |
|
|
pv(2:Nx-1,2:Ny-1,2:Nz-1)=(ff(2:Nx-1,2:Ny-1,2:Nz-1)) ... |
167 |
|
|
.*(meantheta(2:Nx-1,2:Ny-1,3:Nz)-meantheta(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
168 |
|
|
|
169 |
|
|
Mp=zeros(Nx,Ny,Nz); |
170 |
|
|
Np=zeros(Nx,Ny,Nz); |
171 |
|
|
Dp=zeros(Nx,Ny,Nz); |
172 |
|
|
|
173 |
|
|
Mp(3:Nx-2,3:Ny-2,3:Nz-2)=((Mv(4:Nx-1,3:Ny-2,3:Nz-2)-Mv(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx)- ... |
174 |
|
|
(Mu(3:Nx-2,4:Ny-1,3:Nz-2)-Mu(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy)).* ... |
175 |
|
|
(meantheta(3:Nx-2,3:Ny-2,4:Nz-1)-meantheta(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz) ... |
176 |
|
|
-(Mv(3:Nx-2,3:Ny-2,4:Nz-1)-Mv(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... |
177 |
|
|
(meantheta(4:Nx-1,3:Ny-2,3:Nz-2)-meantheta(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx) ... |
178 |
|
|
+(Mu(3:Nx-2,3:Ny-2,4:Nz-1)-Mu(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... |
179 |
|
|
(meantheta(3:Nx-2,4:Ny-1,3:Nz-2)-meantheta(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy); |
180 |
|
|
|
181 |
|
|
Dp(3:Nx-2,3:Ny-2,3:Nz-2)=(D(3:Nx-2,3:Ny-2,4:Nz-1)-D(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... |
182 |
|
|
ff(3:Nx-2,3:Ny-2,3:Nz-2); |
183 |
|
|
|
184 |
|
|
Np(3:Nx-2,3:Ny-2,3:Nz-2)=((Nv(4:Nx-1,3:Ny-2,3:Nz-2)-Nv(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx)- ... |
185 |
|
|
(Nu(3:Nx-2,4:Ny-1,3:Nz-2)-Nu(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy)).* ... |
186 |
|
|
(meantheta(3:Nx-2,3:Ny-2,4:Nz-1)-meantheta(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz) ... |
187 |
|
|
-(Nv(3:Nx-2,3:Ny-2,4:Nz-1)-Nv(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... |
188 |
|
|
(meantheta(4:Nx-1,3:Ny-2,3:Nz-2)-meantheta(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx) ... |
189 |
|
|
+(Nu(3:Nx-2,3:Ny-2,4:Nz-1)-Nu(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... |
190 |
|
|
(meantheta(3:Nx-2,4:Ny-1,3:Nz-2)-meantheta(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy); |
191 |
|
|
|
192 |
|
|
sumM=zeros(Nx,Ny); |
193 |
|
|
sumN=zeros(Nx,Ny); |
194 |
|
|
sumD=zeros(Nx,Ny); |
195 |
|
|
sumW=zeros(Nx,Ny); |
196 |
|
|
|
197 |
|
|
dz=-dz; |
198 |
|
|
|
199 |
|
|
% DEFINE BOX OF INTEGRATION |
200 |
|
|
Nx1=3; |
201 |
|
|
Nx2=Nx-2; |
202 |
|
|
Ny1=3; |
203 |
|
|
Ny2=Ny-2; |
204 |
|
|
Nz1=5; |
205 |
|
|
Nz2=Nz-4; |
206 |
|
|
|
207 |
|
|
|
208 |
|
|
for k=Nz1:Nz2 |
209 |
|
|
sumM(3:Nx-2,3:Ny-2)=sumM(3:Nx-2,3:Ny-2)+Mp(3:Nx-2,3:Ny-2,k).*pv(3:Nx-2,3:Ny-2,k)*dz; |
210 |
|
|
sumN(3:Nx-2,3:Ny-2)=sumN(3:Nx-2,3:Ny-2)+Np(3:Nx-2,3:Ny-2,k).*pv(3:Nx-2,3:Ny-2,k)*dz; |
211 |
|
|
sumD(3:Nx-2,3:Ny-2)=sumD(3:Nx-2,3:Ny-2)+Dp(3:Nx-2,3:Ny-2,k).*pv(3:Nx-2,3:Ny-2,k)*dz; |
212 |
|
|
end |
213 |
|
|
sumW(3:Nx-2,3:Ny-2)=0.5*meanw(3:Nx-2,3:Ny-2,Nz1).*pv(3:Nx-2,3:Ny-2,Nz1).*pv(3:Nx-2,3:Ny-2,Nz1); |
214 |
|
|
|
215 |
|
|
%contourf(sumM',20);colorbar; |
216 |
|
|
%figure |
217 |
|
|
%contourf(sumD',20);colorbar; |
218 |
|
|
|
219 |
|
|
V=[-10 10]; |
220 |
|
|
title='Vorticity input'; |
221 |
|
|
imagesc(lat,long,sumW(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
222 |
|
|
set(gca,'ydir','norm') |
223 |
|
|
text(0,110,title); |
224 |
|
|
figure |
225 |
|
|
title='Buoyancy diffusion integral'; |
226 |
|
|
imagesc(lat,long,sumD(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
227 |
|
|
set(gca,'ydir','norm') |
228 |
|
|
text(0,110,title); |
229 |
|
|
figure |
230 |
|
|
title='Non-linear terms integral'; |
231 |
|
|
imagesc(lat,long,sumN(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
232 |
|
|
set(gca,'ydir','norm') |
233 |
|
|
text(0,110,title); |
234 |
|
|
figure |
235 |
|
|
title='Momentum diffusion integral'; |
236 |
|
|
imagesc(lat,long,sumM(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
237 |
|
|
set(gca,'ydir','norm') |
238 |
|
|
text(0,110,title); |
239 |
|
|
|
240 |
|
|
|
241 |
|
|
%-----TEST------------------------------------------------- |
242 |
|
|
|
243 |
|
|
sum=0; |
244 |
|
|
sumT=0; |
245 |
|
|
for i=Nx1:Nx2 |
246 |
|
|
for j=Ny1:Ny2 |
247 |
|
|
sum=sum+0.5*meanw(i,j,Nz1)*pv(i,j,Nz1)*pv(i,j,Nz1)*dx*dy; |
248 |
|
|
sumT=sum-0.5*meanw(i,j,Nz2)*pv(i,j,Nz2)*pv(i,j,Nz2)*dx*dy; |
249 |
|
|
end |
250 |
|
|
end |
251 |
|
|
|
252 |
|
|
for j=Ny1:Ny2 |
253 |
|
|
for k=Nz1:Nz2 |
254 |
|
|
sumT=sumT+0.5*meanu(Nx2,j,k)*pv(Nx2,j,k)*pv(Nx2,j,k)*dz*dy; |
255 |
|
|
sumT=sumT-0.5*meanu(Nx1,j,k)*pv(Nx1,j,k)*pv(Nx1,j,k)*dz*dy; |
256 |
|
|
end |
257 |
|
|
end |
258 |
|
|
|
259 |
|
|
for i=Nx1:Nx2 |
260 |
|
|
for k=Nz1:Nz2 |
261 |
|
|
sumT=sumT+0.5*meanv(i,Ny2,k)*pv(i,Ny2,k)*pv(i,Ny2,k)*dz*dx; |
262 |
|
|
sumT=sumT-0.5*meanv(i,Ny1,k)*pv(i,Ny1,k)*pv(i,Ny1,k)*dz*dx; |
263 |
|
|
end |
264 |
|
|
end |
265 |
|
|
'VORTICITY GENERATION' |
266 |
|
|
sum |
267 |
|
|
sumT |
268 |
|
|
|
269 |
|
|
|
270 |
|
|
sum=0; |
271 |
|
|
for i=Nx1:Nx2 |
272 |
|
|
for j=Ny1:Ny2 |
273 |
|
|
sum=sum+sumD(i,j)*dx*dy; |
274 |
|
|
end |
275 |
|
|
end |
276 |
|
|
'DISSIPATION BY EDDY-DIFFUSIVITY' |
277 |
|
|
sum |
278 |
|
|
|
279 |
|
|
sum=0; |
280 |
|
|
for i=Nx1:Nx2 |
281 |
|
|
for j=Ny1:Ny2 |
282 |
|
|
sum=sum+sumM(i,j)*dx*dy; |
283 |
|
|
end |
284 |
|
|
end |
285 |
|
|
'DISSIPATION BY EDDY-VISCOSITY' |
286 |
|
|
sum |
287 |
|
|
|
288 |
|
|
sum=0; |
289 |
|
|
for i=Nx1:Nx2 |
290 |
|
|
for j=Ny1:Ny2 |
291 |
|
|
sum=sum+sumN(i,j)*dx*dy; |
292 |
|
|
end |
293 |
|
|
end |
294 |
|
|
'NONLINEARITY' |
295 |
|
|
sum |